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Toward optimizing the design of virtual environments for route
learning: empirically assessing the effects of changing levels of
realism on memory
Ismini E. Lokka and Arzu Çöltekin

Department of Geography, University of Zurich, Zurich, Switzerland

ABSTRACT
Broadly, this paper is about designing memorable 3D geovisualizations
for spatial knowledge acquisition during (virtual) navigation.
Navigation is a fundamentally important task, and even though most
people navigate every day, many find it difficult in unfamiliar
environments. When people get lost in an unfamiliar environment, or
are unable to remember a route that they took, they might feel
anxiety, disappointment and frustration; and in real world, such
incidents can be costly, and at times, life-threatening. Therefore, in this
paper, we study the design decisions in terms of visual realism in a city
model, propose a visualization design optimized for route learning,
implement and empirically evaluate this design. The evaluation
features a navigational route learning task, where we measure short-
and long-term recall accuracy of 42 participants with varying spatial
abilities and memory capacity. Our findings provide unique empirical
evidence on how design choices affect memory in route learning with
geovirtual environments, contributing toward empirically verified
design guidelines for digital cities.
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1. Introduction

A virtual reality (VR) idea has fascinated people for decades, and early instances of VR were cre-
ated in 1960s (Sutherland 1965). Because a virtual world can be used as a ‘spatial lab’, VR also
found an audience in geography (e.g. Fisher and Unwin 2001). A peak in the excitement for
potential contributions of an all-encompassing geographical VR to education and exploration
led to the proposition of a Digital Earth (Gore 1998). The term virtual environments (VE)
extends the VR concept into a visualization environment that can also feature simulated or fic-
tional worlds. VEs in geography (geovirtual environments or GeoVEs) were suggested as a
research priority in GIScience nearly two decades ago (MacEachren et al. 1999; MacEachren
and Kraak 2001; Slocum et al. 2001), because they, in Slocum et al.’s (2001, 62) words, ‘funda-
mentally change our traditional way of acquiring spatial knowledge’. In the past two decades,
impressive progress has been made in technology, promising ‘better’ GeoVEs. However, we
still know very little on how the visualization design in a GeoVE affects spatial knowledge acqui-
sition. This paper contributes toward a better understanding of how (and how much) various
elements of design, especially levels of realism, contribute to the recall effectiveness of GeoVEs
as learning environments.
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2. Related work

Below we provide a review of the related work on: (i) cognitive processes during navigation involving
memory (ii) visualization design considerations and (iii) the individual differences in cognitive abil-
ities relevant to (real or virtual) navigation tasks.

2.1. Cognitive processes related to navigation: the indispensable role of memory

Spatial cognition research on navigation largely reports on attention (i.e. what do people notice), and
information encoding (i.e. what kind of mental notes they take) during navigation. In such studies,
an important factor for route learning appears to be the perspective from which people experience the
route. It has been proposed that an egocentric perspective during learning leads to the so-called route
knowledge, that is, a ‘procedure’ of necessary movements to reach a point (Gillner and Mallot 1998),
whereas an allocentric perspective leads to a ‘global’ understanding of the surroundings, termed sur-
vey knowledge (Lobben 2004). This position is debated, however, irrespective of its validity or
whether it is survey or route knowledge,memory plays key role in all stages of spatial learning related
to navigational tasks.

Memory is a multifaceted cognitive process. First of all, different memory types are involved in
acquiring spatial knowledge. It is not straightforward to assign route- or survey-knowledge acqui-
sition into one of the common memory systems (e.g. implicit/explicit) (Montello et al. 2004). None-
theless, classifications have been proposed depending on the type of information one must recall.
One such classification of memory types, relevant to this paper, refers to visual, spatial and visuos-
patial information. Although the visual and spatial memories are tightly coupled in some tasks
(Klauer and Zhao 2004), we adopt the position that there are distinct memory systems that
encode/store and decode/retrieve visual and spatial information (Della Sala et al. 1999); and the
two often ‘cooperate’ (i.e. visuospatial). Notably, during the decoding, there are subtle differences
in the processes, for example, the terms recall and recognition are distinguished (Freund, Brelsford,
and Atkinson 1969). We use the term ‘recall’ for the memory tasks used in this paper for the sake of
simplicity.

Memory systems are also classified based on duration, most commonly as short- and long-term.
An event is stored in the short-term memory almost instantly, arguably for a few seconds (Peterson
and Peterson 1959). Short-term memory, especially the ‘few-seconds’ definition, is often used inter-
changeably with the term working memory, although there are arguments for distinguishing the two.
The most common argument is that the working memory does not store the information at all, while
short-term memory stores it for a short time (Cowan 2008). The capacity of the working memory is
limited to four to seven objects (Miller 1956; Cowan 2001), and the amount of detail stored regarding
these objects is quite limited (Luck and Hollingworth 2008). Short-term memories are transient,
whereas long-term memories are often reinforced with rehearsal, and once transferred to the
‘long-term storage’, they are assumed to have an infinite duration (Luck and Hollingworth 2008).
We use the term short-term memory for recall rates several minutes after the experience (different
than what is considered working memory), and long-term memory for knowledge decoding roughly
after an hour or longer.

2.2. Visualization design considerations for route learning in VEs

Realistic and abstract geovisualizations are both used as learning aids in various contexts, and are
important in route learning (Çöltekin et al. 2017). Realistic VEs are popular in testing navigational
tasks, as they allow for a safe environment and more experimental control than the real world studies
(Loomis and Blascovich 1999; Dünser et al. 2006; Bülthoff, Campos, and Meilinger 2008). In such
contexts, it has been consistently shown with other types of geovisualizations that the visualization
type and design affect performance with a variety of spatial tasks (Bleisch and Dykes 2014; Roth et al.
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2017). Even subtle differences in visual variables (Garlandini and Fabrikant 2009), such as color
(Brychtová and Çöltekin 2017), shading (Bernabé Poveda, Angel, and Çöltekin 2015; Biland and
Çöltekin 2017), symbology type (Brügger, Fabrikant, and Çöltekin 2016) or levels of realism (Wil-
kening and Fabrikant 2011) can affect how well people execute various spatial tasks. While there
are some considerations in comparing 2D and 3D (Cockburn and McKenzie 2002; Çöltekin,
Lokka, and Zahner 2016), studies on how to design a GeoVE to make route learning more effective
are scarce.

A key decision regarding visualization design appears to be about the amount of information, that
is, too much information can increase cognitive load and impair performance with spatial tasks
(Smallman and John 2005; Plesa and Cartwright 2008; Hegarty, Smallman, and Stull 2012; Dong
and Liao 2016; Liao et al. 2016). VEs are often designed as photorealistically as possible, with the
objective to replicate the real world and increase immersion (even though immersion does not
necessarily require photorealism, see McMahan 2003). In this paper, we ask if ‘too much infor-
mation’ can impair performance in spatial tasks, is photorealism a threat to GeoVEs’ effective use
in certain contexts? At this point, we do not have clear guidelines on how much realism should
be included in GeoVEs.

Abstract visualizations (ideally) remove task-irrelevant information, and guide users’ attention to
the relevant information for a specific task (Scheiter et al. 2009), and have been shown to be more
effective than realistic visualizations in some spatial tasks (Hegarty, Canham, and Fabrikant 2010;
Wilkening and Fabrikant 2011). In support of abstraction, Sanchez and Branaghan (2009) demon-
strated that adding more detail on a display affects map reading negatively, and impairs recall success
in a route learning task. Conversely, a highly realistic visualization might have higher ecological val-
idity than an abstract alternative, given that a VE simulates the real world (Kattenbeck 2015).
Besides, a realistic VE includes readily recognizable elements, which might support memory (Chris-
tou and Bülthoff 1999; Meijer, Geudeke, and van den Broek 2009; Borkin et al. 2013). The realistic
looking visual elements that people can name might be better retained in memory compared to more
abstract shapes and structures, because of the so-called dual channel assumption; that is, people uti-
lize two cognitive channels (e.g. verbal and visual) simultaneously (Mayer and Moreno 2003).

Some efforts to manage the level of detail (LOD) in VEs focus on presenting features with different
LODs; using ‘more detail’ selectively as highlighting mechanisms, for example, in focus + context
visualizations (Betrancourt 2005; Semmo et al. 2012; Peters et al. 2017), and using additional objects
as landmarks (Parush and Berman 2004). Other efforts focus on the technical aspects of defining and
creating LOD (e.g. https://www.citygml.org/), or managing LOD by removing perceptually irrelevant
details (e.g. Bektaş and Çöltekin 2011).

Besides the amount, the semantic quality of the information (what is shown) can influence route
learning performance in a VE. For example, landmarks play a significant role in spatial knowledge
acquisition (Richter and Winter 2014). Landmark is a difficult term to define, however, structural,
visual and semantic saliency are important characteristics for landmarks (Raubal and Winter
2002; Klippel and Winter 2005). For structural salience, the impact of location appears to be impor-
tant (e.g. Röser et al. 2012). Röser et al. (2012) found that the landmarks at the decision points (inter-
sections) are the most important, especially those at the direction of the turn. Visual salience is also
important in the context of navigational learning, as attention is critical in memory and learning (Itti,
Koch, and Niebur 1998). Besides landmarks, Lynch (1960) identifies paths (routes) to be ‘predomi-
nant elements in [the observer’s] image’ (Lynch 1960, 47), and Claramunt and Winter (2007) posit
that street networks are cognitively (semantically) salient. We believe that for a memorable GeoVE,
all three aspects of saliency (visual/structural/semantic) must be considered.

An interesting additional aspect in visual realism studies is that seemingly people’s intuitive pre-
ferences do not always match their performance with realistic visualizations. Two theories have been
proposed in relation to this mismatch between performance and preference: Smallman and John’s
(2005) naive realism theory suggests an unfounded preference toward realism, which was later fol-
lowed by naive cartography in which the effect was reproduced for enhanced displays with
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animations and 3D (Hegarty et al. 2009). These theories provide an interesting insight into how our
visualization-related choices could be misguided, and should be considered in studies such as ours.

2.3. Individual and group differences

People differ in learning with visualizations based on various abilities, age, expertise and other fac-
tors in their background (Slocum et al. 2001). For example, Huk (2006) demonstrates that people
with higher spatial abilities (high-spatial) benefit more from 3D in learning than people with lower
spatial abilities (low-spatial). Spatial abilities that are most relevant in navigational tasks are pro-
posed to be: (mentally) visualizing objects, relating objects, mental rotation, path integration and
spatial updating (Richter and Winter 2014). Standardized psychometric tests (Ekstrom et al. 1976)
can predict people’s effectiveness in using visualizations (Hegarty and Waller 2004). Spatial abil-
ities, as measured by standardized tests, can have a significant influence on people’s performance
also in navigation tasks (Schinazi et al. 2013). It is interesting to note that the spatial abilities might
play a role even in naive realism. In Smallman and Cook’s (2011) study, all participants preferred
the realistic displays before the experiment, but only high-spatial participants adjusted their pre-
ference to abstract displays after; suggesting that low-spatial participants struggle assessing self-
performance.

Various other factors in a user’s background, such as experience, age (Salthouse 2006) or gender
(Parush and Berman 2004) might also affect route learning performance. In the scope of this paper,
we analyze how spatial abilities and memory capacity interact with route learning performance, and
counterbalance for other factors that might affect performance in route learning.

3. Hypotheses

Based on the previous work cited above, we propose a VE that is designed with specific amount and
type of information presented in key locations, that is, we use photo-textures only for selected parts
of the VE. These parts are thus ‘highlighted’ and should act as anchoring points or landmarks. With
our proposed virtual world (MixedVE), route recall should be easier than with a RealisticVE, or an
AbstractVE with no textures. We specifically hypothesize that:

. Participants’ visual, spatial and visuospatial recall performance will be best with the MixedVE,
irrespective of their spatial abilities, both in the short- and long-term

. Participant’s overall recall performance with the RealisticVE will be better than with the
AbstractVE, as the RealisticVE provides more visual cues

. High-spatial participants will overall perform better with the RealisticVE, and specifically with
tasks that are more demanding on the memory than the low-spatial participants.

4. Experimental design

In a mixed factorial design (3 × 2×4), we tested the three levels of realism as our independent vari-
ables: (i) the AbstractVE with no photo-textures (baseline), (ii) the RealisticVE (fully photorealistic)
and (iii) the MixedVE designed based on previous knowledge on levels of realism and landmark the-
ories (Figure 1) (Lokka and Çöltekin 2016, 2017). Throughout the manuscript, we call these VEs
visualization types. Four different task types (Visual, Spatial, Visuospatial and Map/perspective
switch), and individual differences based on two criteria (spatial ability, memory capacity) are con-
sidered as potentially moderating factors. Note that we study the recall rates (i) right after the route
learning task (short-term memory: Stage1), (ii) about an hour later (long-term memory: Stage2) and
(iii) a week later (long-term memory: Stage3). Thus, we examine if (potential) differences in memory
performance with the three VEs would persist.
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As dependent variables, we report on recall accuracy for all visualization types and task types, and
participants’ visualization preferences before and after the experiment.

4.1. Participants

Forty-two participants (M = 27 years, 23 women) voluntarily took part in the experiment based on
informed consent. The age range was kept to 20–30, because aging affects memory (Park et al. 2002).
All participants were university students (undergraduate to PhD) in different degree programs and
were recruited through individual contact. We measured their spatial abilities using a Mental
Rotation Task (MRT, Vandenberg and Kuse 1978), and visuospatial memory capacities using a
Visuospatial Memory Test (VSM, Ekstrom et al. 1976).

4.2. Materials

4.2.1. Apparatus
We performed the experiment in controlled lab, where we back-projected the VEs as videos on a
large screen (230 × 140 cm), which was 2.2 m away from the participant (Figure 2). We used an
off-the-shelf experimental software to deliver all visualizations and tasks.

Stimuli. All VEs represented the same fictitious city, which was created using procedural model-
ing. We kept the lighting conditions constant, the buildings similar in size and in architectural style,
trees and intersections with comparable visual and spatial characteristics. From each VE, we created
fly-bys of two pre-selected routes as videos. All videos were shown only once at the same eye-level,
the same scale, extent and speed, simulating a drive (duration: 100 s, speed: 30 km/h). The
AbstractVE was rendered in grayscale without photo-textures (Figure 1, top-left). The MixedVE
had photo-textures on selected buildings at the turn points toward the direction of the turn, and
the road network was photo-textured to highlight the spatial structure (Figure 1, bottom). The con-
tents of the photo-textures were counterbalanced with regards to visual saliency (i.e. using visual-sal-
iency algorithms by Itti et al. 1998) and memorability (e.g. Borkin et al. 2013; Lokka and Çöltekin
2017) in the MixedVE. The RealisticVE was fully photo-textured (Figure 1, top-right).

Figure 1. Screenshots illustrating the three VEs (not to scale).
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We prepared two routes; each consisted of seven intersections (three turns toward the left, three
turns toward the right and one continuing straight, as presented in Figure 2).

4.3. Tasks

The participants were instructed to memorize a route from a starting to an ending point as they
watched the videos in a wayfinding scenario. For each visualization type, they responded to a set
of questions (in Stages 1, 2 and 3) which we categorize into four task types:

Visual memory (VM) tasks: Based on six screenshots from each VE (three correct, three false),
participants’ task was to identify whether they had seen the image or not. They answered using a
6-point Likert scale ranging from ‘definitely-seen’ to ‘definitely-not-seen’. This task type was used
in all experimental stages.

Spatial memory (SM) tasks: In this set, participants were asked to identify the direction they were
facing at the end of the route (starting orientation was given), and the number of turns they took
during the virtual drive. These two questions were asked only in Stage 1. They were left out from
Stages 2 and 3, as it would be impossible to distinguish from which visualization type they recalled
the information after having watched all videos.

Visuospatial memory (VS) tasks: Participants marked which direction they turned at all seven
intersections one-by-one, based on screenshots, which appeared in the same order and perspective
as in the VEs. Additionally, they were asked to identify the start- and end-points of their route from
four options (only one was correct). These questions were asked in Stages 1 and 3. We excluded the
VS tasks in Stage 2 because of time limits.

MapTask (MT)/perspective switch: This task type requires a perspective switch (from egocentric to
allocentric), and can be seen as a special instance of the VS tasks, they are predominantly spatial, but
some visual cues were also provided (‘aerial’ view screenshots from each VE). Participants were to
first identify (Stage 1, MapTaskA), then actively reproduce (Stages 2–3, MapTaskB) the route

Figure 2. Experimental setup (left-top), the two routes (left-bottom) and the procedure (right).
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based on a top-down 2D view. In Stage 1, four options were provided with one correct answer (Map-
TaskA), and in Stages 2–3, participants drew sketches (start- and end-points were marked) on paper
(MapTaskB).

4.4. Procedure

Upon arrival, we welcomed the participants, and they read and signed the consent form. Right after,
participants stated their preference between the three VEs (shown as screenshots) for a hypothetical
route learning task. Then the main experiment began. Participants watched the three VEs for the two
pre-selected routes (thus, six videos) in a randomized order. After each video, they answered a set of
questions with all four task types. After the first three videos and associated questions, participants
took a small break (to counter learning and fatigue). After viewing all six videos and solving associ-
ated tasks, Stage 1 was completed. Stage 2 followed with two task types (Visual & MapTaskB) regard-
ing all six videos shown in Stage 1 and stated their preference again between the three visualizations.
The duration of the experiment was on average 1 h:30 m for Stages 1–2. Participants came back 6–8
days later for Stage 3, responded to a demographic questionnaire, and continued with three task
types (Visual, Visuospatial and MapTaskB), after which we conducted the MRT and VSM tests.
Stage 3 lasted approximately 1 h. An overview of the procedure is shown in Figure 2.

5. Results

Below, we provide participants’ overall recall accuracy with the VEs, followed by how different task
types interact with recall accuracy. Then, we examine how participants’ spatial abilities (based on the
MRT) and memory capacity (based on the VSM) interact with their recall accuracy with each VE and
task type. We then demonstrate the long-term recall rates based on a comparison between the three
stages for comparable tasks. Furthermore, we report on participants’ preferences regarding the tested
visualization types before and after the experiment.

The recall accuracy was calculated as the proportion of correct answers to all answers. For the
MapTaskB, we counted the errors in number of turns, the number of left/right turns, the sequence
and the direction for the start- and end-points. Statistical analyses were conducted using R with α
= .05. We report associated p-values <.05 as statistically significant, and mark the p-values that fall
between [.1–.5] as statistical trends. We include estimations of effect size (h2

p), for which .01 is con-
sidered small, .06 medium, and .14 and above, large (Ellis 2010).

5.1. Short-term memory: Stage 1

Figure 3 demonstrates that for the short-term memory tasks, participants’ recall accuracy is highest
with the MixedVE. The MixedVE improves recall accuracy by roughly 12.1% in comparison to the
AbstractVE, and 7.7% in comparison to the RealisticVE. Both differences are statistically significant
with a large effect size (Table 1, ‘overall’). We also see that the participants’ overall recall accuracy is
higher with the RealisticVE than with the AbstractVE.

At the task level (Figure 4), we see that the overall recall improvement provided by the MixedVE
is pertinent for all task types except for the Spatial tasks.

Pairwise comparisons reveal statistically significant differences between the VEs except with the
Spatial tasks (Table 1). We see that with all Visual or Visuospatial task types (including the Map-
Task), participants’ recall accuracy is higher with the MixedVE than with the AbstractVE, and in
most of them, they also perform better with the MixedVE than with the RealisticVE. For predomi-
nantly Visual tasks, participants’ recall accuracy with the RealisticVE and the MixedVE is not stat-
istically significant.
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5.1.1. Individual differences in short-term memory
Based on participants’ scores in the MRT (median = 20) and VSM (median = 22) tests, we created
high-/low-ability groups using a median split (excluding the median). We call the MRT-based
groups low-MRT (n = 19) and high-MRT (n = 18), whereas we call the VSM-based groups low-
VSM (n = 20) and high-VSM (n = 19) from this point forward. Figure 5 shows that there are differ-
ences in the recall accuracy of the participants both based on their MRT scores [in favor of the high-
MRT with the Realistic VE (t(36.97) = –2.51, p < .05*, r = .38)] and based on their VSM scores [in
favor of the high-VSM for the MixedVE (t(32.89) = –2.18, p < .05*, r = .35), and the RealisticVE (t
(34.53) = –2.44, p < .05*, r = .38)].

Figure 3. Overall recall accuracy for each VE. Error bars show ±SEM. ***p < .001, *p < 05.

Table 1. Mean recall accuracies, ANOVA (F, p, ηp
2, and pairwise comparisons (for statistically significant results).

Task
Abstract (A)

Mean ± SD (%)
Mixed (M)

Mean ± SD (%)
Realistic (R)

Mean ± SD (%) Repeated measures ANOVA Pairwise comparisons

Overall 61.6 ± 12.0 73.8 ± 11.5 66.1 ± 11.9 F(2,84) = 21.1,
p < .001***, h2

p = .154
M–A (p < .001)***
M–R (p < .001)***
R–A (p < .05)*

Visual 56.3 ± 15.8 68.9 ± 15.6 64.3 ± 18.0 F(2,84) = 9.3,
p < .001***, h2

p = .092
M–A (p < .001)***
R–A (p < .05)*

Visuospatial 63.1 ± 17.4 76.9 ± 17.8 63.8 ± 14.3 F(2,84) = 16.3,
p < .001***, h2

p = .129
M–A (p < .001)***
M–R (p < .001)***

Map task A (passive) 70.8 ± 23.3 85.1 ± 25.3 72.6 ± 22.0 F(2,84) = 6.7,
p < .01**, h2

p = .069
M–A (p < .01)**
M–R (p < .05)*

Spatial 72.6 ± 25.2 76.4 ± 21.8 76.4 ± 17.5 p > .05 –

Note: We always list the ‘winning’ VE first (e.g. M–A means the MixedVE led to a higher recall than the AbstractVE). SD: Standard
Deviation.

***p < .001, **p < .01, *p < .05, p < .10.
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Figure 4. Interactions between visualization types and task types for recall accuracy rates. Error bars show ±SEM. ***p < .001,
**p < .01, *p < 05.

Figure 5. Overall recall accuracy for each visualization type based on MRT- and VSM-split groups. Error bars show ±SEM.
***p < .001, **p < .01, *p < 05.
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At the task level, Figure 6 and Table 2 (below) reveal that, for both the MRT and VSM-based
groups, irrespective of the abilities, the MixedVE leads to higher recall accuracy than the other two
visualization types inmost tasks. Specifically, we see that the MixedVE offers an advantage over the
AbstractVE for both the low and the high-MRT groups for the Visual tasks; but not over the Rea-
listicVE. RealisticVE also allows for higher recall accuracy than the AbstractVE for the high-MRT
group, but not for the low-MRT group. VSM-split largely confirms these findings for the Visual
tasks, except that a high-VSM does not suggest an advantage with the RealisticVE over the
AbstractVE. For Visual tasks, the high-VSM group exhibits a higher recall accuracy than the
low-VSM group only with the MixedVE (t(33.52) = –2.38, p < .05*, r = .38). For the visuospatial
tasks, the low-MRT group benefits from the MixedVE more than the Abstract and the Realis-
ticVEs, but for the high-MRT group, visualization type does not make a difference. We also see
that the high-MRT group has a higher recall accuracy than the low-MRT group with the Abstract
(t(35.48) = –2.99, p < .01**, r = .45) and Realistic (t(34.27) = –2.68, p < .05*, r = .42) VEs, but this
difference disappears for the MixedVE. For the same task category, we see that both high- and
low-VSM groups benefit from the MixedVE, more than both the Abstract and RealisticVEs. For
Visuospatial tasks, we see no differences between the Abstract and RealisticVEs, although the
high-VSM group appears to have an advantage with the RealisticVE (t(34.96) = –2.53, p < .05*,
r = .39), but not for the Abstract or MixedVEs. For the MapTask, MixedVE helps the low-MRT
group, and in contrast, the high-VSM group in comparison to the AbstractVE, but we see no
differences between the MixedVE and the RealisticVE. However, high-VSM group has a higher
recall accuracy than the low-VSM group with the RealisticVE (t(33.90) = –2.29, p < .05*, r = .37).
For the Spatial tasks, we observe no difference between visualization types in any of the tested
conditions.

Figure 6. Interactions between the visualization types and task types for the low/high-MRT and low/high-VSM groups’ recall accu-
racy rates. Error bars ±SEM. ***p < .001, **p < .01, *p < .05.
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5.2. Long-term memory: comparing recall accuracy in all three stages

Below, we present mean recall accuracies for comparable visualization and task types in all stages
(Table 3). We see that the MixedVE continues to facilitate higher recall accuracies than other two
VEs in most comparisons also in the long-term. The observed differences (MixedVE vs. others)
are statistically significant with moderate or large effect sizes. Between the AbstractVE and Realis-
ticVE, we see only one difference at Stage 2, but the p-value only indicates a trend (p = .0511),
and the effect size is small (h2

p = .037).
In Table 4, we demonstrate the interactions between the task and visualization types over the

three stages in terms of decline in the recall accuracy. We see an overall decline for all task/visual-
ization types, except that for Visual and MapTasks, AbstractVE does not exhibit a decline in recall
performance.

5.2.1. Individual differences
We identified no statistically significant differences (p > .05) amongst the three visualization con-
ditions for Stages 2–3, when we group our participants based on their MRT–VSM abilities.

5.3. Visualization preferences

Visualization preferences of the participants before and after they worked with the VEs are shown in
Table 5. We see that before the experiment, majority of the participants preferred the RealisticVE
(88%), 12% the MixedVE, whereas none preferred the AbstractVE. After the experiment, majority
changed their preference to the MixedVE (69%), 31% remained with the RealisticVE, and still
none preferred the AbstractVE. Those who changed their preferences all did so from the RealisticVE
to MixedVE (there were no instances of the opposite).

To identify whether individual differences changed the preference behavior similarly as in Small-
man and Cook’s (2011) naive realism studies, we checked the preferences of high/low-MRT and
high/low-VSM groups before and after the experiment (Table 6). Unlike in the original naive realism
studies, our analyses revealed the same pattern for all groups, irrespective of their spatial abilities or
memory capacity.

6. Discussion

Based on previous empirical evidence found in relevant literature, we designed the MixedVE with a
texture-highlighting approach, and evaluated it in a three-stage user study. In designing the Mix-
edVE, we made significant adjustments to visual realism levels to lighten cognitive load (Smallman
and John 2005; Smallman and Cook 2011), carefully selected the location of the textured buildings to
boost memory by placing them at intersections (Röser et al. 2012), and counterbalanced the contents
of the textures for saliency (Itti et al. 1998) and memorability (Borkin et al. 2013). In addition to
design, individual differences can have an impact in learning performance from visualizations as
well as in navigational tasks (e.g. Montello et al. 2004; Huk 2006; Schinazi et al. 2013). Thus, we con-
ducted an analysis of the individual differences in route-recall accuracy based on two measurements:
spatial ability (MRT) and visuospatial memory capacity (VSM). Our results provide unique and new
insights, and we discuss their implications below.

Our findings overall confirm our main hypothesis that the MixedVE facilitates better route recall
than the AbstractVE and RealisticVEs (Figure 3). At the task level (Figure 4), we see that the effec-
tiveness of the MixedVE in route recall is pertinent to all task types except the Spatial tasks. The two
tasks we classified ‘Spatial’ were about orientation (which cardinal direction were you facing at the
end of the route), and the number of turns participants’ took in the virtual drive. The mean recall
accuracy in Spatial tasks is identical for the MixedVE and RealisticVE (76.4%), while it is slightly
lower with the AbstractVE (72.6%). These numbers are relatively high in the context of the
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Table 2. ANOVAs (F, p, ηp
2 and pairwise comparisons of mean recall accuracies for high/low-MRT and high/low-VSM groups per visualization and task types.

Tasks

Repeated measures ANOVA Pairwise comparison Repeated measures ANOVA Pairwise comparison

High-MRT Low-MRT

MRT Overall F(2,38) = 10.2, p < .001***, h2
p = .101 M–A (p < .001***), M–R (p < .05*) F(2,40) = 12.0, p < .001***, h2

p = .172 M–A (p < .01**) M–R (p < .01**)
Visual F(2,38) = 7.0, p < .01**, h2

p = .134 M–A (p < .01**), A–R (p < .05*) F(2,40) = 3.7, p < .05*, h2
p = .094 M–A (p = .053·)

Visuospatial F(2,38) = 4.2, p < .05*, h2
p = .096 A–M (p = .076·) F(2,40) = 10.6, p < .001***, h2

p = .172 M–A (p < .01**) M–R (p < .01**)
Map task A p > .05 – F(2,40) = 4.1, p < .05*, h2

p = .064 M–A (p < .01**)
Spatial p > .05 – p > .05 –

High-VSM Low-VSM

VSM Overall F(2,36) = 13.7, p < .001***, h2
p = .181 M–A (p < .01**), M–R (p < .001***) F(2,38) = 11.5, p < .001***, h2

p = .147 M–A (p < .001***) M–R (p < .05*)
Visual F(2,36) = 5.5, p < .01**, h2

p = .163 M–A (p < .05*) F(2,38) = 3.6, p < .05*, h2
p = .091 M–A (p < .01**)

Visuospatial F(2,36) = 9.2, p < .001***, h2
p = .174 M–A (p < .01**), M–R (p < .01**) F(2,38) = 8.8, p < .001***, h2

p = .163 M–A (p < .01**) M–R (p < .05*)
Map task A F(2,36) = 3.4, p < .01**, h2

p = .090 M–A (p < .05*) p > .05 –
Spatial p > .05 – p > .05 –

Note: We list the ‘winning’ VE first (e.g. M–A means the MixedVE led to a higher recall than the AbstractVE).
***p < .001, **p < .01, *p < .05, p < .10.

Table 3. Mean recall accuracies in all stages, ANOVA (F, p, ηp
2, and pairwise comparisons for statistically significant results.

Task
Abstract (A)

Mean ± SD (%)
Mixed (M)

Mean ± SD (%)
Realistic (R)

Mean ± SD (%)
Repeated

measures ANOVA Pairwise comparisons

Stage 1 (short-term) Overall 61.6 ± 12.0 73.8 ± 11.5 66.1 ± 11.9 F(2,84) = 21.1, p < .001***, h2
p = .154 M–A (p < .001)*** M–R (p < .01)***

R–A (p < .05)*
Visual 56.3 ± 15.8 68.9 ± 15.6 64.3 ± 18.0 F(2,84) = 9.3, p < .001***, h2

p = .092 M–A (p < .001)*** R–A (p < .05)*
Visuospatial 63.1 ± 17.4 76.9 ± 17.8 63.8 ± 14.3 F(2,84) = 16.3, p < .001***, h2

p = .129 M–A (p < .001)*** M–R (p < .001)***
Map task A (passive) 70.8 ± 23.3 85.1 ± 25.3 72.6 ± 22.0 F(2,84) = 6.7, p < .01**, h2

p = .069 M–A (p < .01)** M–R (p < .05)*

Stage 2 (long-term 1,
1 h later)

Overall 61.5 ± 21.8 68.8 ± 18.4 57.3 ± 22.6 F(2,84) = 10.3, p < .001***, h2
p = .050 M–A (p < .05*) M–R (p < .001***)

Visual 49.1 ± 24.9 59.5 ± 22.2 52.7 ± 22.5 p > .05 –
Visuospatial NA NA NA NA NA
Map task B (sketching) 67.6 ± 28.6 73.4 ± 27.1 59.7 ± 31.3 F(2,84) = 8.8, p < .001***, h2

p = .037 M–R (p < .01*) A–R (p = .0511·)

Stage 3 (long-term 2,
one week later)

Overall 54.6 ± 17.0 64.6 ± 18.6 54.5 ± 18.7 F(2,84) = 21.0, p < .001***, h2
p = .064 M–A (p < .001***) M–R (p < .001***)

Visual 56.0 ± 24.4 50.6 ± 18.5 49.1 ± 16.2 p > .05 –
Visuospatial 41.2 ± 15.8 65.8 ± 19.7 47.5 ± 13.7 F(2,84) = 31.6, p < .001***, h2

p = .289 M–A (p < .001)*** M–R (p < .001)***
Map task B (sketching) 64.1 ± 33.0 70.6 ± 33.7 62.4 ± 35.4 p > .05 –

Note: Pairwise comparison columns always lists the ‘winning’ VE first (e.g. M–A means the MixedVE led to a higher recall than the AbstractVE). SD: Standard Deviation. NA: Not available.
***p < .001, **p < .01, *p < .05, p < .10.
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Table 4. Mean recall accuracies in all stages for comparable tasks in each VE. ANOVA (F, p, ηp
2, and pairwise comparisons.

Visualization type Stage 1 Mean ± SD (%) Stage 2 Mean ± SD (%) Stage 3 Mean ± SD (%) Repeated measures ANOVA Pairwise comparison

Visual Abstract 56.3 ± 15.8 49.1 ± 24.9 56.0 ± 24.4 p > .05 –
Mixed 68.9 ± 15.6 59.5 ± 22.2 50.6 ± 18.5 F(2,84) = 13.3, p < .001***, h2

p = .138 Stage1–3 (p < .001***) Stage1–2 (p < .05*)
Stage2–3 (p = .054·)

Real 64.3 ± 18.0 52.7 ± 22.5 49.1 ± 16.2 F(2,84) = 8.9, p < .001***, h2
p = .105 Stage1–2 (p < .05*) Stage1–3 (p < .001***)

Visuospatial Abstract 63.2 ± 17.4 NA 41.2 ± 15.8 – t(41) = 6.90, p < .001***, r = .73
Mixed 76.9 ± 17.8 NA 65.7 ± 19.7 – t(41) = 2.68, p < .05*, r = .38
Real 63.8 ± 14.3 NA 47.5 ± 13.7 – t(41) = 6.36, p < .001***, r = .70

Map task Abstract 70.8 ± 23.4 67.6 ± 28.6 64.1 ± 33.0 p > .05 –
Mixed 85.1 ± 25.3 73.4 ± 27.1 70.6 ± 33.7 F(2,84) = 4.9, p < .01**, h2

p = .046 Stage1–3 (p < .05*)
Real 72.6 ± 22.0 59.7 ± 31.3 62.4 ± 35.4 F(2,84) = 3.8, p < .05*, h2

p = .034 Stage1–2 (p = .053·)

Note: Pairwise comparison column lists significant differences between the three stages. ‘Winning’ stage is listed first. SD: Standard Deviation. NA: Not available.
***p < .001, **p < .01, *p < .05,·p < .10.
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experiment, but not particularly higher or lower than in the other tasks, thus an experimental artifact
(such as ceiling or floor effect) does not explain why visualization type did not matter for this task. It
might be best explained by the fact that this task essentially requires no visual cues. For the tasks that
require the use of visuospatial memory (Visuospatial, MapTask), selectively provided visual cues in
the MixedVE improve recall accuracy (by ∼10%) compared to both the AbstractVE and Realis-
ticVEs. This pattern is somewhat different for Visual tasks, where we see that the recall accuracy
with the RealisticVE competes with the MixedVE, while both VEs with visual cues (Mixed/Realistic)
lead to better recall accuracy than the AbstractVE. The fact that the RealisticVE overall facilitates
visual memory better than the AbstractVE is not surprising, but it is noteworthy that it does not
impair the performance in this task type, suggesting that the cognitive load is not ‘categorically’
too high with fully realistic displays, but it is rather task-specific.

After studying whether our proposed MixedVE is effective for route learning (overall recall accu-
racy shows that it is), and for what (analyses at the task level shows it offers benefits mostly in Visuos-
patial and Visual tasks), we ask whom it might benefit most. We expected that participants with high
memory capacity (high-VSM) would not be affected as badly from the cognitive load induced by the
RealisticVE, especially for the Visual tasks; whereas participants with higher spatial abilities (high-
MRT) would do well with tasks with spatial components in them (Spatial, Visuospatial, Map) irre-
spective of the visualization type. In turn, low-MRT/VSM participants would potentially benefit
more from the modifications offered by the MixedVE in all conditions. Overall, our findings
show that the MixedVE helps all participants (Figure 5), irrespective of their spatial abilities or mem-
ory capacities (the RealisticVE and AbstractVEs lead to no differences in performance across MRT/
VSM groups). The high-MRT participants overall had a higher recall accuracy than the low-MRT
participants with the RealisticVE (9.3% difference). This might mean that high-MRT participants
are able to bypass the cognitive overload introduced by the RealisticVE better than the low-MRT,
but AbstractVE is also hard for the high-MRT. Memory capacity (VSM-split) did not matter for
the recall accuracy with the AbstractVE either, but we see that the high-VSM benefit more than
the low-VSM from the MixedVE (by 7.8%) and the RealisticVE (by 9%). The VSM (memory
capacity) matters clearly for tasks that are of visual/visuospatial nature. Overall, these findings con-
firm that having a larger capacity for spatial abilities or memory gives participants advantages in
some conditions (Wolbers and Hegarty 2010), but the MixedVE improves everyone’s route learning
performance.

An in-depth analysis of the interactions between individual differences, visualization and task
types reveal that, except in Spatial tasks, MixedVE offers benefits in most tested conditions against
the AbstractVE, and in some against the RealisticVE, irrespective of spatial abilities or memory

Table 5. Participants’ preferences for the visualization types before and after the experiment.

Preference before Preference after % switched

Abstract 0 (0%) 0 (0%) –
Mixed 5 (12%) 29 (69%) 0 (0%)
Real 37 (88%) 13 (31%) 24 (65%)

Table 6. High/low-MRT and high/low-VSM groups’ preferences for the visualization types before and after the experiment.

Preference before Preference after

High-VSM Low-VSM High-VSM Low-VSM

Abstract 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Mixed 1 (5%) 4 (21%) 13 (72%) 14 (74%)
Real 17 (95%) 15 (79%) 5 (28%) 5 (26%)

High-MRT Low-MRT High-MRT Low-MRT

Abstract 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Mixed 2 (10%) 3 (15%) 13 (68%) 14 (70%)
Real 17 (90%) 17 (85%) 6 (32%) 6 (30%)
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capacity (Figure 6). For the Spatial tasks, varying visual realism seems to be irrelevant also irrespec-
tive of spatial abilities or memory capacity. For the other tasks (Visual/Visuospatial/Map), most
notably, descriptive statistics suggest in all cases MixedVE improves performance. Some of the
differences are not statistically significant, however, note that we split the participants into groups
of n≅ 20 based on their MRT/VSM scores (thus the sample size might hinder identifying some
differences that are there). Statistically significant differences suggest that MixedVE improves
route learning performance for the low-MRT participants in majority of the cases, whereas it
helps the high-MRT participants only with the Visual tasks. Reviewing the VSM-based results, we
see that MixedVE improves route learning performance more often for the high-VSM participants,
but also for the low-VSM participants in two task types. Also interestingly, RealisticVE does not
appear to impair performance severely (i.e. not statistically significantly) in many cases when com-
pared to other visualization types, but when we compare the groups of high- vs. low-MRT/VSM, we
see that in three cases, the high-ability group outperforms the low-ability group with the RealisticVE
(high-MRT in Visuospatial, high-VSM in Visuospatial and MapTasks). In these cases, there are no
group differences for the MixedVE, which suggests that the MixedVE brings the performance of the
lower-ability participants on par with the higher-ability participants. These findings are consistent
with our expectations based on previous work and the results are desirable, given that we often
want to create designs that work for all.

Since we were set out to test learning, we examined if the MixedVE’s benefits would persist over
time. It is clear that we gradually forget what we learn (Luck and Hollingworth 2008). Our findings
also indicate a steady decline in recall accuracy in Stages 2–3 for the MixedVE and the RealisticVE.
The AbstractVE appears to have constant recall levels across all stages for the Visual and Map tasks:
for the Visual tasks this is not a surprise, given that the visual cues are important for this task type,
and without the visual cues the task is too hard from the beginning (∼50% recall accuracy is close to
‘chance’). For the Map tasks, the reasons might be more complex: the decline for the AbstractVE is
not statistically significant for the Map task (Table 4), possibly because participants predominantly
need to perform a perspective switch and the visual cues may not be as critical. However, the Mix-
edVE continues to facilitate better recall accuracies than the other VEs also in the long-term (Table
3). Interestingly, the differences between spatial abilities and memory capacity in Stage1 disappear
over time; suggesting that higher cognitive abilities help in short-term tasks, but do not necessarily
assist in long-term recall of learned routes.

Our analysis of participants’ visualization preferences (Tables 5–6) shows that the RealisticVE is
popular at first, but after working with the VEs, majority prefers the MixedVE. This finding contra-
dicts Smallman and Cook’s (2011) observation that (especially the low-spatial) participants do not
seem to realize which visualization assists them. Our participant’s ‘zero interest’ in the AbstractVE
and initially strong preference toward the RealisticVE supports that realism is generally more attrac-
tive, but similarly to some previous work (e.g. Brügger et al. 2016), they are able to detect what assists
them once they worked with the visualizations, irrespective of their cognitive abilities.

7. Conclusions

For our proposed ‘MixedVE’, we adjusted the levels of visual realism, and deliberately selected the
location of photo-textures to serve as memorable landmarks. Our rigorous evaluation demonstrates
that the design principles we adopted in creating the MixedVE indeed facilitate route learning better
than an AbstractVE and a RealisticVE. This observation remained overall true when we scrutinized
the possible moderating factors (task types and cognitive abilities). MixedVE consistently led to com-
paratively higher recall accuracies (and never impaired performance); benefiting all participants irre-
spective of their cognitive abilities, both in short- and long-term.

Our overall aim is contributing toward empirically verified design guidelines for creating memor-
able GeoVEs, specifically to assist people to better memorize routes. We believe our findings will be
relevant to VR content creators, GIScience and spatial cognition researchers, and has the potential to
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improve the navigation experience in real world if used as a training device. While in this paper our
main interest was in the design and use of the VEs; in future experiments, further group differences
(e.g. effects of age) can be examined, and real world navigation performance of individuals can be
studied after training them with the MixedVE in comparison to a group trained with the RealisticVE,
to confirm MixedVE’s utility and usefulness as a ‘memory training device’.
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