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1 Introduction

Spatial cognitive engineering exploits scientific understanding of the way people con-
ceptualize, perceive and communicate about space in order to devise computational
systems that support spatial tasks and spatial decision making. It is the spatial exten-
sion of Norman’s [13] concept of cognitive engineering–a kind of applied cognitive
science, exploiting knowledge and experience from the cognitive sciences to the design
of machines (see also [16]).

As such, spatial cognitive engineering is a form of user-centered design. It aims
at reducing the human-computer interaction gaps by increasing the computer’s ‘under-
standing’ of the human users. The overall aim is to get the device to adapt to the user,
instead of forcing the user to accommodate to the device. It is assumed that achiev-
ing this aim will lead to a more natural interaction, better decision making, and truly
intelligent spatial services [17], thus alleviating some of the ‘ironies of automation’ [1].

In this position paper we argue for a few key principles and design considerations
that we deem crucial in spatial cognitive engineering, and outline a list of major chal-
lenges. We have already hinted at one of the principal challenges: while humans are
masters in adaptation, machines are so far particularly bad at it.

2 Seamless Perfection or Perfect Seams

In 1991, Mark Weiser [22] presented his vision of ubiquitous computing, which would
have computing devices disappear into the background of our everyday activities–always
present, always active, but no more noticeable than street signs, billboards, or most fur-
niture. Nearly 25 years later, this vision is far from becoming reality, even though it has
begun to manifest in subtle and unexpected ways. In many parts of the world, the In-
ternet is near ubiquitous and smart phones and wearables are in most people’s pockets.
People use these devices in many unintended and novel ways, for example, for social-
izing, entertainment or fitness tracking. These devices now offer ubiquity, but different
to Weiser’s vision, they are seamful and ‘messy’ [2, 3].

This does not necessarily mean Weiser’s vision is an un-achievable ideal, but rather
might indicate that ’seamless perfection’ does not lead to optimal usability. The world
may not be a desktop [23], but perhaps it is not necessary to hide computers from
the users completely either. We draw an analogy to Montello’s [11] distinction of two
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components of navigation: the near automatic, subconscious locomotion, and the goal-
directed, conscious planning component of wayfinding. Similarly, with assistance sys-
tems there are also aspects that are (1) important for the accomplishment of the goal,
but may be executed fully automated, without the user realizing when and how they
are performed; and (2) aspects that directly affect the interaction between human and
system, in which humans should ’have a say’.

Consider the case of self-driving cars that do not seem to be too far from becoming
a reality. There are a number of tasks which may indeed be best left to the car. For
example, the car’s global positioning system (GPS) receiver is certainly better at com-
puting the current position, surpassing numerical processing capabilities of any human
user. We also cannot reach the reliability of Anti-lock Braking Systems (ABS) to keep
the wheels from locking in case of sudden braking. These are aspects of assistance that
require complicated, fast numeric processing capabilities or involve instant safety de-
cisions based on numerous and frequent sensor readings. In our eyes, these decisions
are a parallel to locomotion in wayfinding as their execution needs to be near instant
and can be automated. These routine decisions can be left to reliable and fast embedded
hardware and software. Processes that are clearly beyond human capacity may be fully
automated and delegated to assistance systems, thus remaining hidden from users.

In higher-level tasks requiring complex cognitive processing, however, there are ad-
vantages in making users fully aware that they are assisted by a computational system
(cf. [14]). Such awareness may be beneficial for both the developers and users of such
systems. When trying to develop more natural, human-like ubiquitous interaction in-
terfaces we risk to face the uncanny valley [12], situations where computer interaction
becomes awkward or subconsciously repulsive to the human user due to exaggerated
lifelike appearance or behavior. Furthermore, systems that completely suppress users’
responsibility and ability to override system decisions may render the users helpless
during system failure (e.g., [1]).

Computers and humans are good at different things, therefore, a crucial aspect of
designing meaningful interaction should be to smartly divide the tasks between humans
and computers. While humans are better at tasks involving unfamiliar pattern inter-
pretation, adaptation to changing contexts and heuristics, machines can detect, process,
store and retrieve accurately and efficiently large amounts of data, interpret familiar pat-
terns and efficiently conduct complicated calculations. Accordingly, when faced with
dynamically changing traffic conditions a navigation system may be much faster and
more accurate in identifying the delay to be ten minutes, while the decision whether to
take a detour may be better left to the user. This is because users may (1) have different,
un-quantifiable route preferences and behavioral patterns; (2) they may be better at as-
sessing how likely it is that the delay will actually happen as predicted; and importantly
(3) the users will ultimately bear the consequences of the decision.

We believe that it may be smarter to embrace these differences in the design of assis-
tance systems, suitably reminding the users that they are being assisted by a computer.
In other words, as a first principle, design assistance with perfect seams in mind, rather
than to strive for seamless perfection in vain.



3 To Each Their Own and All Together Now

A corollary of the above principle is that the aim of (spatial) cognitive engineering
should not be to mimic humans faithfully. Rather, the aim should be at combining the
strengths of the human and computer in a complementary manner. The two should be-
come a team where, first, users are assisted by complementing and enhancing their own
capabilities with the power of the computer and its sensors, and second, the computer
gets help with cognitively complex tasks for the human’s own benefit. This has a range
of consequences for the design process:

Model perfection, not imperfection First, system designers should take the interaction
partners as what they are. Instead of pursuing a complex model of a human user with
all their shortcomings, quirks, and cognitive biases, it seems more useful to exploit
the predictability and reliability of computational systems and to construct a kind of
‘super-human’ [18]. We are seeking a system without unnecessary biases that would
simulate human imperfections, forgetfulness, and misrepresentations. We envisage a
system that consistently provides information when and how users need it, and if un-
sure, requests inputs. We do not need perfect imitation, but meaningful interaction [7].
Our self-driving car should not take a less optimal route, or learn and entrench biases
just because people do so. Similarly, in user interaction, the car should acknowledge
inputs provided by a user (e.g., destination input) and if this is evaluated as ambiguous,
it should seek further input to resolve the ambiguity, rather than attempt autonomous
interpretation. This requires having the ability to exchange information in terms that
users can understand and interpret.

Do not substitute each other Second, we do not believe that strong anthropomorphism
is a necessity. Supporting meaningful interaction is possible without pretending to be
human. While adaptation to the human user is important, it should be offered in mod-
eration and with a transparent and balanced task distribution. A software system trying
to entirely substitute human judgment will annoy the user, whether they are reliable
or whether they fail. Disempowering, patronizing systems are excellent examples of
design failures.

Offer inclusive assistance Third, assistance systems should not simply assist the human
user in their task execution–they should involve them in the decision making. Partici-
pation in decision making is important to keep users engaged, and supports a resilient
human-computer system. It enables faster reaction to failures, since the user is able to
identify the stage of the decision process where the computer failed. We have to ac-
cept that the system as well as the user may make a wrong decision because of the
ambiguity of the situation, its novelty, or sensory and perceptual uncertainty. Recall the
traffic delay and the destination input scenarios described earlier. In such cases, provid-
ing interaction facilities to resolve issues is a necessary design feature. Occasionally,
the system may not even be aware that it is reacting to an uncertain situation, for ex-
ample, if a self-driving car receives incorrect or imprecise route instructions from the
user [21]. In short, opt-in and opt-out capabilities should be clearly presented to the user
and where possible, adapt to the context as well as to the users’ experience and abilities.



Provide transparent assistance Finally, transparency of the assisting processes should
be ensured through interaction design and operation. A transparent system would, at all
times, provide the user with the ability to verify the decisions, and possibly check the
data based on which the decisions have been taken. While such detailed analyses will
usually be unnecessary, in critical situations having available facilities to reconstruct
system decisions may be crucial. This might be particularly important for safety crit-
ical applications, such as piloting a plane, managing a nuclear power plant, or indeed
traveling in a self-driving car.

4 On Usefulness and Usability

Usability and usefulness are critically important considerations when designing assis-
tance systems. The technical sciences are riddled by statements regarding the usabil-
ity and user-friendliness of technology-driven products, but lack awareness of some of
the fundamental principles. Schneiderman and Plaisant [19] point to the importance of
gauging the skill level of the user. Invariably, the designer is not the user, and too often
the designer is an expert. There is ample evidence that experts have different strategies
in using artifacts than novices (e.g., [6]). Since spatial cognitive engineering starts off
by examining the users’ abilities and understanding of the problem domain, it inevitably
takes a user-centered perspective—but this is only the first step towards usability.

While usefulness indicates the utilitarian value of a given artifact, i.e, whether it is
fit for purpose and actually works, usability qualifies how fit it is for use [4, 10]. In that
respect, usefulness helps us assess whether the artifact actually provides an added value
to the user in a given situation (e.g., the car is in perfectly good condition but do you
really need the car, or could you just walk?). Likewise, perfectly useful systems may not
be usable in particular situations. Users may apply them in unintended ways, or design
testing may be insufficient (e.g., you might very well need the car, but the acceleration
and the brake functions are swapped).

Cognitive engineering requires an iterative design and testing process where con-
cepts identified in empirical research are first implemented in prototype systems. The
prototypes are then tested in realistic (or at least representative) scenarios and with a
well-selected, varied, and counter-balanced set of users. Since the developed systems
are based on the designers’ understanding of human abilities, it is necessary to assess
whether their assumptions hold. For example, in our design we can make use of the
numerous standardized spatial abilities tests available to determine how well users with
varied spatial abilities are supported by the designed system and whether the interaction
between computer and human will work as intended. Thus acquired new insights need
to be fed back into the design and tested again in a cyclical design process.

Furthermore, the adaptation process between human and computer may benefit from
the machine’s ability to learn. This facilitates adaptation to a given user and leads to
system personalization [5]. By collecting interaction data (e.g., through user input or
eye tracking), patterns in a particular user’s behavior may be inferred using machine
learning techniques. The system may then react to these patterns and adapt its behavior–
still following the principles outlined above. For example, as individual spatial abilities
strongly influence our performance in different cognitive tasks (e.g., [8]), adaptation



to these abilities could be targeted by spatial assistance systems. Specific modes of
assistance benefit users differentially (e.g., those with higher vs. those with lower spatial
abilities), as shown in situations including the interpretation of 3D displays or route
descriptions [9, 15]. Ideally, the mode of assistance and interaction should adapt to an
individual’s capabilities and needs.

Finally, learning processes may also help systems in dealing with unusual or novel
situations, drawing analogies from past experiences. The systems may then be better
prepared for similar situations in the future to resolve these situations from their previ-
ous interactions with the human user. For this to work the human and the machine need
to be perceived as a team. Then, both the machine and the user will learn about their
reactions in diverse situations and may be able to adapt their behavior.

5 What is so Special about Spatial?

The properties of physical space require specific attention in designing interaction and
assistance systems. Some aspects of spatial embedding may significantly simplify the
design of assistance systems. Any physical object has to be at a certain, single location
that cannot be concurrently shared with another object (of the same type). The layout
of our spatial environments also restricts potential relationships and movement, which
limits possible solutions and ambiguities while reasoning about space.

The ability to implement efficient reasoning heuristics in the machine is well com-
plemented with the human expertise with spatial behavior and communication, which is
efficient and effective despite the individual differences. People deal with space all the
time, every day of our lives. However, this entails a potential risk as well: we all think
that we are spatial experts. Thus, extra care is necessary when designing interaction
and communication in and about space because everybody knows how this should be
done right. The uncanny valley may be particularly deep here. This is further reinforced
by the fundamental differences in how people perceive and conceptualize space, and
how space is represented in geographic information systems. This mismatch in under-
standing space along with the human expertise is a major hurdle in designing spatial
assistance systems that account for the guidelines laid out above.

6 Are We There Yet?

Where does this leave us?
Context may be the single biggest challenge in (spatial) cognitive engineering, and

in (situated) human-computer interaction in general. Proper modeling, sensing and han-
dling of various parameters of context in conjunction with the inference of user intent
are far from being solved—and may never be. Still, the ability to provide tailored assis-
tance requires that we at least try, as context handling remains a necessity for adaptive
assistance systems. Until recently, context has been researched as a means of providing
tailored information to the user. However, adaptation mechanisms must increasingly
support the entire team of user and machine interacting in as natural a way as pos-
sible. Coming back to the scenario of the self driving car, it will require a model of
user context to understand informal natural language interaction, such as destination



descriptions (e.g., “Take me to John’s golf club!”), or interceptions (the driver waking
up during a long drive and asking “Are we there yet?”). But the user may also need to
understand the car prompting for inputs en-route, for instance if the traffic conditions
change or a parking lot is not available: “Do you want me to park a block further or do
you prefer to pay for underground parking?”.

As capturing context is such a notoriously hard problem, we may need to start think-
ing about clever ways to cheat our way out of proper context handling. This may also
hold true for strong personalization, i.e., personalization to each and every individual’s
different needs and abilities. First, figuring out what these needs and abilities are is dif-
ficult. Psychological research has developed a range of assessment tests to determine
people’s abilities and personality traits. But we can hardly ask users to first answer
a large battery of questions before starting to use a system. Again, machine learning
based on (large amounts of) collected observational data of system use may help to
solve some of the issues of personalization. But learning takes time and repetitive use.
Systems, however, need to be usable and useful from the very beginning as users would
not accept them otherwise.

Second, with strong personalization, the space of design and interface options may
just become too large to set up and maintain. Thus, in order to keep it manageable
group-based personalization seems to be a sensible approach (e.g., [16, 20]). Still, while
sometimes the classification of users into groups may be relatively straightforward, the
parameters defining a group may not be simple to detect (supervised classification), or
meaningful (unsupervised clustering) for the characteristics to which the system adapts.

Finally, a major challenge faced by (spatial) cognitive engineering is the transfer of
cognitive findings from the lab into the real world. Psychological research, by necessity,
usually is extremely controlled. It tries to manipulate a single aspect of a specific task
in systematic, but often also artificial ways. Such research provides important basic in-
sights. But they are often also too specific for real-life applicability, isolating individual
cognitive responses and neglecting the interaction with other basic cognitive phenom-
ena. The need to assemble these findings in a working system demands careful balanc-
ing of the influences of individual requirements. In the end, we need to design working
systems that are useful and usable, and that do not suffer from ‘nervous breakdowns’.

So, “Are we there yet?” for spatial cognitive engineering? In short: “No”. We are
only inching out of the labs to real applicability and production of cognitive systems.
The long answer is that a range of major challenges remain to be overcome–or better,
circumnavigate–to arrive at truly smart, cognitively supportive spatial services.
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