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Using a Digital Neuro Signature to measure longitudinal
individual-level change in Alzheimer’s disease: the Altoida
large cohort study
Irene B. Meier 1, Max Buegler2, Robbert Harms2, Azizi Seixas 3, Arzu Çöltekin 4 and Ioannis Tarnanas 2,5,6,7✉

Conventional neuropsychological assessments for Alzheimer’s disease are burdensome and inaccurate at detecting mild cognitive
impairment and predicting Alzheimer’s disease risk. Altoida’s Digital Neuro Signature (DNS), a longitudinal cognitive test consisting
of two active digital biomarker metrics, alleviates these limitations. By comparison to conventional neuropsychological assessments,
DNS results in faster evaluations (10 min vs 45–120min), and generates higher test-retest in intraindividual assessment, as well as
higher accuracy at detecting abnormal cognition. This study comparatively evaluates the performance of Altoida’s DNS and
conventional neuropsychological assessments in intraindividual assessments of cognition and function by means of two semi-
naturalistic observational experiments with 525 participants in laboratory and clinical settings. The results show that DNS is
consistently more sensitive than conventional neuropsychological assessments at capturing longitudinal individual-level change,
both with respect to intraindividual variability and dispersion (intraindividual variability across multiple tests), across three
participant groups: healthy controls, mild cognitive impairment, and Alzheimer’s disease. Dispersion differences between DNS and
conventional neuropsychological assessments were more pronounced with more advanced disease stages, and DNS-intraindividual
variability was able to predict conversion from mild cognitive impairment to Alzheimer’s disease. These findings are instrumental
for patient monitoring and management, remote clinical trial assessment, and timely interventions, and will hopefully contribute to
a better understanding of Alzheimer’s disease.

npj Digital Medicine           (2021) 4:101 ; https://doi.org/10.1038/s41746-021-00470-z

INTRODUCTION
Longitudinal measures of cognitive performance are important for
evaluating preclinical markers and prodromal periods of cognitive
impairment and dementia, as well as for monitoring disease
progression. Current techniques for assessing cognitive decline
are often based on cross-sectional assessments (i.e., observations
at a specific point in time). However, cross-sectional assessments
are of limited value in capturing an individuals’ global cognitive
function and may not accurately predict future cognitive
performance and risk of cognitive decline due to high intraindi-
vidual variability (IIV) in cognitive performance1. Conventional
cross-sectional neuropsychological assessments of cognition (NP)
are vulnerable to several confounders that can affect an
individual’s assessment performance, such as motivation, atten-
tion, mood, and testing environment. In turn, the unreliable nature
of NPs has negative consequences for clinical care as it is used for
prognosis, diagnosis, and eventually, treatment of brain-related
diseases, such as the dementia family of diseases (e.g., Alzheimer’s
disease (AD)). NP assessments for AD are lengthy, unreliable, and
inaccurate at capturing mild cognitive impairment (MCI), and
present significant variability across different contexts and times,
especially after repeated measurements. Reasons for this varia-
bility are multiple, such as participants’ motivation, attention,
mood, anxiety levels, sleep quality the night before the assess-
ment, and testing environment2. Such variability can lead to
inaccurate diagnosis and inappropriate treatment, for example, by

giving the false impression that a patient’s cognition has
improved at a follow-up visit (Fig. 1).
Limitations in NP highlight a significant clinical and research

gap in cognitive assessment across the full spectrum of individuals
from healthy cognitive function to dementia. Filling this gap is
relevant to many steps of the cognitive health care pipeline from
early identification of disease, to patient counseling, risk
stratification, and disease management. A strong candidate in
filling this gap is examining longitudinal assessments of cognition
and cognitive decline, as observations over time may enable
evaluation of preclinical markers and more accurate monitoring of
disease progression. Such longitudinal assessments include two
types of measurements: the delineation of the relative temporal
trajectories of specific cognitive measures, and the fluctuation of
cognitive performance over time within and across cognitive
domains. Although longitudinal assessments may offer improved
measurements of cognitive decline due to any reason (e.g., trauma
and tumors), this study focuses on age-related cognitive decline.
This ranges from healthy aging to MCI to the dementia family of
diseases, including AD. The utility of cognitive markers (i.e.,
measurable variables that may capture cognitive health) in
evaluating AD progression depends on the stage of cognitive
decline and may vary across different disease stages3. However,
IIV, and its dispersion (IIV across several cognitive tests), are
sensitive markers for detecting change even at prodromal stages
of the disease4.
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Predicting whether the cognitive abilities of individuals with
MCI will remain stable or decline (and at what rate), is challenging
due to patient heterogeneity—especially when cross-sectional
approaches are used. Heterogeneity makes prediction more
difficult because prediction relies on establishing prior patterns
and extrapolating from these patterns. For instance, while
amnestic MCI (aMCI) is considered a prodromal stage of AD,
symptom presentation and patterns of cognitive decline progres-
sion are not uniform and depend on several factors, such as the
presence of brain atrophy, amyloid deposition, presence of the
ApoE4 allele, comorbid depression, and the existence of other
cognitive dysfunctions5,6. To overcome the problems of hetero-
geneity, longitudinal symptom history data are necessary, which
provides an enhanced resolution of AD phenotypic variation and
allows the establishment of temporal patterns in behavior in
observed domains. Disease progression monitoring and prediction
of conversion from “normal to MCI” or “MCI to AD” both require a
granular view of individual change over time.
Research on IIV focuses primarily on performance variability as

expressed by reaction time7,8. Latency-based measures, such as
reaction time variability are well-suited for IIV research, since test
scores are spread across greater time ranges than with
performance differences used in traditional NP, which renders
latency-based measures more sensitive. Further, reaction time is
easier to measure than other, more complex measures, and it is
relatively straightforward to obtain a baseline for, including
through a motor test. Reaction time also allows for collecting
multiple performance samples given that it is less sensitive to
retest effects than, for instance, accuracy in a task which can be
improved with practice9. High levels of IIV in reaction time have
been shown to predict impending cognitive decline and are
associated with a range of age-related neurological disturbances,
neurodegenerative disease, and increased mortality risk7. Current
IIV approaches take potential confounders into consideration too,
such as motivation and attention that can affect cognition over
time. IIV can also use accuracy-based measures in which
participants execute tasks that have correct or incorrect solu-
tions10. Scores obtained from accuracy-based measurements can
be predictive in differentiating between patients with AD,
Parkinson’s disease, and healthy controls (HC), and can help
detect prodromal AD11,12. However, accuracy-based IIV observa-
tions are not persistent across age groups when mean cognitive
performance is controlled for, which is why reaction time-based
measures are preferable13.

A dispersion-based methodology, one that analyzes multiple
tasks and domains for a given individual for a complex activity of
daily living, is even more promising than a single-track IIV
approach in terms of understanding changes to an individual’s
cognitive health over time, and in terms of establishing a precision
medicine approach to dementia. Dispersion (Fig. 2) is sensitive to
age-specific cognitive differences in late-life in multiple domains,
especially among old-old adults (75–92 yrs) who demonstrate
higher levels of dispersion than young-old adults (65–74 yrs)14.
When extending the dispersion model to longitudinal data across
multiple time points, it is possible to assess meaningful individual-
level change, analogous to approaches that have been suggested
using data-driven Reliable Change Index (RCI) scores15.
Technological advances offer solutions to the challenges of

early identification of impairment in cognitive and functional
abilities, and estimation of the risk of developing AD16. For
instance, the near-continuous passive data collection from mobile
device sensors allows for sensitive assessments of even subtle
changes in cognitive performance. Such low-friction, passive
monitoring approaches lend themselves well for longitudinal IIV
(LIIV) analyses. Previous work using high frequency and passive
digital phenotyping approaches show reasonable utility in
differentiating symptomatic patients from HC based on features
computed purely from device data. This includes the Apple-
Evidation MCI study using the Apple Watch with a sleep
monitor17, and the IBM voice analysis study18. Physiological and
behavioral observations collected via passive or active use of
digital tools (computers, smartphones, tablets, wearables, etc.),
may contain indicators of disease, termed digital biomarkers. For
cognition studies, digital biomarkers offer a novel method to
capture high-dimensional data that enables examining many
different variables together. It also offers an improved under-
standing of cognition from multiple perspectives. Digital biomar-
kers not only allow for active and frequent measurements of
reaction time and accuracy-based scores, but also offer objective
and reliable quantification of passive physiological and behavioral
inputs (and lack of inputs), such as tremor, hesitation, gait, and
touch pressure. While traditional tests typically capture one item
per question, device monitoring can generate countless digital
biomarkers with less patient burden.
One such active digital biomarker tool is the Altoida Digital

Neuro Signature (DNS), previously known as the Altoida Neuro
Motor Index. This tool assesses a user based on a battery of tests
provided over the course of 10 min, including with respect to eye
tracking, motor, and augmented reality-based tests. Altoida DNS

Fig. 1 Day-to-day variability in testing can overshadow true performance due to external factors (environment) and internal factors
(anxiety, motivation, etc.). Reprint courtesy of Martin Sliwinsk, permission granted44.
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evaluates cognition, motor skills, and function, and it predicts the
risk of developing MCI due to AD. Aside from its 94% prognostic
accuracy, the Altoida DNS is a highly sensitive (0.91) and specific
(0.82) tool to measure dementia disease progression19. The Altoida
DNS collects several additional variables to the conventional
latency- and accuracy-based IIV, such as gait and touch pressure,
which are categorized into 11 everyday function/cognition
domains, which correspond to the major neurocognitive net-
works20, such as perceptual motor coordination, complex atten-
tion, and cognitive processing speed19. In this manuscript, we
examine how dispersion measured with the Altoida DNS
compares to the NP for disease monitoring, characterizing
longitudinal risk trajectories, and predicting cognitive conversion
events (from healthy to MCI, from MCI to AD).

RESULTS
Risk trajectory-related metrics
The dispersion score across the entire sample was 11.45 (SD=
5.12) T score units. Figure 2 shows the magnitude of dispersion
within each cognitive status subgroup (HC, MCI, and AD) based on

longitudinal trajectory risk scores (LTRS) and NP, demonstrating
that the digital biomarkers explain up to 2.6 times more IIV
compared to conventional paper–pencil NP assessments.
Inferential analysis on the comparison of the values shown in

Fig. 2 reveals that IIV differs between groups (F(2,522)= 34.252,
p < 0.001, η2= 0.25), where the AD group (m= 23.78, SD= 4.54)
exhibits the highest variability, followed by the MCI (m= 12.48,
SD= 2.91), and the HC (m= 8.09, SD= 1.64). We also observed
group differences across all domains based on the battery of 13
NP vs 11 Altoida DNS domains (Table 1). The AD group exhibited
greater dispersion than MCI, and MCI greater than the HC
(Table 1), verifying the robustness of measurements.

Intraindividual variability-related metrics
Following the LTRS/longitudinal decline velocity scores (LDVS)
analysis, we also plotted the LIIV for each group revealing a
nonlinear increase in standard deviation as a function of disease
trajectory (Fig. 3). In Fig. 3, IIV is consistently and significantly more
sensitive at detecting disease trajectory trends than conventional
NP assessments, especially with pre-conversion events (spikes in
Fig. 3B predict a likely conversion from MCI to AD by next
assessment). The “distance” in dispersion measures increases
between the two assessment types (LIIV and NP) as the disease
progresses, demonstrating that LIIV is more sensitive at detecting
the markers than NP (Fig. 3).

Longitudinal Digital Neuro Signatures
Since Altoida DNS contains both LTRS and LIIV measures, the
results shown in Figs. 2 and 3 provide evidence of the strength of
digital biomarkers. LIIV is a strong preclinical risk predictor that
determines conversion from MCI to AD (Fig. 3B) through machine
learning algorithms, whereas the LTRS shows higher sensitivity at
detecting change in cognition than conventional NPs (Fig. 2 and
Table 1).
Taken together, these results demonstrate that the Altoida DNS

dispersion metric is consistently and significantly more sensitive at
capturing disease trajectory trends than traditional NP assess-
ments. In addition, the Altoida DNS assessment allows for the
prediction of conversion events 6–8 months prior to the
conversion event. These conversion predictors are characterized
by a spike in the IIV in the assessment prior to the actual
conversion, illustrated in Fig. 3B, and are not detectable with
conventional NP assessments.

DISCUSSION
In this study, we tackled a persistent problem in cognitive aging
research; the individual-level change in dementia with regards to
cognition and function. Establishing when meaningful individual-
level change has occurred is essential for evaluating dementia
interventions, as well as for supporting lifelong brain health21. The
two metrics examined here in combination (LTRS/LDVS and LIIV
integrated in Altoida DNS) may offer potential tools for practi-
tioners. LTRS/LDVS at the individual level may be useful to assess
the efficiency of cognitive training, medication, or remediation,
and it is a valuable alternative to the more frequently used RCI.
Provided the frequency of data collection is sufficient, LTRS/LDVS
makes it possible to assess individual changes in performance
more sensitively than conventional paper–pencil assessments, and
without the inconvenience of having to compare with change in a
normative sample subject to interindividual variability issues. Also,
unlike the traditional RCI, the LIIV offers a reliable tool to draw
conclusions solely based on individual performance. This may be
particularly valuable in the context of adaptive trials that utilize
information on an ongoing basis for the purposes of maximizing
trial efficiency, as well as for early detection of disease progression
events, including those in the prodromal phase of dementia22.

Fig. 2 Dispersion index based on LTRS and NP plotted for for the HC
(A), MCI (B), and AD (C) groups translated into standard deviation.
The A–C graphs show a nonlinear increase in standard deviation as a
function of disease trajectories. Comparing the overall mean of LTRS
vs NP per group yields the following values: HC: t= 10.00106, p <
0.00001; MCI: t= 7.02195, p < 0.00001; AD: t= 6.65272, p= 0.000011,
the results are statistically significant at p < 0.001. Details of the
individual time points are shown in Table 1.
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In the context of AD, dispersion has been shown to be a
sensitive marker to detect change in cognition and functional
abilities even at prodromal stages of the disease3,23–25. Establish-
ing meaningful change at the level of an individual is
instrumental, as significant effects in group-level statistics do not
show (and cannot even imply) what changes have occurred for
any one individual26. Taking both of these facts into account, we
analyzed dispersion differences between a full 120–140 min
conventional NP assessment with 13 cognitive domains and the
10min Altoida DNS assessment with 11 cognitive domains, and
compared the dispersion in a group of HC, MCI, and AD
participants over 40 months. The Altoida DNS showed consistently
and significantly higher sensitivity in capturing these changes for
disease trajectory trends. This was particularly true at later stages
of the disease, as shown in LTRS/LDVS results (Fig. 2 and Table 1),

Fig. 3 Dispersion index plotted across tasks, showing group
intraindividual standard deviation (iSD) for the HC (A), MCI (B),
and AD (C) groups. The A–C graphs show a nonlinear increase in SD
as a function of disease trajectories. IIV is consistently and
significantly more sensitive for the disease trajectory trends than
conventional NP assessments, especially at the pre-conversion
events (spikes in B predict a likely conversion by next assessment).
LIIV longitudinal IIV.
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likely due to the complex domains integrating function and
cognition uniquely in the Altoida DNS. These findings render
Altoida DNS a useful tool for disease progression monitoring, as
well as clinical trial endpoints. Further, IIV was consistently more
sensitive at identifying markers of disease trajectory trends than
the conventional NP assessment (Fig. 3). IIV was also a particularly
strong marker among the Altoida DNS metrics at detecting pre-
conversion events, rendering the tool capable of predicting
conversion from MCI to AD 6–8 months prior to the actual event.
Such a prediction not only allows for lifestyle interventions to
delay conversion and maintain a healthier brain for longer, but
also gives patients and family time for preparation, care
adjustment, and pharmacological intervention once available. In
addition, this approach can allow for prospective and longitudinal
assessments of biological (imaging, genetic, and biochemical) and
functional markers implicated with the pathophysiology of
dementia. This should help lead to a greater understanding of
the development and onset of the disease. To the best of our
knowledge, the DNS longitudinal patterns are the only available
metrics able to predict transition events from MCI to symptomatic
AD months in advance.
The Altoida DNS differs from the conventional NP in that it

captures multidimensional digital biomarkers and it is not limited
to latency- or accuracy-based measures. It integrates several
objectively measured features into a single task. This integration
increases the ecological validity of the observations, as it creates a
more generalizable “real-world situation” than the traditional
laboratory test settings. It is unsurprising that the abundance of
data collected by Altoida DNS both by the novel combination of
multiple variables addressing 11 cognitive domains, as well as
sensor data yields a higher sensitivity, particularly when variability
measures are considered. Digital biomarker platforms, such as
Altoida DNS, produce significant volumes of high-resolution data
that include cognitive and motor processing; voice-based data
that are indicative of the affective state and micro-errors that
divulge where, when, and how a disease manifestation is affecting
everyday function. These data have the potential to be further
leveraged for disease progression modeling, for more accurate
conversion event prediction or modeling of drug effects, leading
to at-scale, nonintrusive lifelong monitoring of brain health.
It is important to note that both dispersion and IIV exhibit a

nonlinear increase with age. Current patterns of data reveal that
greater dispersion across domains is associated with poorer
cognitive performance, possibly reflecting reduction in cognitive
control. The spikes of IIV in the MCI group are potentially
explained by the demands of executive function, a domain
particularly affected in MCI, due to the complexity of the Altoida
DNS assessment, in addition to internal and external factors,
such as anxiety and depression that particularly affect this
disease stage.
Another important feature of the Altoida DNS is its efficiency. It

takes 10 min to administer the Altoida DNS as opposed to a
120min conventional NP battery, and it yields highly comparable
results when administered at home as opposed to during a clinic
visit. Also, heterogeneity/homogeneity features of DNS scores and
LTRS/LDVS or LIIV changes in diverse cognitive abilities may also
be a valuable tool for clinicians. Our findings highlight the
sensitivity of digital biomarkers at detecting changes in cognition
and open interesting directions for research concerning hetero-
geneity in cognitive change. Further analyses of interindividual
differences in the patterns of change for mixed dementias or
other conditions were beyond the scope of the present study, but
could help provide greater understanding of individual develop-
mental trajectories in healthy aging and the characteristics of
trajectories that might be related to unhealthy aging. For example,
our participants were aged 55–90, an age range that would
experience some level of age-related cognitive decline even in the
healthy aging group. Future studies could analyze differences

based on age groups, though it is important to note that for the
purposes of this study the relative measurements (comparing
Altoida DNS to conventional NP) are robust, since both methods
were applied to all participants in a within subject design.
Similarly, for pragmatic reasons, our participants were potentially
more “tech-savvy” than average for their age group, since we
included owners/active users of an iPad or iPhone (and those who
had Wi-Fi at home). Familiarity with technology can introduce bias
in adherence27 and should be considered in technology-driven
solutions.
Overall, the present study demonstrates that active digital

biomarkers are useful tools for monitoring disease progression
in cognitive aging. Such tools could be used by primary
caregivers without much training in dementia testing to refer
patients for further testing, or to provide necessary resources to
mitigate debilitating effects of cognitive decline. This study’s
findings are also relevant to clinical trials, as the prediction of AD
conversion 6–8 months prior to the event may allow the
detection of meaningful change that could also influence the
dosage of medication and permit closer patient monitoring.
Finally, observing such changes early enables the studying of
underlying disease markers immediately prior to conversion,
contributing to increased understanding of pathophysiological
processes of AD and the possible discovery of new phenotypes
of cognitive decline.
This study represents the first attempt to explore active digital

biomarkers, such as those included in the Altoida DNS, for
detecting meaningful change based on newly utilized metrics at
the individual level. While mean scores of cognitive tests are
important for disease characterization, the IIV across tests harbors
large amounts of information that can easily be captured. Novel
metrics using smart-device sensors show an increased sensitivity
compared to conventional NP assessments. The Altoida DNS is
2.6× more sensitive than a conventional battery for dementia and
takes only 10 min. This “better” and “faster” performance renders
DNS an exceptional tool for patient care and can also be used to
determine when an individual has undergone meaningful change
in symptoms for monitoring drug interventions.

METHODS
Study design
We conducted two experiments (Study A and Study B) to assess Altoida
DNS against a set of established NPs as baseline. Study A (ClinicalTrials.gov
Identifier: NCT02050464) was a semi-naturalistic observational study that
included 29 participants, age 65+, with mild to moderate AD diagnosis
recruited in Hirslanden Clinic, ZH, Switzerland. Study B (ClinicalTrials.gov
Identifier: NCT02843529) was also a semi-naturalistic observational multi-
center study, which included 496 participants (213 MCI and 283 HC),
performed in ten European memory clinics and primary care centers, and
two primary care community centers in the USA. Thus, a total of 525
participants enrolled in the two studies. These participants were either
cognitively healthy (n= 283) or diagnosed with MCI (n= 213) or AD (n=
29). The studies shared similar entry (inclusion/exclusion) criteria and
clinical scales, and we characterized the AD biomarkers using the same
criteria for the analysis. Both studies were approved by the local
institutional review board, i.e., Bioethics committee of the Ionian University
in Corfu, Greece, where the studies were initiated.
In these studies, we measured cognitive performance of the participants

in three groups, namely HC, MCI, and AD, using Altoida DNS, and a set of
traditional pencil-and-paper NP. Thus, in this retrospective observational
analysis, our independent variable is the testing method, Altoida DNS vs NP
(elaborated under Materials), and our key-dependent variable is dispersion.

Participants
In both Study A and Study B, we excluded participants with any significant
neurologic disease at the recruitment stage, such as Parkinson’s disease,
Huntington’s disease, normal pressure hydrocephalus, brain tumor,
progressive supranuclear palsy, seizure disorder, subdural hematoma,

I.B. Meier et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)   101 

http://ClinicalTrials.gov
http://ClinicalTrials.gov


multiple sclerosis, or history of significant head trauma followed by
persistent neurologic defaults or known structural brain abnormalities. In
Study B, further key inclusion criteria were (1) 55–90 years of age, (2)
fluency in English, French, Spanish, Greek, German, or Italian, and (3)
familiarity with digital devices, including currently possessing and actively
using an iPad Pro or iPhone with an at-home Wi-Fi network for the remote
assessments. Using these criteria, we first recruited a control group of 283
cognitively healthy individuals that underwent the same procedure at the
Global Brain Health Institute at Trinity College, Dublin. In recruiting
participants with cognitive impairments, the biomarkers (cerebrospinal
fluid (CSF), brain MRI, and ApoE genotype) were used as a criterion, and
cognitive deficits compatible with MCI diagnosis were found in 213 sub-
jects: 170 from the memory clinics and primary care centers in various
countries in Europe (detailed under “Procedure” section below) and 43
from the community centers in the USA. Seven participants were excluded
from the data analysis due to poor data quality. The Study B cohort
consisted of HC (n= 283), and patients with MCI who are at high risk of
developing AD within 18–40 months (n= 213), assessed every 6 months.
The MCI and AD cohorts were included independently on their biomarker
status if their diagnosis was consistent with MCI and Alzheimer’s dementia
diagnosis, according to core criteria of NIA-AA revised guidelines28. The
participant cohort in Study B is further detailed in Buegler et al.19. The
cohort in Study A (the symptomatic AD patients from the Hirslanden Clinic,
Zurich, Switzerland) was added for control and comparison (n= 29).
Participants were matched on gender and educational level, with no
statistically significant difference in cognitive performance between age
groups on variables education (p= 0.43, Cohen’s d= 0.4) or gender (p=
0.68, Cohen’s d= 0.3).

Procedure
Upon enrollment, all participants gave written informed consent for
participation and for reuse of their data. In all groups (HC, MCI, and AD), the
Altoida DNS test was administered every 6–8 months over 2 days; day 1
included training and a first measurement, and day 2 included a “refresher
training” followed by a second measurement. One hundred participants
used Altoida DNS at home on day 2 (these measurements were verified
against those obtained in the clinic before inclusion in the analysis). An
overview of the procedure is represented in Fig. 4.
As shown in Fig. 4 above, the first Altoida DNS total test duration was

20min including training (10 min training, 2 min break, and 8min
measurement). After establishing this baseline, the Altoida DNS test took
an average of 8 min to administer every 6–8 months. The conventional NP
assessment took between 120 and 140min per visit, including breaks.
Every 6–8 months, participants were also assessed for their clinical and NP
status with the Mini-Mental State Examination (MMSE)29 or Montreal
Cognitive Assessment (MOCA)30, and clinically examined if a transition
from MCI to dementia (due to AD, or not associated with AD) occurred
based on the diagnostic core criteria of NIA-AA28. Clinical outcomes for
MCI/dementia/AD diagnoses were ascertained by investigators blinded to
the predictor variables of this study.
Study A participants were tested for a total duration of 48 months

between 2013 and 2017, and Study B participants for 40–42 months

between 2017 and 2020. Participating memory clinics were in Greece, Italy,
Spain, Ireland, Switzerland, and the USA. Specifically, the following
institutions enabled data collection for Study B: Greek Alzheimer’s
Association and Related Disorders “Ag. Giannis”, and “Ag. Eleni” memory
clinics in Thessaloniki, Greece; the University of Roma La Sapienza memory
clinic in Rome, Italy; IRCCS Centro San Giovanni di Dio Fatebenefratelli
memory clinic in Brescia, Italy; Neuromed IRCCS memory clinic in Naples,
Italy; Fundacion Clinic per a la Recerca Biomédica memory clinic in
Barcelona, Spain; University of Dublin, Trinity College, St James memory
clinic in Dublin, Ireland; BiHELab—Bioinformatics and Human Electro-
physiology Lab and affiliated primary physicians’ network in Corfu, Greece;
two offices from the Practice for Personalized Medicine of the Hirslanden
Private Hospital in Zurich and Aarau, Switzerland Scripps Health in La Jolla,
California, USA; and the Center for Brain Health—The University of Texas at
Dallas, USA.

Materials
The baseline NP assessments included a comprehensive set of tests: the
Wechsler Memory Scale (adjusted for education)31, MMSE29 or MOCA30,
Clinical Dementia Rating (CDR) Memory Box score32, and a full NP battery,
including the assessments Digit Span Forward, Digit Span Backward, Trail
Making Test A, Trail Making Test B33, RAVLT Total, RAVLT A6, RAVLT A7
(ref. 34), Benton VRT35, Digit Symbol36, Block Design37, Similarities38, and
Word and Animal Fluency39. These tests, taken together, address 13
cognitive domains.
We collected the digital biomarker data for cognition and functional

abilities using the Altoida DNS19. Altoida DNS selects the most promising
indicators from previous work (such as those cited above) reducing the
testing time from nearly 2 h–10min. It also contains new measures that
have not been used in this context (e.g., measuring gait, touch pressure,
walk path, and tremor). This multivariate scoring increases the efficiency of
digital phenotyping and enables better assessment of an individual’s
performance against their own history, as well as against the “normative”
data based on other people in the same cohort. The Altoida DNS captures
over 320 individual features, such as reaction time, speed, attention- and
memory-based assessments, as well as every single device sensor input (or
lack thereof) through accelerometer, gyroscope, magnetoscope, camera,
microphone, and touch screen. We piloted Altoida DNS in an independent
pilot study with a sample of young, HC across all Altoida cognitive
domains, and found that test-retest variability was 0.156%. Such low
variability shows excellent internal validity of the Altoida DNS test and
corroborates the representability and stability of its measures over time.
In addition, we collected AD biomarkers, consisting of β-amyloid and p-

tau and total tau protein CSF levels, brain MRI, and ApoE genotype as
specific baseline measurements for the digital biomarkers obtained
through Altoida DNS test. To ensure a finer understanding of the type of
cognitive impairment; classification in the diagnostic clusters of MCI and
dementia due to AD (aMCI and ADD), or MCI and dementia not associated
with AD (naMCI and nADD), were performed based on the β-amyloid and
tau protein CSF levels biomarker.

Fig. 4 An overview of the procedure used in both studies, except for the unsupervised Altoida DNS use, which was conducted only in Study B
in HCs and participants with MCI.
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Statistical analyses
To investigate variability in participants’ cognitive performance, a common
and meaningful index that can be compared between the Altoida DNS and
gold standard NP assessments is necessary. For this, we used the so-called
dispersion index40,41, calculated for each individual based on their reaction
times (including a control for speed-accuracy trade off) across cognitive
measures within individuals and between HC, MCI, and AD groups (Fig. 5).
The dispersion index is a more reliable measure of central nervous system
integrity and of individual cognitive structure than mean performance42.
Individual dispersion profiles are obtained by using a regression technique,
which computes intraindividual standard deviation (iSD) scores from
standardized test scores. We obtained dispersion profiles for all cognitive
domains measured by the Altoida DNS and the NP test batteries used in
the study to make them directly comparable. Test scores from the NP
battery were initially regressed on linear and quadratic age trends to
control for group differences in mean performance. Controlling for group
differences based on age is necessary because greater variance tends to be
associated with greater means and mean-level performance, which are
expected to differ across age bands present in the study sample with
participants in the age range of 55–90. The resulting residuals from these
linear and quadratic regression models were standardized as T scores (M=
50, SD= 10), and iSDs were subsequently computed across these
residualized test scores. The resulting dispersion estimate, indexed on a
common metric, reflects the amount of variability across an individual’s NP
profile relative to the group average (Fig. 5). The group average is obtained
from participants’ performance levels across measurements. Higher values
in the dispersion index reflect greater IIV in cognitive function.
Next, LTRS and LDVS dispersion were computed, explained in further

detail below, across the 11 Altoida DNS, and the 13 conventional NP
cognitive/functional domains.
For between-group mean comparisons, we used MANOVA and indepen-

dent one-way ANOVA or T test, whereas for within-group mean comparisons,
we used independent one-way ANOVA. The Benjamini–Hochberg’s correc-
tion43 for multiple testing was applied on all statistical analyses, using an
alpha value of 0.05 (p < .05, two-tailed). All statistical analyses were
performed using SPSS 22.0 for Mac.

Longitudinal intraindividual variability-related metrics
The LTRS quantifies the changes on all cognitive domains, such as the amount
of cognitive decline suffered by an individual, based on multiple linear
regression models (Fig. 6, top left). The LTRS does not take the period of time
in which the decline occurs into account. It merely quantifies the magnitude
of change that is captured by the observations. The LDVS, on the other hand,
quantifies at what speed the change takes place, and thus can be used to
assess whether decline is happening at a critical velocity in each of the
cognitive domains (Fig. 6, bottom left). The LDVS is also based on multiple
linear regression models. A high value in the LDVS implies an unusually fast
decline and builds a weighted linear regression model for each Altoida DNS
cognitive domain, using simple linear regression with the rate of decline as
“weight”. The LTRS and LDVS give reliable results only when a participant
performs at least four complete tests over a period of multiple weeks and can
be interpreted together in a risk matrix (Fig. 6, right).
The IIV quantifies the fluctuation in cognitive performance of an individual,

and has been shown to sensitively detect underlying neural pathology of
cognitive and functional change at earliest stages of AD (Fig. 7). The IIV is a
highly sensitive predictor of disease onset and conversion to AD.

Fig. 5 An illustration of dispersion. Left: Individual patient data over time. Right: patient performance dispersion (dots) at different time
points (A, B, and C) represented in population mean (line) picked up using Altoida (blue, top curve) and conventional NP (red, bottom curve).
SD is related to the dispersion of a given subject over time (LTRS). Black (dashed line): true dispersion.

Fig. 6 Illustrations of the LTRS (top) and LDVS (bottom) on the left (numbers 17.3 and 41.5 are random examples). The two measures can
be used in a matrix to obtain a combined longitudinal risk matrix (right). Green indicates low risk, yellow medium, and red high risk. In the risk
matrix (right), the overlapping areas allow for a more nuanced interpretation.

Fig. 7 The IIV quantifies the variability of cognitive domain
percentiles over time. The value corresponds to the average
variability of the subject’s test in multiples of the variability of
healthy subjects for each domain. The value is only reliable for at
least five tests done by the same participant.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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