
Vis Comput (2011) 27: 67–81
DOI 10.1007/s00371-010-0515-1

O R I G I NA L A RT I C L E

GPGPU computation and visualization of three-dimensional
cellular automata

Stéphane Gobron · Arzu Çöltekin · Hervé Bonafos ·
Daniel Thalmann

Published online: 13 August 2010
© Springer-Verlag 2010

Abstract This paper presents a general-purpose simula-
tion approach integrating a set of technological develop-
ments and algorithmic methods in cellular automata (CA)
domain. The approach provides a general-purpose comput-
ing on graphics processor units (GPGPU) implementation
for computing and multiple rendering of any direct-neighbor
three-dimensional (3D) CA. The major contributions of this
paper are: the CA processing and the visualization of large
3D matrices computed in real time; the proposal of an orig-
inal method to encode and transmit large CA functions to
the graphics processor units in real time; and clarification
of the notion of top-down and bottom-up approaches to CA
that non-CA experts often confuse. Additionally a practical
technique to simplify the finding of CA functions is imple-
mented using a 3D symmetric configuration on an interac-
tive user interface with simultaneous inside and surface vi-
sualizations. The interactive user interface allows for testing
the system with different project ideas and serves as a test
bed for performance evaluation. To illustrate the flexibility
of the proposed method, visual outputs from diverse areas
are demonstrated. Computational performance data are also
provided to demonstrate the method’s efficiency. Results in-
dicate that when large matrices are processed, computations

S. Gobron (�) · D. Thalmann
EPFL, IC, ISIM, VRLAB, Station 14, 1015 Lausanne,
Switzerland
e-mail: stephane.gobron@epfl.ch

A. Çöltekin
GIVA, Department of Geography, University of Zürich,
Winterthurerstr. 190, 8057 Zurich, Switzerland

H. Bonafos
Tecnomade, 41 place Carrière, 54000 Nancy, France

using GPU are two to three hundred times faster than the
identical algorithms using CPU.

Keywords Cellular automata · GPGPU · Simulation of
natural phenomena · Emerging behavior · Volume
graphics · Information visualization · Real-time rendering ·
Medical visualization

1 Introduction

Cellular automata (CA) allow efficient computations in a
wide variety of fields including simulation of natural phe-
nomena and physical processes (e.g. [8, 12, 13, 28]). CA al-
gorithms can be even faster and more powerful when run on
a graphics processing unit (GPU) [29], particularly when the
input is large [11, 21, 25]. An approach that utilizes GPU ac-
celerated real-time visualizations to identify emerging phe-
nomena for two-dimensional (2D) CA has previously been
suggested [10]. The 2D approach uses hexagonal grids and
is further discussed in Sect. 2.2. The study proposed in this
paper extends the 2D approach by exploring the GPU-based
computation and rendering of real-time Boolean multidi-
mensional CA and implements in three-dimensional (3D)
voxel space. An overview of the user interface and several
example outputs can be seen in Fig. 1. This graphical user
interface serves as a test bed for performance testing, bench-
marking and CA-related project development.

Approaches that offer stability and speed at low computa-
tional costs have long been desirable for real-time 3D visu-
alizations [2, 4, 11] as well as real-time large inter-cellular
computations. An important aspect of this study is to help
progress in this area by transferring massive computations
and multiple rendering of CA processes to the GPU (see
Sect. 4). Several interdisciplinary communities will benefit

mailto:stephane.gobron@epfl.ch

68 S. Gobron et al.

Fig. 1 A composite of four screenshots of the test bed that were cre-
ated to evaluate the method: (a) X-ray-like rendering, (b) surface ren-
dering, (c) simultaneous X-ray and vectorial surface rendering, and
(d) simultaneous rendering and 3D CA computational interaction on
the voxel structure. The implementation is provided as a freeware and
can be obtained at http://vrlab.epfl.ch/~stephane/

from the proposed method for identifying formal CA fami-
lies more efficiently. High performance gain we provide may
also encourage the computer graphics community to take ad-
vantage of our approach to identify and use specific CA rules
for simulation of complex phenomena or geometric transfor-
mations. Using this approach, other scientific communities
dealing with 3D matrices (such as magnetic resonance imag-
ing (MRI) in biomedical applications) can process and visu-
alize their large data sets in real time on a common personal
computer.

The contributions of this paper include:
A. A test bed for CA experts: The processing of a 3D

regular grid CA using up to 17 million cells almost instan-
taneously (i.e. less than in 10−3 seconds); The 3D visual-
ization of large 3D matrices in real time (i.e. superior to 60
fps); Access to a free software demonstrating the test bed us-
ing modern and common personal computers (for Microsoft
Windows).

B. Progress concerning coding and understanding CA in
the world of computer graphics: The proposal of an origi-
nal method to encode and transmit large CA functions to the
GPUs in real time; Clarification of the notion of top-down
and bottom-up approaches that non-CA experts often con-
fuse; A practical technique to simplify the finding of CA
functions, using 3D symmetric configuration on an interac-
tive user interface with simultaneous interior and surface vi-
sualizations.

The remainder of the paper is organized as follows. Sec-
tion 2 offers a brief overview of the state of the art in the
field. Section 3 documents concepts on GPU as well as
terminologies on CA. Section 4 defines CA concepts and
presents CA processes, and Sect. 5 explains the approach
allowing the computation of 3D CA using the graphics card.

This is followed by Sects. 6 and 7 presenting the results and
conclusions.

2 Background

2.1 Definition and a brief history of CA

The concept of CA was invented in the early 1950s by J.
Von Neumann reportedly upon Stan Ulam’s suggestion [14].
Cellular automata can be described in several ways, but in
the most generic sense it can be said that CA model and
mimic life as simulations. While mimicking life was per-
haps the original motivation, CA should be considered more
as simulators for dynamic systems—which is more general
than life-like behavior.

Appropriately, probably the best-known CA simulation
is Conway’s “Game of Life” [3] a very simple rule set that
exhibits a wide range of complex behavior—first applied
to CG in [24]. This simplistic and yet complex model is
often viewed as the source of public awareness of cellular
automata, however it was Gardner who popularized it with
his early 1970s publications [7, 8]. The next milestone in
CA history is Wolfram’s classification of automata [26, 27].
Among the more recent research, the study of excitable me-
dia is one domain that attracted wide attention, where CA
models have been found useful for approximating real life
behavior. Gerhardt et al. [9] designed a CA model that ad-
heres to the curvature and dispersion properties found ex-
perimentally in excitable media [25]. A detailed survey on
CA up to this date is presented by Ganguly et al. [6]. Since
then, the computational era has provided researchers with
tools and infrastructure, of which a wide variety of inter-
esting CA implementations can be found in literature, how-
ever the publications are too numerous to mention within the
scope of this paper.

2.2 Bottom-up and top-down approaches

When studying the CA literature, the reader may feel con-
fused about what appears to be two distinct approaches to-
wards CA:

– bottom-up approach studies the local behavior for the pur-
pose of finding direct logic-based rules. To reach a sim-
plified model of the original problem, a discrete system
is selected that inherently possesses some necessary basic
properties, e.g. symmetric structures (see Sect. 4.1);

– top-down approach derives (most of the time based on
poor and non-optimized discretization of mathematical
function) local rules based on the specific behavior of a
phenomenon. It can be defined as the transformation of
a differential equation into a discrete system that can be
simulated on a computer.

http://vrlab.epfl.ch/~stephane/

GPGPU computation and visualization of three-dimensional cellular automata 69

Table 1 Summary of the advantages and disadvantages of bottom-up or top-down approaches

Advantage Disadvantage

Top-down – Research topic is clearly defined – Discretization method produces error

– Formulated mathematical equations – CA key-code is almost impossible to find

– Combining top-down derived CA rules is very difficult,
and often a new top-down approach must be developed

Bottom-up – CA key-code derivation methods are stable – Cannot find CA key-code from a specific topic
and can be repeated – Cannot easily find mathematical equation

– Algorithm is faster / the most efficient

– Key-codes can be combined (multiple phenomena)

In the literature and especially in computer graphics texts,
most examples seem to use the top-down approach and have
been accepted as such with the term CA associated with it.
Top-down methods are efficient for finding an approxima-
tion of a precise phenomenon (e.g. melting), often resulting
in elegant but typically inflexible and often unstable solu-
tions, as they are almost impossible to combine with others;
for instance, wood on fire, heat waves, ash production, and
melting of the snow around the campfire.

In this paper, we propose a bottom-up approach to find
the CA rules and determine useful global behavior. Pre-
dicting emerging phenomena using CA has been a chal-
lenging task and often impossible based on theoretical ap-
proaches [27]. Hence, bottom-up approaches do not guaran-
tee when the CA rule corresponding to such phenomena will
be found.

In our approach, the search process is supported with a
set of real-time visualizations using transparencies and im-
plicit surfaces to help user interpreting the CA behavior. Fur-
thermore, for symmetrical CA, a set of geometric tools fa-
cilitates a logical crystalline construction that enables the
test bed to behave as a toolbox. Based on these properties,
we experimentally create CA functions until the visualiza-
tion gives the desired result. When found, such formal CA
functions are simple to apply, extremely efficient in terms
of computational cost, and combinations of different types
of behavior are possible. These properties offer potential for
multiple simulations of complex phenomena to interact with
each other (e.g., complex multiple behaviors of the burning
of solid objects are possible all in one model).

Depending on the task and/or application, it is difficult to
suggest which of the bottom-up or top-down approaches is
the more efficient one. We consider both approaches to have
their own unique advantages and disadvantages (Table 1).
Nevertheless, an awareness of the difference between them
is necessary for understanding CA at a fundamental level,
and therefore for understanding the contribution of this pa-
per. Top-down will converge to an approximation of the so-
lution that has almost no chance of being the CA key-code

(for a definition of a key-code, please refer to Sect. 3.2), and
that will be almost impossible to combine with other behav-
iors. The bottom-up solution is tedious at first, but results
into the unique solution. When more than one CA key-code
are found, they can easily be combined. Table 1 summarizes
advantages and disadvantages of both approaches.

2.3 CA and 3D on GPU

Compared to the large number of 3D graphics applications
on GPU (e.g. [4, 5]), top-down or bottom-up CA implemen-
tations on GPU are still rare [10, 21, 29, 30], and none were
found in the literature for generic real-time bottom-up 3D
CA. Current GPU implementations (e.g. [23, 29, 30]) use
top-down approaches and differ from our approach from this
point of view. A paper by Harris et al. [11] is perhaps one of
the most interesting early publications reporting a top-down
implementation on GPU that is relevant to this study. They
implemented an extension of CA called a coupled map lat-
tice (CML) on early programmable graphics hardware. They
achieved about 25 times faster processing over a roughly
equivalent CPU implementation. While Harris et al.’s [11]
paper is valuable in terms of an early demonstration of the
capabilities of graphics hardware, the approach in our work
is significantly different. Our study provides a generic and
bottom-up implementation.

3 GPU and CA concepts

Based on an introduction in [10], this section summarizes
concepts relevant to GPU and CA.

3.1 Graphics processor unit (GPU)

GPU performance has increased dramatically over the last
four years when compared to CPUs [15], and more recently
an improvement of up to 900 times was demonstrated [10].
The performance-related reports show varying numbers of

70 S. Gobron et al.

how much acceleration is gained. This is due to the fact
that results largely depend on the graphics card models and
the operating system. Nevertheless, in all cases there is a
significant and consistent improvement in the reported per-
formances. To achieve this, the graphics cards typically use
three programs in their pipeline: the Vertex, the Geometric,
and the Fragment Shaders also called Pixel Shaders. These
three programs are illustrated on the right of Fig. 3(b). To
use the graphics card as a computational device for CA, only
the last program is important as it performs computations
on single 2D textures that are used to store the 3D cellu-
lar matrix. A detailed survey of GPU architecture is not in
the scope of this work, especially since we focus on CA-
functions’ deduction and their CG applications. For an ex-
haustive review of general-purpose processing on graphics
processor unit (GPGPU) the reader is recommended to refer
to the Owens et al.’s [15] survey.

3.2 CA terminology, concepts and definitions

This section presents the terminology used in this paper in-
cluding various notions of CA types, neighborhoods, rules,
changes of state, and CA key-codes. Figure 2 illustrates
samples of structures that present geometric properties par-
ticularly suitable for CA use. The first row proposes sym-
metric geometric representations for the first and second di-
mensions. The second row introduces the four most simple
symmetric CA geometric structures for the third dimension
respectively based on tetrahedron (f), and voxel-like struc-
tures (g, h, i). The bottom row presents the two possible
representations of what is probably the simplest of the nat-
ural 3D structures, i.e. “close packing,” with its cellular 3D
shape. These are in the hexagonal close packing (j) such as
platinum atoms and in the cubic close packing (k) such as

Fig. 2 Multidimensional geometric representations appropriate for
CA: (a) 1D; (b) 2Dt ; (c) 2DvN ; (d) 2Dh; (e) 2DM ; (f) 3Dt ; (g) 3DvN ;
(h) 3DM1 ; (i) 3DM2 ; (j) 3Dh1 ; (k) 3Dh2

silver, gold, copper, and lead atoms [16]. Considering the
multitude of possible CA structures and types, the following
rule is used to symbolize them all:

[dimension]D[structure]
[statenb] CA ≡ dDN

n CA (1)

with:

– d as dimension;
– n the number of states that a cell C can have;
– N the structure:

– for the square/cube structure with direct neighbors N ≡
‘vN’ = 4 in 2D, vN stands for von Neumann;

– for the square/cube structure with indirect neighbors
N ≡ ‘Mi’ = 8 in 2D, Mi stands for Moore with i being
the growing number of possible indirect cases;

– for the hexagonal grid N ≡ ‘h’ = 6 in 2D;
– for the triangle or tetragonal structure N ≡ ‘t’ = 3 in

2D and = 4 in 3D.

Therefore, in the dDN
n CA domain, for each cell C with

N number of neighbors, let us define c as the number of
configuration structures, and ρ as the number of possible
CA that can be deduced with:

with c = n(N+1) and ρ = nc, then ρ = nn(N+1)

. (2)

For each CA of a specific type, we define a unique key-
code as ϕ1, ϕ2, . . . , ϕc, describing the intrinsic local behav-
ior for each possible state. In fact, a key-code describes the
resulting column of the corresponding CA truth table. When
using a top-down approach, it is almost impossible to find
such a truth table (and therefore its key-code). This is be-
cause finding all local logical changes of states for each dis-
cretized behavior from a general mathematical equation is
not feasible.

Let τ be the truth table made with the neighbors of a cen-
tral cell: A,B,C, . . . ,X. For illustration, this “pivot” cell is
located in the center of Fig. 2g, and Fig. 4 depicts all pos-
sible symmetrical rotations critically useful for symmetrical
CA development and function deduction.

The following section will present the proposed model
for computing any rule of 3DvN

b CA while enabling the visu-
alizations of the corresponding data flow in real time.

4 Processes

As can be seen in Fig. 3(a) the process cycle consists of three
main steps: input (first and second steps shown in green),
processes and output. Input takes a 3D data set, a density
matrix such as an fMRI scan, which is preprocessed into
Tex2D. Tex2D is a 2D representation of slices, as most den-
sity data are recorded in slices. This allows the viewer to see
the volume mapped into a series of slices on a single image.

GPGPU computation and visualization of three-dimensional cellular automata 71

Table 2 Corresponding
symmetric shape for the 128 bits
3DvN

b CA key-code—i.e. the
neighbor’s state code Nstate

Nstate Corresponding 3DvN
b CA symmetric shape—see Fig. 4

0..31 1 2 3 4 3 4 5 7 3 4 5 7 6 8 9 11 3 4 6 8 5 7 9 11 5 7 9 11 9 11 13 15

32..63 3 4 5 7 5 7 10 12 5 7 10 12 9 11 14 16 5 7 9 11 10 12 14 16 10 12 14 16 14 16 17 18

64..95 identical to previous row

96..127 6 8 9 11 9 11 14 16 9 11 14 16 13 15 17 18 9 11 13 15 14 16 17 18 14 16 17 18 17 18 19 20

Fig. 3 Data-processing flow diagrams: (a) process cycle for the imple-
mentation that allows real-time computation and visualization of any
3DvN

b CA. (b) Relationship between CPU and GPUs—using a simpli-
fied representation of the GPUs architecture

Several processes are integrated in the implementation
and the interface (Fig. 1) allows for a number of modifi-
cations. The experimenter (test-bed user) has a great deal of
control over the processes. Once the 3D data set and the de-
sired parameters are provided, the software communicates
with the graphics card for real-time CA computations, as
specified by the experimenter, and returns real-time visual-
izations of CA accordingly. During the processes symmetric
and asymmetric rules are applied using a floating point vari-
ation with visual cellular behavior. All these processes are
performed efficiently and they return 3D simulations, Tex2D
output, and potentially valuable CA key-codes. For more de-
tails on performance, see Sect. 6.2.

4.1 Symmetry rules

By using (2), ρ(3DvN
b CA) is equal to 2128, approximately

3.4 · 1038. To avoid digging randomly into this very large
number of possible Boolean CA, this method focuses on
symmetric CA. As illustrated in Fig. 4, there are 20 pos-
sible symmetric configurations. Each of them can be true or

Fig. 4 All symmetric configurations for Boolean direct neighbors CA
(3DvN

b CA)

false for each CA, therefore, the total number of CA is 220.
This greatly narrows the search space. Focusing on symmet-
ric CA, using crystalline symmetries depicted in Fig. 4 and
obtaining real-time results (where both surface and interior
properties can easily be visualized and interpreted) tremen-
dously increase the chance of converging to interesting CA
rules (key-codes).

As illustrated in [10], symmetric CA can be very useful
in the domain of real-time imaging, especially in computer
graphics for automatic surface texturing or analysis of image
flow.

To determine the relationship between a symmetric CA
function and its equivalent key-code (notice that the reci-
procity is not valid), we use Table 2 that maps for each of
the 128 states and the corresponding 20 symmetrical config-
urations.

The first practical example based on emerging behaviors
is displayed in Fig. 5. The behavior depicts a convergence
to the bounding box of each object in the scene. To achieve
this, we applied a specific symmetric key-code, i.e. 1 to 20
possible φ′ were set to true, equivalent to a CA-rule with a
key-code of 32φ.

A second example is finding the derivative (i.e. surface
normal) of a volume as described by the following key-code

72 S. Gobron et al.

Fig. 5 A simple example of application in geometry using CA: finding
bounding boxes on a hydrogen atom simulation database

equation:

ϕ′
true = [2.4.7.8.11.12.15.16.18.20] ≡

τ(ϕ(1..32)

= [AAAAAAAAAAAAAAA2AAAAAAA2AAA2A228]).

4.2 Fragment Shaders model

As previously stated, the algorithm of the 3D direct square
neighbor CA is based on the relationship between a CPU
program and shader codes. To make such a software, three
main functions are required: CA computations, the 3D CA
rendering, and an interface (also referred to as human–
machine interface or user interface for the interactive ap-
plications). As the first two functions are computationally
highly expensive, both are implemented using shaders. Fur-
thermore, when there are more than six neighbors in a CA
implementation, the number of key-codes produced by the
software becomes very high and impossible to transmit to
GPU using direct addressing. To solve this problem, the key-
code is encoded as a 1D-texture in our system that can easily
be transmitted to the shader program.

5 Methods

Mentioned techniques depicted in this section are for opti-
mizing computations, for data visualization, and for volume
rendering to help experimenters finding CA functions in an
efficient manner.

5.1 From 3D data set to a single 2D texture

Before running the CA program, the 3D data set is pre-
computed into a unique 2D buffer as shown in Fig. 6. This
buffer is stored in a portable network graphics (PNG) pic-
ture format consisting of a collection of slices from a density
volume. This technique is convenient and efficient; it allows
users to see the data set in a consistent way without requiring
any additional software and the “volume image” can then
be directly used as a texture for the Fragment Shaders pro-
gram. Furthermore, due to the natural structure of pictures,

Fig. 6 Relationship between 3D matrices (a) and the equivalent 2D

texture (b). As a practical example, rendered figures (c), (d), (e), and (f)
illustrate a 16×16×16 matrix, and its 3D PNG, X-ray, and iso-surface
representations respectively

accessing neighbors between cells is easy (but not trivial)
and cellular interactions are therefore very efficient. Notice
that to save useless import–export computations, this “flat-
tening of the 3D volume” occurs at the input only, then along
all GPU and CPU processes, only 3D volume (represented
as 2D textures) is used. Also when storing the volume, a 3D
PNG image is used as it can also be an input to the test bed.

To be able to compute a 2D texture from a 3D data set
using the graphics card in an efficient manner, we define a
relationship between the edge size Si of the volume image
and the edge size Sv of the volume such that

S3
v = S2

i , with
√

Sv ∈ Z
+. (3)

The first five couples of type “[Sv,Si]” resulting from this
equation are: [22,23], [24,26], [26,29], [28,29], [210,215].
Notice that the last couple represents a voxel space of 109

cells, which is currently the most common MRI matrix size.
However, due to memory issues, those very large matrices
can be applied only to the latest graphics cards and their cel-

GPGPU computation and visualization of three-dimensional cellular automata 73

lular interaction cannot yet run in real time. For this reason,
they are not further discussed in this paper.

5.2 Floating-point variation of CA

Also called coupled map lattice (CML), a floating point vari-
ation of CA [11] is a technique for the simulation of natural
phenomena. Instead of using a discreet change of states,
like Boolean, CML allows floating numbers as states. The
truth table remains valid, since a unique threshold is de-
fined. Nevertheless, using a derivative of delta instead of 0
or 1, CML permits intermediate steps (and therefore more
natural visual effects) to occur. For some common func-
tions, e.g. boiling, convection, reaction-diffusion processes,
CML-CA and classical CA both converge to identical states.
However, CML-CA distorts behaviors locally, then globally.
While this distortion makes processes more complex, it also
offers opportunities to explore new behaviors. The test bed
presented in this study provides this powerful technique as
an option. CML can be selected by using non-Boolean step
on the user interface (Fig. 1).

To help experimenters, a visual property in the X-ray
like simulation is included; this is further discussed in
Sect. 5.3.2. This property is directly derived from CML:
coloring the derivative of the cellular density through
time. When using floating-point variation instead of direct
Boolean change of state, the presented method provides
a visualization of the cellular activity using color coding.
That is, cells will turn red when density increases, and turn
cyan when density decreases. This derivative can strongly
help deducing crucial information required for defining CA
emerging global behavior, as discussed in Sect. 6.

5.3 Rendering of 3D CA

The surface is often not the only important attribute, as e.g.
in medical visualizations [23]. For instance, finding effec-
tive volume rendering methods for interior (inside) of object
(e.g. organs) remains a challenge in the field of computer
graphics. This paper does not claim to overcome this chal-
lenge; however, to study emerging 3D CA behavior, the en-
tire 3D cellular structure has to be visualized: the surface as
well as the interior. For this reason, two types of rendering

are proposed: X-ray-like simulation and sphere-map light-
ing surface rendering, including diffuse and specular sphere
maps. The rendering must be in real time; they are thus both
implemented in a GPU Shader. Furthermore, to be able to
understand and identify convenient CA, a simultaneous and
partial X-ray and iso-surface rendering has been developed
(see online provided software).

Figure 7 displays results from the two main types of
Fragment Shaders algorithms that were developed to help
identifying global behaviors. The surface and the interior of
the 3D cellular structure can be viewed on the two left im-
ages and two right images respectively. To illustrate the ren-
dering differences, a close-up of the same region is shown
on the top left of each image. Following are the details of
the advantages for both of these rendering techniques: X-
ray-like simulation for the interior, and sphere-map lighting
surface rendering for the surface.

5.3.1 X-ray-like rendering

Seeing inside an object is not natural, however, at times
tremendously useful. A common and well-known technique,
mainly used in medicine, consists of casting X-rays through
biological tissues on an X-ray sensitive film. To achieve
an X-ray-like visualization in our implementation, the al-
gorithm illustrated in Fig. 8 behaves in a similar way: the
idea is to cast a ray from the isometric projection (A) of the
camera position on the cube, through the 3D matrix (end-
ing in B) and find an intensity I to sum s (for ‘step’) local
densities i encountered such that:

I =
∫ B

A

ixδx �
B∑

x=A

(�x.ix), x ← x + �x (4)

with �x ← 1/s.
For an optimal simulation, �x should be the local dis-

tance from one voxel to another as the rays go through the
volume. Figure 8(d) proposes a visually consistent simula-
tion with only 50 steps.

5.3.2 Adding colors to visualize cellular behavior

In Fig. 9, a CA is applied that simulates the destruction of
weak cells and the crystallization of dense ones: from left to

Fig. 7 Presenting the two rendering types, i.e. density surface and X-ray simulations, of the same 643 volume: (a) density voxel; (b) corresponding
implicit surface; (c) X-ray-like simulation on voxel; (d) supersampling X-ray-like simulation

74 S. Gobron et al.

Fig. 8 Rendering quality on a
2563 matrix, depending of the
number of steps s for the X-ray
simulation: (a) one step;
(b) three steps; (c) 10 steps;
(d) 50 steps

Fig. 9 CA tool in action using
X-ray visualization on a 2563

voxel space: the derivatives of
local densities are shown in
cyan when negative and red
when positive

right, the converging process from the source image to a sta-
ble state can be seen. The two intermediate images demon-
strate the visual property derived from CML which is the
color-coding described in Sect. 5.2. The derivative of the cel-
lular density is shown in red when positive and in cyan when
negative. It can be observed that in the first phase, most cells
lose density and in the second phase, the density of most
remaining cells increases.

5.3.3 Surface rendering

To explain the selection of the rendering method, two re-
marks are necessary. First, it is difficult to define what is the
surface of a 3D data set consisting of densities that are often
covered with noise. Second, the use of Boolean CA requires
the use of a floating threshold (e.g. 0.5 for classical CA).
Based on these two observations, a threshold, defining the
“solidity” limit, was used for rendering, similarly to implicit
surfaces [1]. The algorithm begins by casting a ray from the
eye to find the first cell that has a density superior to the
threshold. Then, to find the normal of the surface, the inverse
sum of all normal vectors of existing surrounding cells mul-
tiplied by their respective densities was computed. Finally,
as depicted in Fig. 10, classic illumination techniques were
applied. Figure 10 shows the results from the computation
of diffuse and specular map texture coordinates and their re-
spective sum with a sphere-map (double) lighting.

6 Results

This section first provides example visual outputs from dif-
ferent data types to demonstrate the flexibility of the method
over different domains. Then it presents computational sta-
tistics for the presented CA method. Statistics were obtained
through tests on four different hardware configurations. Fi-
nally, a discussion on the results is offered.

Fig. 10 Surface rendering pipeline: (a) normal computations, (b) dif-
fuse sphere map texture coordinates, (c) specular sphere map texture
coordinates, (d) and (e) corresponding diffuse and specular effects,
(f) final combined rendering with sphere-map lighting

6.1 Graphical results and observations

CA are known to be efficient in a variety of application do-
mains [27] ranging from mathematical physics [22] to urban
studies and geography [17] and biological structures [18],
to name a few. In this section, to demonstrate how the
presented method behaves across some of these domains,
sample results are presented for the following application
fields: geometry, recursive patterns (fractals) and behavior
(for bounding box and gradient), medical applications (vi-
sualization and cellular interactions), simulation of natural
phenomena (vegetation growth-like and surface effects).

Figure 11 presents different fractal patterns generated
from a single root using a low-complexity symmetric CA
key-code. On the first row, the growth process of a cross-like
structure from steps 2 to 40 is presented. The last figure on
the right illustrates the density view of the last state. Three
triangular-based fractal structures are shown on the bottom
row at step 55 and the last two both depict step 40. The last
image illustrates the effect of modifying a single symmet-
ric CA parameter from the code of the recursive cross-like
structure.

Figure 12 illustrates the potential of the method for med-
ical applications. Once the CA function is determined, real-
time interactive effects can be computed. In this example,
destructive effects over low-density tissues are computed
and visualized. The close-up view shows the quality of the
final rendering for a 256-side cube matrix.

GPGPU computation and visualization of three-dimensional cellular automata 75

Fig. 11 An example of fractal
produced from a single root cell

Fig. 12 An example for medical applications: real-time CA interac-
tive effects and high quality data visualization on the topography of
low-density tissues (matrix of 2563 voxels)

Fig. 13 An example for visualizing complex natural phenomena: veg-
etation simulation

Figures 13 and 14 present examples of natural phenom-
ena simulations: growth and wax surface. The first figure
shows vegetation growth. In the first example, notice the X-
ray-like simulation in the image on the far left, where two
regions are clearly distinct: while density around the leaves
visibly increases (reddish color), the density inside the pot
decreases (cyan color). This particular CA seems to simu-
late the vegetation growth process. In reality, this CA only
decreases saturated density regions and increases space re-
gions with high gradient. Concerning the wax surface simu-
lation, this surprising CA modified the surface of the initial
teapot so that the object seems to be covered by a wax layer.

The real-time computation and visualization of CA is
powerful, especially when understanding of complex data
sets is necessary. In medical applications, for instance, real-

Fig. 14 An example for demonstrating complex surface effects (from
left to right): original data (2563 voxels) and wax-like simultaneous
melting and growing

time visualization of large data sets such as MRI scans is a
challenge, and remains impossible on low-cost systems. Our
method can be of help in some of these cases as it can handle
a grid of 2563. To our knowledge, the best MRI grids are up
to 10243, thus, our method is close to allowing very low-cost
3D visualization for such applications. More than a tool to
only visualize in real time, our approach also allows for the
processing of complex operations in real time using prede-
termined CA functions (such as intelligent organ detection,
or growth probabilistic expectations, for instance). Different
kinds of potentially useful biomedical images can be seen in
various figures of this paper. In particular, Fig. 15 shows an
X-ray-like simulation simultaneously with implicit surface
reconstruction.

6.2 Performance

In this section, results are presented for acceleration of CA
computations by comparing different types of CPU or GPU
based algorithms, different hardware configurations (four
different graphics cards), and different data volumes (i.e.
163, 643, and 2563).

76 S. Gobron et al.

Fig. 15 Double visualization effects—i.e. X-ray-like and surface re-
construction—computed in a single rendering; the cyan effect repre-
sents the decreasing intensity flesh tissues: corresponding cells are pro-
grammed with a very simple cellular automaton that consists of spread-
ing local densities towards zero or one with a predefined threshold

6.2.1 Four configurations

All algorithms presented in this paper were developed
in C++ on Microsoft Windows XP-Pro using MSVC++,
the graphics library OpenGL [20], and classical GPGPU
methods—i.e., OpenGL Shading Language (GLSL) [19].
Some pseudo-codes are presented in the Appendix, see
Figs. 17 and 18.

Concerning other GPU programming methods, we would
not recommend “modern” GPGPU development tools such
as CUDA or OpenCL yet, even if implementation is simpler,
for the following reasons. First, they remain overlays to clas-
sic Shader which—depending on the programming skills of
the developer—is usually less optimized. Second, direct ac-
cess to texture remains impossible, which implies the result-
ing performance to strongly decrease. Third, CUDA remains
the full property of NVidia and cannot run on ATI/AMD
graphics cards.

To document the efficiency of the method, its perfor-
mance on common everyday computers is reported. Ad-
vantages and limitations of using graphics cards is demon-
strated, in particular for 3D. Generation of the graphics card
is a parameter. Table 3 presents the four hardware configu-
rations used for testing the presented method including two
notebooks, and two PCs, four different processors and four
different graphics cards.

6.2.2 GPU and CPU results

Figure 16 illustrates the average performance for the pre-
sented method. Reported statistics are obtained by showing

Table 3 Four hardware configurations were tested; Cfg, CT-OS
stands for configuration number, computer type and operating system,
and PC, NB, XP, Vst, 7, Qd, and GF stand for personal computer,
notebook, Windows-XP professional, Windows-Vista, Windows-7,
NVidia, Quadro, and GeForce, respectively

Cfg, CT-OS Graphics Card Processor and RAM

#1, NB-XP Qd-FX1500M, 512 MB T7200, 1.99 GHz, 1008 MB

#2, PC-Vst GF-8600-GS, 512 MB Q6600, 2.39 GHz, 3072 MB

#3, NB-XP GF-7900M-GTX, 512 MB T7200, 2.00 GHz, 2048 MB

#4, PC-7 GF-295-GTX, 896 MBx2 i7-920, 2.67 GHz, 6144 MB

Table 4 Performance comparison for four different PCs configura-
tions: number of CA operations per second (in millions)—see also re-
sulting ratio in Fig. 16

CPU GPU

Matrices: 163 643 2563 163 643 2563

Config.#1 42.35 29.48 4.62 40.65 105.03 11.26

Config.#2 57.87 30.63 4.25 37.30 69.63 37.47

Config.#3 46.50 24.83 3.59 10.63 163.77 283.01

Config.#4 30.83 17.17 7.44 60.99 793.11 1731.04

the computation time for 10 thousand iterations. This was
done on the three possible different buffer sizes, shown in
the red, green, and blue zones.

Table 4 presents the number of state changes (in mil-
lions) that are computed (using CPU and GPU) every second
on the three possible 3D matrices, representing 4096 cells,
about 262 thousands cells, and almost 17 million cells. The
first observation is that the performances of all the CPUs
quickly decreases in a very similar way as the matrices grow.
The second observation is that GPU performances remain
more or less identical for the 7000-series and equivalent, and
increase strongly for the newer series.

The chart depicted in Fig. 16 displays the ratio between
respective GPU and CPU capabilities. To improve its read-
ability, a logarithmic scaling was used. Three observations
can be made with regard to this chart. First, the ratio is in-
ferior to one, there is no point in using the GPU for small
3D matrices. Second, for matrices larger than 163, graph-
ics cards equivalent to or newer than the GeForce 8800GTX
not only give excellent results, but demonstrate a real gap in
terms of computation compared to older generations. Third,
the excellent ×232 ratio is obtained with the latest graph-
ics card, and even using best multi-core CPU with multi-
thread algorithm, a minimum of ×30 is expected when GPU
is used.

These results open real possibilities for low-cost real-
time massive visualizations and cellular interaction of ad-
vanced computations. For instance, the medical domain
needs very high resolution imagery implying the use of very
large matrices. As previously said, this is also a domain

GPGPU computation and visualization of three-dimensional cellular automata 77

Fig. 16 GPU/CPU ratio of average performance based on values in
Table 4 respectively for the four hardware configurations and the three
matrix types (163, 643, and 2563)

where intelligent 3D computation tools (such as organ de-
tection, surgery training, tumor statistical growth prediction)
are more and more needed.

7 Conclusions and future work

This paper presented a novel approach to simulating bottom-
up 3D CA using the GPGPU bringing together a set of meth-
ods. A summary of key contributions can be listed as: trans-
ferring any CA computational key-code onto the graphics
card, creating a model to do the computations for three-
dimensional CA, and an interactive interface (using simul-
taneously X-ray-like and iso-surface renderings) that helps
finding convenient CA behavior. The interface is also de-
signed to serve as a test bed for performance testing. As a
result, faster CA simulations and much more efficient iden-
tification and classification are possible. Furthermore, a crit-
ical discussion was provided on two distinctly different ap-
proaches to CA based on the literature, namely top-down
and bottom-up approaches.

After introducing the programming techniques using
both CPU and GPU, and summarizing concepts used in
this application, a novel method was proposed to encode
large CA key-codes allowing a generalized Boolean CA al-
gorithm to be performed on a GPU, restricted to memory

size limitations. Following that, an original method to auto-
matically sort symmetric CA (for any dimension) based on
their symmetric structure was presented. A detailed account
was provided as to how to encode generalized algorithms for
3DvNCA. To demonstrate the capabilities and flexibility of
the model, examples of characteristic patterns and common
global behaviors were presented. Computational statistics
obtained on different hardware and software configurations
demonstrated a very strong performance gain on common
personal computers, especially for large 3D data sets. It was
also demonstrated that the current voxel model behaves in
a different way in terms of computational capabilities de-
pending on the graphics card generation. The solutions that
are offered in this paper will allow for a true bottom-up CA
key-code (rule) discovery for potential users of CA and re-
searchers across many fields.

Following the work described in this paper, in the near
future we plan to report the findings on an extended model
for other three-dimensional Boolean CA with indirect neigh-
bors, such as Moore models 3D

M1
b CA and 3D

M2
b CA (18 and

26 neighbors). Also, we believe, harmonious structures such
as both hexagonal and cubic close packing 3DhCA mod-
els [16] are the most promising field of study for the 3D CA,
with only 12 neighbors and the most natural structure. Nev-
ertheless, changing the geometric nature of CA (from cubic
to 3D hexagonal) will imply strong changes in the algorithm.
Therefore, direct integration in the system proposed in this
paper is not possible. Finally, exploring possibilities of new
visualizations for this model in stereoscopic virtual environ-
ments, such as a CAVE with haptic interaction, is currently
being considered.

Acknowledgements We are grateful to Dr. Helena Grillon, Dr.
Junghyun Ahn, and Mr. Patrick Salamin for their suggestions, which
greatly improved the manuscript. We also would like to express our
gratitude to the three anonymous reviewers for their valuable feed-
back. This work was supported by the following grants: SNF grant
“GeoF” (No. 120434), SNF grant “AERIALCROWDS” (No. 122696),
and the European Union COSI-ICT “CYBER-EMOTIONS” (IST FP7
231323).

Appendix

In this appendix, pseudo-codes of the GLSL pixel-shaders
for the CA rule decoding algorithm (Fig. 17) and the iso-
surface rendering (Fig. 18) are presented.

78 S. Gobron et al.

Fig. 17 Fragment Shader used
as a GPGPU: cellular automaton
pseudo-code algorithm

GPGPU computation and visualization of three-dimensional cellular automata 79

Fig. 18 Fragment Shader used
for rendering: finding surface
normal and reconstructing
corresponding surface texture
pseudo-code algorithm

80 S. Gobron et al.

References

1. Bloomenthal, J., Bajaj, C., Cani, M.P., Rockwood, A., Wyvill, R.,
Wywill, G.: Introduction to Implicit Surfaces. Morgan Kaufmann,
San Francisco (1997)

2. Çöltekin, A., Haggrén, H.: Stereo foveation. Photogram. J. Finl.
20(1) (2006)

3. Conway, J.: Game of life. Sci. Am. 223, 120–123 (1970)
4. Coutinho, B.B.S., Giraldi, G., Apolinario, A., Rodrigues, P.: GPU

surface flow simulation and multiresolution animation in digi-
tal terrain models. In: LNCC Reports 2008. Petrópolis/RJ, Brazil
(2008)

5. Duchowski, A., Çöltekin, A.: Foveated gaze-contingent displays
for peripheral LOD management, 3D visualization, and stereo
imaging. ACM Trans. Multimedia Comput. Commun. Appl.
(TOMCCAP). Arch. 3(6) (2007)

6. Ganguly, N., Sikdar, B.K., Deutsch, A., Canright, G., Chaud-
huri, P.P.: A survey on cellular automata. Tech. rep., Centre for
High Performance Computing, Dresden University of Technology
(2003)

7. Gardner, M.: Mathematical games: The fantastic combinations of
John Conway’s new solitaire game “life”. Sci. Am. (1970)

8. Gardner, M.: Mathematical games: On cellular automata, self-
reproduction, the garden of eden and the game “life”. Sci. Am.
(1971)

9. Gerhardt, M., Schuster, H., Tyson, J.: A cellular automaton model
of excitable media including curvature and dispersion. Science
247, 1563–1566 (1990)

10. Gobron, S., Bonafos, H., Mestre, D.: GPU accelerated computa-
tion and visualization of hexagonal cellular automata. In: 8th In-
ternational Conference on Cellular Automata for Research and
Industry, ACRI 2008, vol. 5191/2008, pp. 512–521. Yokohama,
Japan, Springer (2008)

11. Harris, M.J., Coombe, G., Scheuermann, T., Lastra, A.:
Physically-based visual simulation on graphics hard-
ware. In: HWWS’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware,
pp. 109–118. Eurographics Association, Aire-la-Ville (2002)

12. Durbeck, L., Macias, N.: The cell matrix: An architecture for
nanocomputing. Nanotechnology 12, 217–230 (2001)

13. Tomassini, M., Sipper, M., Perrenoud, M.: On the generation of
high-quality random numbers by two-dimensional cellular au-
tomata. IEEE Trans. Comput. 49(10), 1146–1151 (2000)

14. von Neumann, J.: Theory of self-reproducing automata. In: Essays
on Cellular Automata. University of Illinois Press, Urbana (1970)

15. Owens, J., Luebke, D., Govindaraju, N., Harris, M., Krueger, J.,
Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computa-
tion on graphics hardware. Comput. Graph. Forum 26(1), 80–113
(2007)

16. Phillips, W., Phillips, N.: An Introduction to Mineralogy for Ge-
ologists. Wiley, New York (1981)

17. Pinto, N., Antunes, A.: Cellular automata and urban studies: A lit-
erature survey. Archit. City Environ. 1(3) (2007)

18. Prusinkiewicz, P.: Modeling and visualization of biological struc-
tures. In: Proceeding of Graphics Interface ’93, pp. 128–137.
Toronto, Ontario, Canada (1993)

19. Rost, R.: OpenGL Shading Language, 2nd edn. Addison-Wesley,
Reading (2006)

20. Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL Program-
ming Guide: The Official Guide to Learning OpenGL v2.0, 1st
edn. Addison-Wesley, Reading (2005)

21. Singler, J.: Implementation of cellular automata on a GPU. In:
ACM Workshop on General Purpose Computing on Graphics
Processors, sponsored by ACM SIGGRAPH. Los Angeles, USA
(2004). http://www.jsingler.de/studies/cagpu.php

22. Smith, M.: Cellular automata methods in mathematical physics.
Ph.D. thesis, Institut National Polytechnique de Grenoble (1994)

23. Tatarchuk, N., Shopf, J., DeCoro, C.: Advanced interactive med-
ical visualization on the GPU. J. Parallel Distrib. Comput. 68(10),
1319–1328 (2008)

24. Thalmann, D.: A lifegame approach to surface modeling and ren-
dering. Vis. Comput. 2, 384–390 (1986)

25. Tran, J., Jordan, D., Luebke, D.: New challenges for cellular au-
tomata simulation on the GPU. www.cs.virginia.edu (2003)

26. Wolfram, S.: Universality and complexity in cellular automata.
Physica D 10, 1–35 (1984)

27. Wolfram, S.: A New Kind of Science, 1st edn. Wolfram Media
Inc. (2002)

28. Wu, T.-C., Hong, B.-Y.: Simulation of urban land development and
land use change employing GIS with cellular automata. In: Sec-
ond International Conference on Computer Modeling and Simula-
tion, pp. 513–516. Institute of Electrical and Electronics Engineers
(2010)

29. Zaloudek, L., Sekanina, L., Simek, V.: GPU accelerators for evolv-
able cellular automata. In: Computation World: Future Comput-
ing, Service Computation, Adaptive, Content, Cognitive, Patterns,
pp. 533–537. Institute of Electrical and Electronics Engineers
(2009)

30. Zhao, Y.: GPU-accelerated surface denoising and morphing with
lattice Boltzmann scheme. In: IEEE International Conference on
Shape Modeling and Applications (SMI’08). Stony Brook, New
York (2008)

Stéphane Gobron during the last
10 years, Stephane Gobron has
mainly been—doing research in
Computer Graphics where his re-
search interests mainly focus on dy-
namic cellular networks, GPGPU,
real-time simulation, biomedical vi-
sualization tools, and augmented
and virtual reality;—teaching mainly
computer science in France at the
undergraduate level where he also
was in charge of the Computer
Graphics Bachelor Department.
Stephane is currently member of the
VRLab, at EPLF, Switzerland, man-

aging a small team, focusing the R&D on 3D visualization of virtual
human, and participating in teaching at graduate level.

Arzu Çöltekin with a background
in Geomatics Engineering in B.Sc.
(4 years) and M.Sc. degrees (2
years) in Istanbul, Turkey, Arzu
specialized in photogrammetry and
remote sensing for her Ph.D. in
Helsinki, Finland. After her Ph.D.,
Arzu ‘converted’ to geography and
currently works with an interdisci-
plinary research agenda where she
tries to bridge concepts from human
vision to visualization, and tests her
findings with user experience stud-
ies. She has worked and published
on web-based 3D visualizations,

stereoscopic visualizations, foveation, space-variant imaging and eye
tracking related topics.

http://www.jsingler.de/studies/cagpu.php
http://www.cs.virginia.edu

GPGPU computation and visualization of three-dimensional cellular automata 81

Hervé Bonafos has been for six
years the reasearch and develop-
ment manager of a private company
(Tecnomade) in real time architec-
tural visualization, since he gradu-
ated with a Bachelor of Science spe-
cialized in computer graphics.

Daniel Thalmann is Director of
EPFL VRlab, Switzerland. He is
a pioneer in Virtual Humans. He
is Coeditor-in-Chief of the Journal
of Computer Animation and Virtual
Worlds and editor or several other
journals. He has published numer-
ous papers in Graphics, Animation,
and VR. He is co-author of several
books, including “Crowd Simula-
tion” (2007). He received his Ph.D.
in Computer Science from Univer-
sity of Geneva and an Honorary
Doctorate from University Paul-
Sabatier in Toulouse, France.

	GPGPU computation and visualization of three-dimensional cellular automata
	Abstract
	Introduction
	Background
	Definition and a brief history of CA
	Bottom-up and top-down approaches
	CA and 3D on GPU

	GPU and CA concepts
	Graphics processor unit (GPU)
	CA terminology, concepts and definitions

	Processes
	Symmetry rules
	Fragment Shaders model

	Methods
	From 3D data set to a single 2D texture
	Floating-point variation of CA
	Rendering of 3D CA
	X-ray-like rendering
	Adding colors to visualize cellular behavior
	Surface rendering

	Results
	Graphical results and observations
	Performance
	Four configurations
	GPU and CPU results

	Conclusions and future work
	Acknowledgements
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

