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ABSTRACT
Human visual Attention modelling is a persistent interdisciplinary research challenge, gaining new interest
in recent years mainly due to the latest developments in deep learning. That is particularly evident in
saliency benchmarks. Novel deep learning-based visual saliency models show promising results in capturing
high-level (top-down) human visual attention processes. Therefore, they strongly differ from the earlier
approaches, mainly characterised by low-level (bottom-up) visual features. These developments account for
innate human selectivity mechanisms that are reliant on both high- and low-level factors. Moreover, the two
factors interact with each other. Motivated by the importance of these interactions, in this project, we tackle
visual saliency modelling holistically, examining if we could consider both high- and low-level features
that govern human attention. Specifically, we propose a novel method SAtSal (Self-Attention Saliency).
SAtSal leverages both high and low-level features using a multilevel merging of skip connections during
the decoding stage. Consequently, we incorporate convolutional self-attention modules on skip connection
from the encoder to the decoder network to properly integrate the valuable signals from multilevel spatial
features. Thus, the self-attention modules learn to filter out the latent representation of the salient regions
from the other irrelevant information in an embedded and joint manner with the main encoder-decoder
model backbone. Finally, we evaluate SAtSal against various existing solutions to validate our approach,
using the well-known standard saliency benchmark MIT300. To further examine SAtSal’s robustness on
other image types, we also evaluate it on the Le-Meur saliency painting benchmark.

INDEX TERMS Eye Movements, Low and High vision, Saliency Prediction, Self-attention, Visual
Attention.

I. INTRODUCTION

Visual attention consists of perceptual and cognitive mecha-
nisms that empower humans to rapidly select and interpret
the most interesting parts of a complex visual scene. For
human information processing, selective mechanisms asso-
ciated with attention work as a ”data prepossessing bottle-
neck”. Often, the selective mechanisms are a result of so-
called bottom-up processes, in which the viewer is guided
by perceptual signals and analyses the surroundings with no
conscious intentions [72] [7]. However, cognitively-driven
top-down mechanisms are equally important in the way hu-

mans direct their attention to selected elements, whether they
are visual, auditory, olfactory or otherwise [20].

In addition to top-down vs bottom-up dichotomy, visual
attention literature distinguishes overt from covert attention.
Covert attention enacts when the eyes are not moving because
focusing on a specific fixation point (one might intentionally
pay attention to the peripheral information without moving
the eyes). On the other side, overt attention relies on eye
movements shifting from a location to another of a given
visual scene; foveal processing enables capturing high lev-
els of detail from objects of interest while suppressing the
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context information into a low-resolution, low-colour pro-
cessing mode [68] [50]. The scene is constantly analysed
through rapid eye movements, i.e., saccades, by which visual
attention processes scan rapidly new objects of interest. Such
mechanisms help humans prioritise and filter stimuli from the
early visual processing stages to later stages where higher-
level cognitive processing can occur. The human ability to
detect saliency of objects enables efficient scene scanning,
and as such, it is one of the fundamental attention mecha-
nisms [49].

Therefore, a visual attention-related modelling is known as
saliency prediction [48]. Saliency prediction deals with de-
tecting the most attention-grabbing regions of a given visual
scene from a bottom-up perceptual perspective. For a given
input, be it an image or a video sequence, saliency prediction
algorithms encode each pixel of the visual scene with an
intensity value [0,255] or [0,1], indicating the probability of
the pixel to be salient [58]. The corresponding map returned
by saliency algorithms is known as a saliency map. The
dominant understanding in the field is that the higher the
saliency value, the more likely observers’ eye movements
will be drawn to that area in the image or video frame, assum-
ing that there are no top-down cognitive or task-driven bias.
Saliency maps are usually visualized as blobs distributed
around the regions that naturally stand out (or pop out)
of the visual scene. Therefore, saliency maps are typically
represented as density maps (or heat-map) of probabilities.
The accuracy of a predicted saliency of a given scene is
measured against the recorded eye movements on the same
scene. That relies on the understanding of close relationships
between eye movements and visual attention [60]. Examin-
ing statistics on different levels of visual saliency enables an
in-depth understanding of the processes that govern human
attention and, by extension, human behaviour. Due to its
broad relevance, predicting human eye movement patterns
and visual saliency has an impressive range of applications
in computer vision and related fields such as image compres-
sion [35], image captioning [22], image retrieval [31], image
re-targeting [61], quality assessment of multimedia content
(i.e. image [3], [17], [18], stereo [62], 3D meshes [?], [1],
etc.), remote sensing [30], watermarking [34], map viewing
[51] [5], indoor localization [29], perception [14], image
enhancement [12], [19], healthcare [38] among many others.

Saliency prediction links to the pioneering work by Treis-
man and Gelade [72] on the feature integration theory. Ac-
cording to Treisman and Gelade [72], early visual features
are registered as viewers perceive a visual scene for, then,
being combined into a complete object-based perceptual
identification. The latter also introduces the so-called pre-
attentive and attentive stages, corresponding to bottom-up
and top-down information processing. Being able to separate
and organize the visual information hierarchically based on
its perceptual saliency and its importance paves the way
for mimicking human attention in mathematical models and
makes feature-based models eligible for predicting salient
regions from stimuli that are viewed freely (not task-driven).

In terms of algorithmic developments, the seminal work
by Koch and Ullman [48] establishes the basis of central
saliency and incorporates low-level information, and building
on this model, Itti et al. [40] proposed the first compu-
tational model of saliency. From this point forward, many
biologically inspired computational architectures have been
proposed, such as the graph-based visual salience, or GBVS
[36]. Several computer vision and image anaylsis methods
focus on the extraction of low-level and high-level features
to model and detect objects in images and videos [4], [11].

The ever-increasing success of machine learning and deep
learning approaches in vision-related computational process-
ing has allowed a critical development for saliency predic-
tion over the last few years. Convolutions Neural Networks
(CNNs) reached out high accuracy rates in learning complex
semantic representations from large-scale image recognition
datasets [52]. Due to the advance of deep learning tech-
niques in mimicking human behaviour, recent CNN-based
saliency architectures reduced the gap between human eye
movements (typical baseline for saliency studies) and the
performance of prediction models remarkably. Current CNN-
based models focus on high-level semantically-informative
representations because low-level features contain a high
ratio of noise signals which are not semantically helpful [28].
Another main drawback that affects the reliance only on
these deep hierarchical CNNs representations is the problem
of limited receptive field proportional to the network depth
layer. The consistency of scene semantics has an effect on
eye movements, i.e., the eye tends to remain fixated longer on
objects that are semantically informative regarding a scene’s
content [37] [71]. If a visual scene contains too many objects,
representational inconsistency of scene semantics increases,
highly correlated with human eye movement during free
viewing. Given the above, predicting object characteristics
links to the accuracy of the visual attention model. Despite
the availability of several ”deep saliency models” (i.e., deep
learning-based saliency models), much of the knowledge in
psychology and neuroscience describing various aspects of
human visual attention has not been adequately tackled yet
[49] [9]. In some tasks, even the traditional saliency models
(those proposed before deep-learning models) offer decent
saliency predictions, which can be superior to psychophys-
ical evaluations [49], possibly explained by the importance
of the low-level features in an image in detecting the early
fixations [27]. Both high and low-level features may serve
a purpose in the way humans process visual information.
Inspired by the previous studies considering human attention
as a multilevel selection process [45], we integrate low and
intermediate-level feature mapping to leverage the discrim-
inant part of both low-level and deep semantic features to
propose a new saliency model. To implement and test the
proposed model, we incorporate convolutional Self-Attention
modules on skip connections from the encoder to the decoder
architecture opposite layers. As a result, the proposed model
can effectively predict visual saliency patterns from mul-
tilevel contextual scene representations and overcomes the
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limitation of narrow receptive fields by employing the ability
of Self-Attention to capture the context from an extended
range of sequence dependencies.

The main contributions of this publication are summarised
as follows:
• We develop a novel approach for visual saliency predic-

tion using both high and low-level factors in learning
multilevel features for producing static saliency maps.
In addition, a self-attention module has been incorpo-
rated on the encoder-decoder skip connections to boost
the global information in the deep layer and generate a
highly representative saliency distribution.

• We evaluate the effectiveness of our model on the estab-
lished MIT300 preserved benchmark and Le Meur [57]
paintings dataset. All comparisons demonstrate that the
proposed model is consistent, efficient, and superior to
or competitive with other state-of-the-art methods.

• We further test out the robustness of the proposed ap-
proach in an ablation study on challenging scene sam-
ples that include both high and low-level features. The
results reveal that multilevel skip attentive connections
are effective and boost the performance of the backbone
encoder-decoder model.

The rest of the manuscript is organized as follows: Sec-
tion II introduces an overview of related saliency literature.
Section III provides a detailed description of the proposed
approach. Section IV demonstrates the benchmarking ex-
periments and compares results to state-of-the-art methods.
Finally, conclusions and outlook are given in Section V.

II. RELATED WORK
Visual attention modelling has been a topic of interest to
computer vision for many decades, starting from the seminal
work by Koch et al. [48], which was then implemented
by [40] as a bottom-up model that predicts saliency us-
ing multi-scale low-level features. On top of the previous
efforts, the GBVS [36] framework extracts image features
to predict saliency using graph theory-based formulas that
define Markov chains over different input maps. Zhang et
al. [56] proposed a Bayesian framework tackling bottom-
up saliency as self-information over linear visual features
and the overall saliency as the point-wise mutual information
between features and target. Around the same time, Bigdely-
Shamlo et al. [63] proposed a method to detect visual
saliency relying on the Kalman filter. Achanta et al. [2]
extracted salient pixels in images using features of colour
and luminance in the Fourier domain. Colour spaces and their
role in saliency extraction were further investigated later by
several researchers, e.g., [13].

The approaches mentioned above focus on visual atten-
tion using low-level spatial features. Sun and Fisher [71]
introduced a hierarchical object and location-based visual
attention model using a grouping-based salience. They treat
complex visual tasks that depend on the current scene and
the observer’s goals, thus introducing a top-down cognitive
aspect to saliency prediction. Integrating another feature of

human cognitive processing, Jin-Gang and Gui-Song [41]
presented an object-based saliency detection with a paradigm
based on the Gestalt grouping cues. Kai-Yueh et al. [44]
method introduced a model that is reliant on the relationships
between saliency and "objectness", a concept in which a
scene element is ranked for its meaning.

Recently saliency modelling gained remarkable perfor-
mance by applying deep learning techniques which can learn
top-down representations. This was achieved due to the con-
struction of large scale eye movement datasets such as [43],
[42], [6], [39] and [15]. The eye movement datasets men-
tioned above were collected using free-viewing eye-tracking
sessions. The latter differs from task-driven scenarios where
the variability of tasks could result in an unbalanced speci-
ficity of eye movements toward visual features related to
the tasks. Among the deep learning approaches to saliency
prediction, Ensemble of Deep Networks (eDN),Vig et al.
[73] trained an early shallow CNN architecture that learns
end-to-end saliency by merging different layer feature maps.
The achieved performance did not mark an important result
leap, as shallow networks cannot learn high-level features.

Lots of recent methods leveraged classification architec-
tures pre-trained on ImageNet dataset [24]. These architec-
tures have a superior ability at extracting the deep semantic
representations from images [26].

As the deep learning-based models started to populate the
scene, Oyama and Yamanaka [64] explored the influence of
classification accuracy of the models on saliency estimation.
The well-known DeepGaze1 by Kümmerer et al. [53] reem-
ploys an early light object recognition network to explore
the limits of deep learning in saliency prediction. Kümmerer
et al. later introduced a new network, namely DeepGaze2
[55], based on the VGG [70] classification network. Both
DeepGaze1 and DeepGaze2 models use fixed prior maps
to regulate the possible biases in the data. Pan et al. [66]
compare two approaches for predicting saliency in an end-
to-end fashion. The first one is reliant on a lightweight net-
work whose parameters are learnt from scratch. The second
one is deeper and takes advantage of a pre-trained image
classification network. In contrast, Cornia et al. [21] propose
an architecture that extracts and combines features from
multiple levels, then use a learned before tackling the bias
of the dataset and introducing a new custom pixel-based
loss function. Huang et al. [39] use a two-stream VGG
network in their SALICON with different input scales, in
which both output streams feature maps are concatenated
to model the final saliency. DVA [74] learns multi-level in-
formation from different layers with different receptive field
sizes, the decoders composed of a series of deconvolution
layers with upsampling operations, the resulting multi-level
maps are fused to produce the final saliency map. SalGAN
[65] uses a deep convolution generative adversarial neural
(GAN) network. The model design architecture contains a
generator of saliency, and a discriminator network, where the
two compete in a min-max game between the generator and
the discriminator to produce a saliency map, which is qual-
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FIGURE 1. Network Architecture of SATSal.

itatively indistinguishable from the ground truth based on
eye movement recordings. Liu and Han [59] propose a deep
spatial contextual long-term recurrent convolutional network
that learns local features on each image location in parallel
via fine-tuning a pre-trained CNN model. Afterwards, the
model simultaneously learns to incorporate global scene con-
text to predict saliency. Cornia et al. [23] introduce a set of
prior maps generated by a Gaussian function, the use of a
neural attention mechanism and convLSTM (convolutional
LSTM) layers on feature maps to refine the predicted saliency
maps iteratively. Most recently, [46] proposed SALYPATH,
an architecture to simultaneously predict saliency and asso-
ciated scan-path, using a combined loss function that uses
pixel level and distribution functions and a Noise Sensitivity
Score (NSS) [67] metric.

Table 1 provides a summary overview of the most promi-
nent methods mentioned above in terms of their major con-
tributions to predict saliency on natural images.

TABLE 1. An overview of previous state the art methods

Models Major contribution to predict saliency maps
SAM-ResNet [23] ResNet and RNN to refine the features
SalGAN [65] Trains a deep convolution generative neural network
DVA [74] Combination VGG high level features
SAM-VGG [23] VGG and RNN to refine the features
ML-Net [21] High multilevel VGG features and learnable bias
DeepGaze [53] VGG and fixed prior maps to regulate possible range of biases
SALICON [39] Two streams of VGG network on two different scales

III. PROPOSED MODEL
In light of the prior work, this section describes the architec-
ture of the proposed model, as illustrated in Figure 1. It con-
sists of a VGG-Encoder network and the Decoder-network

composed of five deconvolution blocks interspersed with an
extended Self-Attention module (ECSA). ECSA takes the
previous block decoded hidden-vector and the opposite layer
in Encoder features as input using a skip connection; the
ECSA output is fed into the next Decoder block to produce
a saliency map at the final stage. The motivation behind the
proposed model are explained below:
• CNNs can only process features in a local neighbour-

hood, thus making it inefficient to model long-range,
multilevel dependencies across spatial regions. Instead,
incorporating self-attention modules connecting multi-
level Encoder and Decoder networks yield robust pre-
dictions. Therefore, fine details at every position are
properly considered with others in distant portions of
low-level attention from early layers. That also helps to
overcome the limited receptive field issue in learning
object-based correlation from deep semantic represen-
tations.

• Most recent studies consider the high-level features as
they focus on solving the complex top-down attention
problem, meanwhile underestimating the importance of
capturing global and local low-level attention. Mul-
tilevel skip connections help in leveraging the deep
semantic representations from the last decoder layers
and simple, attractive structural features from the first
encoder layers, which enhance the modelling of better,
more representative saliency distributions than those
examining only high-level features.

A. EXTENDED CONVOLUTIONAL SELF-ATTENTION
The so-called integrated attention mechanism has recently
shown important improvements in the performance of var-
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FIGURE 2. The design of extended Convolution Self-Attention module.

ious downstream computer vision tasks [16] [25] [46].
Unlike the absolute attention mechanisms, the mechanism
mentioned above learns in a fully adaptive, joint, and task-
oriented manner, which allows the network to prioritise and
associate weights to feature vectors. The self-attention or
intra-attention calculates the response at a position in a
vector by attending all positions within the same vector.
In greater detail, the self-attention module draws the rela-
tionship between distant features, incorporating the module
at multilevel connections on the Encoder-Decoder network
layers. The latter prompts the model to generalise better static
visual attentive cues at low and high levels, boosting the
representation capability of the full network. The prediction
performance of this design generalises well across various
static saliency datasets fig 1.

The main goal of self-attention is to determine a new set of
vector values representing global vector features dependency.
Thus, Self-attention reveals the set of values to pay more
attention to the interaction of input vector features. In simpler
words, for a given vector, we need to extract query, key
and value vectors from it, simulating the selection process
applied in system retrieval. The latter measures attention by
calculating a similarity between a query and best related key
features using a score function. The output scores go through
the normalisation step to have the sum of probability values
to one. The final value vector is a weighted combination of
the previous value vectors based on the normalised score
result. The overall architecture of the proposed extended self-
attention is described in figure 2.

In equation 1, the hidden, encoded features of the ith VGG

encoder block are given as a function of the input imageX ∈
R256×128×3,

Hi = f0−i(X) ∈ Rhi×wi×c, (1)

where f0−i is the ith VGG encoder block ,hi and wi are
the down-sampled input height and width after the ith max-
pooling operation, except for i = 5 which denotes the last
encoder output H5 = Z0, here the max-pooling is not
applied. We denote the decoded variable after the ith block
by Zi. Each of the ECSA modules is placed just before each
decoder block and takes as input both of Zi and H5−i, and
transform the intermediate features H5−i into three variables
Q, K and V, unlike [75] that incorporate just one layer
of 1*1 convolution without activation function, we extend
our implementation by a shallow series of activated CNNs
interspersed with down-sampling and upsampling operation,
the ECAS module architecture slightly differ corresponding
to the ith positional block, because we are extracting an
attention vector from the Encoder layer position and inject
it into the Decoder which mean that the two vector spaces
are not similar, so that a deep transformation need to be
applied, of course taking into consideration the computation
efficiency of the whole architecture. The resulted couple fea-
ture spaces (Query, Key) ∈ RC̄×N from Q(Hi) and K(Hi) re-
spectively, simplifying the dimension of Hi ∈ RC×N , where
N =hi × wi representing the number of feature location,and
C̄ the number of output channel from both of Q and K stream
which is equal to the C/8. The attention map resulted after
normalizing the output of dot product between Query vectors
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and key vectors using a Softmax function, where S represent
the similarity between Query and key feature spaces :

Slj = Query[l]T .Key[j] (2)

Aj,l =
exp(Slj)∑N
j=1 exp(Slj)

, (3)

The attention map A∈ RN×N shows the likelihood that a
particular positional feature in lth location appears in the jth
location in N feature locations, (j,l)∈ RN , the Value feature
space is further enhanced by multiplying it to the attention
map:

V alueenhanced = V alue.A (4)

The dimension of the context vector, which is the enhanced
value feature space, is equal to Zi dimensions, moreover we
scaled the context by a learnable parameter γ in order to learn
how much the decoder network should relay on the context
from the the encoder features at each stage. Finally, we add it
to the decoded variable Zi

out = γ × V alueenhanced + Zi (5)

Furthermore, our approach offers flexibility in that it has
no restriction regarding receptive field dimensions, using the
capability of self attention in capturing distant features, i.e.,
the system theoretically can work with any width and height
input image.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) Loss Function and Training Stage
The whole model, including the encoder-decoder and the
ECSA modules, was trained using the loss function noted
as L . The L loss function is defined as a combination be-
tween the Kullback-Leibler Divergence(KLD), the Normal-
ized Scanpath Saliency (NSS), and the Binary Cross-Entropy
(BCE). Each term (KLD, NSS, BCE) covers a particular
aspect for learning the best set of weights [10]. Specifically,
KLD evaluates the mutual distribution between the predicted
output and the ground truth, BCE is used for binary clas-
sification of each CNN output vector independently, and
NSS [67] provides a saliency metric that measures the mean
saliency value at ground-truth fixation locations. We detail
each approach and their contribution to L loss function in our
model below. Our assumption behind using a combination of
metrics as an objective function, back to optimize the loss
toward the weights that lead to the best results in capturing
more accurate representative saliency distributions.

Let the predicted map Y ∈
[
0, 1]256×192, the fixation

map F ∈ {0, 1}256×256, and the ground truth saliency
Ŷ ∈

[
0, 1]256×192.

L= 0.7× LKLD(Y, Ŷ ) + LBCE(Y, Ŷ )− 0.3× LNSS(Y, P̂ )
(6)

BCE is mainly designed for calculating the distance be-
tween two normalized distributions in the interval [0, 1].

In probabilistic terms, BCE measures the accuracy of the
modeled probability distribution of saliency for a given input
image pixel.

BCE(Y, Ŷ ) = −1/m
m∑

i=1

Yi log(Ŷi) + (1− Yi) log(1− Ŷi)

(7)
LKLD has been widely used for training saliency models as

it often used as one of the metrics in different benchmarks. It
is chosen as a weighted main loss in our work.

LKLD(Y, Ŷ ) =
∑
i

Ŷi log

(
ε+

Ŷi
ε+ Yi

)
. (8)

LNSS is adopted from the standard NSS metric, which is a
similarity metric. Their negatives are used for minimization
in order to optimise the model weight in the right direction,
the goal from adding the LNSS loss is to maximise the
similarity metric results :

LNSS(Y, P̂ ) = − 1

N

∑
i

Ȳi × P̂i, (9)

where Ȳi = (Yi − µ(Yi))/σ(Yi). and N = refer to the sum
of fixations.

2) Implementation details
We implemented our model in PyTorch and trained the model
on the MIT1003 dataset, using 900 images for training and
103 images for validation. We initialised the encoder with the
pre-trained VGG [70], and both the decoder and the attention
modules were randomly initialised using the Xavier method
[33]. We used the Adam optimiser [47] to train the model.
We opted in for a learning rate of 10−4 and a scheduler step
with a dividing factor of 2 every 20 epochs. During the first
ten epochs, the ECSA parameter γ was set to zero to focus
on learning the main task. At the same time, the decoder
layers gradually froze, starting from the bottom to the top and
progressively increasing the complexity. After the first ten
epochs, the whole model was trained end-to-end, including
all parameters.

3) Computational load
The embedded self-attention modules are trained in an end-
to-end manner with the encoder-decoder backbone model.
The entire training procedure takes about 5 hours on Google
Colab environment with a single NVIDIA Tesla T4 GPU and
a 2.0GHz Intel(R) Xeon(R) CPU. Since our model does not
need any pre or post-processing steps, it takes only about
0.0106 s to process an image of size 256 × 192.

B. EXPERIMENTAL RESULTS
In this section, we evaluate our model on the MIT300 bench-
mark dataset [54], which is one of the most well-known
benchmarks for saliency models. The dataset consists of
300 natural images; the corresponding saliency maps are
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preserved privately for a fair comparison. We also used
the newly published Le Meur [57] Paintings dataset, which
offers a different, more specialised stimuli space as the
paintings differ in many ways from natural scenes. Testing
our approach on multiple types of stimuli helps us study
our model’s performances on different datasets. We also
want to demonstrate the effectiveness of the extended self-
attention module in capturing the global representations on
another type of space, in which inherently different cues
would attract the viewers’ gaze compared to natural scenes.
Le Meur’s dataset consists of 150 painting images related to
five different art periods and their respective saliency maps.
We used the entire dataset for testing.

1) Competitors
We compare our model with a representative set of stat-of-
the-art models, namely, SALICON [39], DeepGaze1 [53],
SAMCornia [23], and ML Net [21]. We selected these mod-
els due to their ability to address visual attention on different
stimuli domains, e.g., indoor, outdoor, painting. For the sake
of generality on low-level attention, we further compare
our model with some previous static attention models and
frameworks, i.e., Itti Koch model [40], and the GBVS [36].

2) Metrics
We conducted comparisons of our model’s results against the
selected competitors using six saliency metrics, which are
divided into two categories:
• Distribution-based metrics: These metrics allow com-

paring the predicted saliency map to the ground-truth
distribution from eye movement recordings. We used
three of them, namely, (KLD) Kullback-Leibler Di-
vergence, Similarity Metric (SIM), Linear Correlation
Coefficient (CC).

• Location-based metrics : These metrics compute some
statistics of fixation locations, such as Normalized Scan-
path Saliency (NSS), Area under Curve (AUC) and its
derivative AUC-Judd (AUC-J), and shuffled AUC (s-
AUC).

Reference articles 8315047 6180177 provide more de-
tailed descriptions of all the metrics used in our experiments.

3) Performance
We calculated the results on the MIT300 dataset by sending
the output prediction to the active benchmark service. At the
same time, we tested our method over Le Meur’s dataset
using the same protocol described in their workLeMeur.
Table 2 shows our results on the MIT300 benchmark. As
Table 2 demonstrates, our model scored the highest among
the comparative models on both CC and SIM metrics for
this dataset while achieving a very close second place for
the AUC and scoring competitive results for the NSS and
KLD. Next, we made the same comparisons for the second
dataset (Le Meur paintings dataset). The outcomes from this
comparison are shown in Table 3. As Table 3 demonstrates,

our model achieves the highest score with the KLD metric
and close second place with the SIM and CC for the painting
data set, and it remains competitive for the remaining metrics.

TABLE 2. Comparative performance of different saliency models on MIT300
Benchmark

Models AUC ↑ sAUC ↑ NSS ↑ CC↑ KLD ↓ SIM↑
SATSal (our model) 0.851 0.703 1.947 0.703 0.854 0.614
SAM-ResNet [23] 0.852 0.739 2.062 0.689 1.171 0.612
SalGAN [65] 0.849 0.735 1.862 0.674 0.757 0.593
DVA [74] 0.843 0.725 1.930 0.663 0.629 0.584
SAM-VGG [23] 0.847 0.730 1.955 0.663 1.274 0.598
ML-Net [21] 0.838 0.739 1.974 0.663 0.800 0.581
DeepGaze I [53] 0.842 0.723 1.723 0.614 0.667 0.571
SALICON [39] 0.814 0.739 1.702 0.562 0.782 0.516
GVBS [36] 0.806 0.629 1.245 0.479 0.887 0.483
IttiKoch [40] 0.543 0.535 0.408 0.130 1.496 0.337

TABLE 3. Comparative performance of different saliency models on Le Meur
paintings dataset

Models AUC ↑ AUC B ↑ NSS ↑ CC↑ KLD ↓ SIM↑
SATSal (our model) 0.827 0.790 1.530 0.647 0.737 0.579
GVBS [36] 0.817 0.809 1.256 0.506 0.962 0.446
RARE2012 [69] 0.786 0.777 1.103 0.443 1.020 0.438
AIM [8] 0.735 0.723 0.772 0.315 1.245 0.371
AWS [32] 0.769 0.762 1.083 0.427 1.045 0.430
ML-Net [21] 0.818 0.770 1.524 0.576 0.832 0.513
DeepGaze II [55] 0.804 0.679 1.394 0.485 0.869 0.488
SALICON [39] 0.827 0.708 1.445 0.538 0.880 0.517
SAM-ResNet [23] 0.862 0.782 1.834 0.700 0.984 0.613
SAM-VGG [23] 0.846 0.752 1.603 0.617 0.970 0.561

Figures 3 and 4 illustrate the qualitative results (i.e., the
visual outputs) of our model against the ”ground truth” (i.e.,
the eye movement data) and other state-of-the-art models.
In these two figures (Fig 3 and 4), we can see the stimuli
overlain with predictions and ground truth saliency maps for
the MIT300 and Le Meur dataset. It is immediately clear that
our model can capture both the global and the local attention
patterns, demonstrating an important generalisation capabil-
ity for different image (i.e., scene content) distributions. The
continuity between the most intensive salient regions to the
effect of the self-attention in extracting the global context of
the scene captures the most salient objects. It also provides
intuition on how our attention could be swapped from one
object to another. Thus, it would be beneficial for the case
of scan path prediction. Figures 5 shows the effectiveness
of our model to predict salient regions on synthetic images
characterised with low-level features standing out of the
visual stimulus e.g., shape, contrast, colour, orientation.

Based on these findings, SAtSal (our proposed model) per-
forms superior to and competitive with previous state-of-the-
art models. For the sake of fair comparisons, we used some
standard metrics accounting for the effectiveness of saliency
detection in static images. Thus, overall results demonstrate
that the method is robust over multiple datasets.

C. ABLATION STUDY
This section provides a detailed evaluation of the proposed
approach from several aspects through an ablation study
to verify the effectiveness of the proposed multilevel Self-
Attention modules and examine the influence of different
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FIGURE 3. Visualisation of the results: Saliency maps for the samples from MIT1003 cross validation-set.

FIGURE 4. Visualisation of the results: Saliency maps for the samples from Le Meur dataset.
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FIGURE 5. Visualisation of the results: Saliency maps for the images with low-level features.

training protocols. We conducted the ablation study on two
subsets, one that contains natural images from (MIT1003
by [43]), and another that has explicitly low-level features
from (CAT2000 by [6]). We consider this protocol to study
the effect of multilevel self-attention modules on natural
images using different settings. We first tackled images that
contain both bottom-up and top-down attention stimuli. The
same patterns exist in the distribution of images from Le
Meur and MIT300 test sets. Therefore, to further examine the
robustness regarding only the bottom-up cues, we conduct
the same test protocol on a specific category of images
containing only low-level features with no semantic mean-
ing. Also, we are restricted in this ablation test protocol to
exclude models trained on the same data distribution to avoid
training-test overlap. Below we detail the outcomes from the
two ablation studies.

1) Effectiveness of multilevel self-attention modules on
natural images
First, we study the effect of multilevel self-attention mod-
ules (ECSA modules) by disabling the main components in
the following three settings. Note that for each setting, we
have used the same training protocol as the original model
and tested the model on 100 images from the MIT1003
dataset [43]. The results are summarized in Table 3.
• Setting 1: We remove the last skip connection and the

associated self-attention module (ECSA module) to
evaluate the importance of the low-level features carried
through this connection. We could remark a slight drop
in performance regarding overall metrics (e.g., metric:
value before ablation → value after ablation: AUC-J:
0.9207→ 0.9162, NSS: 3.2400→ 3.0933, CC: 0.8651→
0.8435).

• Setting 2: We remove the mid-level skip connections
and the associated self-attention modules (ECSA mod-
ules) on these connections. We observe a significant

drop in performance even about Setting 1, demonstrat-
ing the importance of mid-level skip connections in
modelling a better saliency distribution.

• Setting 3: We remove the high level skip connection and
the associated self-attention module (ECSA module),
resulting in a remarkable shot in performance (e.g.,
AUC-J: 0.9207→ 0.9144, NSS: 3.2400→ 2.9854, KLD:
0.3.975→ 0.0.4765), clearly demonstrating the impor-
tance of self-attention in capturing long-range of spatial
dependencies and enhancing the high-level representa-
tion with an enlarged receptive field.

TABLE 4. Results of the ablation study on 100 images from MIT1003.

Model Auc Judd ↑ NSS↑ CC↑ SIM↑ KLD ↓
Salgan [65] 0.8662 1.9460 0.5836 0.4908 1.0470
MLNet [21] 0.8509 2.1678 0.5787 0.4815 1.3083
SAM-VGG [23] 0.9050 2.9409 0.8144 0.6650 0.8500
SAM-ResNet [23] 0.9124 3.0934 0.8570 0.7045 0.8515
SATSal (our model) 0.9207 3.2400 0.8651 0.6961 0.3975
Setting 1 0.9162 3.0933 0.8435 0.6714 0.4503
Setting 2 0.9072 2.8250 0.7746 0.6004 0.5861
Setting 3 0.9144 2.9854 0.8340 0.6537 0.4765

TABLE 5. Results of ablation study on low-level patterns from CAT2000

Model CC↑ SIM↑ KLD ↓
SAMResnet [23] 0.9142 0.7861 0.5393
SATSal (our model) 0.9448 0.8218 0.1550
Setting 1 0.9334 0.8008 0.1623
Setting 2 0.9362 0.7941 0.1663
Setting 3 0.9470 0.8227 0.1410

The significant drop in Settings 2 and 3 compared to
Setting 1 is caused by the nature of the testing dataset, which
portrays images representing objects with high semantic
meaning. Even though it is relatively subtle, the drop in
performance with Setting 1 indicates the importance of the
low-level features, which would be even more pronounced in
other stimuli.
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2) Effectiveness of multilevel self-attention modules on
low-level image features
Since one of the strong points of our model is to integrate the
low-level feature detection into deep learning-based saliency
prediction in combination with mid and high-level features,
we conducted an additional ablation study with a focus on
low-level features. We repeated the ablation study on 100
images from the CAT2000 [6] using the same settings as in
the previous section. Images from CAT2000 contain patterns
prepared for perceptual psychology studies, with low-level
features, including geometrical elements, pop-out, conjunc-
tion, search asymmetry, textures, etc. We present the results
from this study in Table 4.

We select just the distribution-based metrics on this part
of the study because we are interested in testing the model’s
accuracy in revealing one region of interest from the other
non-attractive low-level features. Other fixations on this kind
of scene located far from the areas of interest can be consid-
ered outliers that do not represent the bottom-up saliency of
the scene.

With the CAT2000 dataset, we see a minor improvement
(e.g., CC: 0.9448→ 0.9470) in Setting 3 compared to the pro-
posed approach. We believe this may be due to the nature of
the scenes in CAT2000, as they do not contain much semantic
meaning. Thus there is no need to calculate the attention
for high-level deep representations. However, the drop in
performance is quite evident in Settings 1 and 2 compared to
the results obtained from SATSAL. The learned information
from low-level features on the multilevel skip self-attention
modules are essential for modelling better saliency and could
boost the performance on a given general scene.

V. DISCUSSION AND CONCLUSIONS
In this paper, we were set out to build, implement and test
a new architecture for visual attention modelling, specifi-
cally, for saliency prediction. Unlike most previous meth-
ods, we designed our approach to predict saliency from a
more ”holistic” perspective, accounting for both bottom-up
(low level) and town-down (high level) features in a scene.
Our model has shown great flexibility (thus, early signs of
generalisability) in predicting visual saliency over datasets
containing images with inherently different visual character-
istics, precisely, natural scenes, paintings, as well as highly
simplified perceptual psychology stimuli. SATSal’s saliency
scores are either superior or competitive against the state-of-
the-art models based on multiple metrics.

We introduced an extended CNN self-attention module,
using skip connection on multiple levels to model the rep-
resentation of low and high-level features equally to capture
local and global factors that attract human attention. Our ap-
proach enables local features to model human visual attention
after filtering them out of the noise and merging them with
deeper global representations. The steps mentioned above
finally allow global and local visual information to generate
more accurate predictions than models focusing only on low-
level or high-level features. Specifically, the main contri-

bution of our work is a new architecture that can capture
relations between separated spatial dependencies from multi-
ple hierarchical levels. Furthermore, the steps, as mentioned
earlier, improved the accuracy of the extracted saliency maps
because it takes all stimulus features into account.

We evaluated our model on a well-known benchmark and
a newly proposed dataset, attaining competitive results with
a representative set of state-of-the-art models. Although the
model is trained on a small set of data, both quantitative and
qualitative outcomes demonstrate the effectiveness and ro-
bustness of our model and its capability to generalise against
different data distributions. Furthermore, SATSal’s perfor-
mance provides evidence on the importance of taking multi-
ple level features into account in improving saliency predic-
tion. As a future extension, we intend to address the temporal
dimension to predict fixations and their duration. To do that,
we aim to employ the capability of self-attention in capturing
the temporal dimension while exploiting the contextual and
semantic characteristics of the stimuli. This work also opens
questions about the interpretability of deep saliency models,
the features responsible for improving saliency prediction,
the reason behind the accuracy rates from one distribution to
another covering different cues. Finally, we consider bottom-
up and deep semantic cues contributions in qualitative and
quantitative results.
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