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Note: This version of the exercises are under a reorganiza-
tion/rewrite process. The older but more complete version can
be found found at http://coltekin.net/cagri/R.old/.

This is a hands-on tutorial on R, a powerful statistical analysis
software. The tutorial is prepared for the course Seminar in
Methodology and Statistics taught by John Nerbonne at the
University of Groningen.

The aim of the exercises is to provide a hands-on tutorial on
some statistical analysis procedures that are common in vari-
ous branches of linguistics. This tutorial assumes that you are
familiar with basic statistical concepts. However, no initial
knowledge of R is assumed.

Any suggestions and/or corrections are welcome.

1 Starting R and finding your way around

Depending on the environment or operating system you are us-
ing, starting R may be a bit different. Typically you will click
on the relevant icon or menu item, or on UNIX-like systems
you can run the command R on the shell prompt.

When you start R, it will print some default information, and
wait for your commands.

First thing you need to get used to (if you are not already) is
that R is controlled through a command line interface. After
the initial information, you should see the cursor next to the
command prompt *>’. R presents this prompt when it is ready
to accept commands.

The command-line interface may feel awkward or old-
fashioned at first, but once you get used to, you will see that
it is not as scary as it may seem at first sight, and it has its
advantages in many cases.

1.1 Getting help

The greeting message you see at the startup already gives you
a few tips. Now type

> help()

including the parentheses but not the command prompt. In
this tutorial we will follow this convention: the commands you
should type will be displayed after the command prompt, > ’

If you type the above command and press enter, R will present
the built-in documentation about how to get help. Depending
on the R configuration on your system, you may get the help
text either on the same window, or R may present the help in
another window. If you get help on the same window, you can
scroll up and down using arrow keys or page up/down keys
on your keyboard. Pressing ‘q’ will quit help and give the
command prompt back. As you were instructed at the greeting
message, you could alternatively type

> help.start ()

and get the documentation in an external browser. To get help
on a particular command, for example pnorm, you can type

> help(pnorm)

but in case you do not remember the exact command,
you can search a keyword in the documentation using
help.search(). For example, if you were wondering what
was the command that did Student’s T test, you can try

> help.search('student')

R will list the help topics that match, and you can again use
help to read the documentation. Two shortcuts you may ap-
preciate if you use the help facility frequently are ? and 77
which correspond to help() and help.search() respec-
tively. When using 7 and 77, you should just type the key-
word(s) without parentheses. If the keyword contains white
spaces, you need to use double or single quotes around it.

A tip that you may be happy to hear is that R remembers your
previous commands. You can return to the previous com-
mands using the up arrow key on your keyboard, navigate be-
tween them with up and down arrow keys, and you can modify
and re-run them if you wish.

There are many small tips and tricks you will collect while
working with R, one last tip to mention here is that R command
line allows ‘tab completion’. That is, if you type a unique
initial segment of a command (or variable or file name in the
right context), and press the ‘tab’ key on your keyboard, R will
try to complete the rest for you. If there are more commands
that match the initial string you typed, pressing ‘tab’ twice will
list all matching commands.

Besides the documentation built in to R, the official web
site of the R project contains the reference manual (R Core
Team 2014), and many useful documents and pointers to other
sources. If all else fail, you can ask your questions at one of
the mailing lists (that you can find through the official R site),
or sites like http://stats.stackexchange.com/. Before
asking questions on online lists and groups, you should always
make an effort to find the answer in obvious places.

1.2 Doing simple calculations with R

R can be used as a calculator. Try typing a few arithmetic
expressions at R’s prompt and check what happens. Listing 1
demonstrates some of the arithmetic operations.

The lines that do not start with a command prompt in Listing 1
are the outputs. In line 5, the multiplication operation takes
precedence: it is calculated as 6 - 12, not 3%4. In line 7, to
make sure that addition is done before division, we used paren-
theses. If you are familiar with usual operator precedence in
programming languages, R will not surprise you. However,
there is no harm in adding a couple of parentheses to make
sure you get the result you want.


http://coltekin.net/cagri/R.old/
http://www.r-project.org/
http://www.let.rug.nl/nerbonne/teach/rema-stats-meth-seminar/
http://www.let.rug.nl/nerbonne/teach/rema-stats-meth-seminar/
http://www.let.rug.nl/~nerbonne/
http://en.wikipedia.org/wiki/Student%27s_t-test
http://www.r-project.org/
http://www.r-project.org/
http://stats.stackexchange.com/

1
2
3
4
5
6

7
8
9
10

002N LW —

Listing 1: Simple calculations.

> 1 2
[1]
> 3

* W +

4

[1] 12

> 6 - 3x4

[1] -6

> 7/(68 + 2)

[1] 0.875

> 167(1/2) # 0.5th power (sq. root) of 16
(11 4

Another thing to note in this listing is that R regards any text
after the hash sign (#) until the end of the line as a comment,
and ignores it. Comments do not have much use during in-
teractive use, but they come handy when you save command
sequences (R scripts or programs) in files for future reference.

1.3 Variables

Under the hood, R provides a complete general purpose pro-
gramming language (in fact R is an implementation of lan-
guage SPLUS) which may be really handy if you have some
programming background. In this set of exercises we will not
go into programming. However, we will be using variables
frequently.

Use of variables may save you from quite some typing, and R
will save the values of variables on exit by default so that you
can access the same values when you restart R.

To assign a value to a variable you can use the assignment op-
erator, ‘=", (or, equivalently, <- as R experts do). And you can
use the variables in calculations or if you type a variable name
and press enter, R will report the value. Listing 2 demonstrates
the basic use of variables.

Listing 2: Variable assignment.

> now = 2010

> birth.year <- 1988

> birth.month = "February"
> age = now - birth.year
> age

[1] 22

> now = now + 2

> Age = now - birth.year
> Age

[1] 24

> age

[1]1 22

In line 1 we store the value 2010 in variable now (yes, now is
relative). In line 2 we use the alternative assignment operator
<-, this is equivalent to =. In this tutorial we use both some-
what randomly to remind you that you may see R code using
both, and they are equivalent (see the answer of Exercise 1.3,
for one more assignment operator).

In line 2 and 3 we use a dot ‘.’ instead of space. R variable
names cannot contain space characters, and dot is the conven-
tional character instead of space in R community. There are
more rules for variable names. For example, they cannot con-
tain many other special characters (like -, +, /) and they cannot
start with numbers.

Line 3 demonstrates use of character strings. Character strings
must be enclosed in matching double (") or single (') quotes.

R supports a variety of operations on string type, and it may
come quite handy while working with language data (e.g., cor-
pora). Apart from numbers and strings there are other types
that your variables can take. For example booleans that take
values TRUE or FALSE and categorical variables (or factor
variables as R calls them) are interesting for many statistical
tasks. We will return to discussion of these types later.

Line 4 subtracts value of birth. year from now and stores the
result in a new variable age. As demonstrated in line 5, if we
type the name of the variable R tells us the value stored in the
variable.

Line 7 may be confusing for non-programmers. This line adds
2 to variable now, and re-assigns the new value to the same
variable now. In other words, we increment now by 2.

In line 8, we (re)calculate the age, but beware: the case matters
in variable names. Age is not the same as age. As a result
we have two variables now, lowercase age still contains the
previous calculation on line 4, and uppercase Age contains the
calculation in line 8. The rest of the lines demonstrate this
difference.

You should enter this command sequence in R to check if all
works as in the listing.

If you’d like to see the user variables, you can use the func-
tion 1s (), and if you want to get rid of one, for saving space,
for keeping your environment clean and tidy or for any other
reason, you can use rm().

1.4 Vectors in R

In statistics, we are generally interested in a sample, or a list of
values. For that purpose, R offers a data structure called vec-
tor. Vectors in R are similar to arrays or lists in programming
languages. The important thing to know is that a vector is a
container of a set of values of the same type.

For the exercises in this section, we will use the following data.
For a class, students are asked to submit a 3,500 to 4,000-word
report. 10 students turned in the reports with the following
word lengths:

3510,3508,3468,3520,3516,3525,3505,3519,3558,3487

To enter this data into a vector variable we type,

> nwords = c(3510,3508,3468,3520,3516,3525,

3505,3519,3558,3487)
> nwords
[1] 3510 3508 3468 3520 3516 3525 3505 3519
[9] 3558 3487

This example demonstrates the primary way of assigning a
vector to a variable. The function ¢ (stands for concatenate),
puts together its arguments into a vector. Like simple data
types, if we type the name of the variable, we get its value
displayed (in fact, the simple variables we have been working
with are vectors containing single elements). Entering large
datasets this way is, at best, cumbersome, and R provides other
ways of entering data to which we will return later.

At this point you should type the above assignment command
to create the vector nwords. We will use this data set in the
next few sections.

R supports mathematical operations between vectors and the
scalar values and vectors and vectors. Standard R functions
that normally take a basic value can also take vectors as argu-
ments, in which case the function is applied to all members of
the vector.



Elements of a vector can be selected by specifying the position
of the element(s) between square brackets after their name.
For example, if we want to refer to the fourth element of vec-
tor nwords, nwords [4] (in fact, as we will see later, one can
also select possibly discontinuous ranges of data with this no-
tation).

Listing 3 demonstrates some of these operations.

Listing 3: Some vector operations.

1 > nwords2 = 2 * nwords

2 > nwords2

3 [1] 7020 7016 6936 7040 7032 7050 7010 7038 7116
6974

4 > nwords + nwords2

5 [1] 10530 10524 10404 10560 10548 10575 10515
10557

6 [9] 10674 10461

7 > log(nwords + nwords2)

8 [1] 9.261984 9.261414 9.249946 9.264829 9.263692

9 [6] 9.266248 9.260558 9.264544 9.275566 9.255409

10 > nwords[1]

11 [1] 3510

12 > nwords [10]

13 [1] 3487

The first line multiplies a vector with a scalar value. In other
words, all members of the vector is multiplied with 2. Line 4,
on the other hand, sums two vectors. Finally, in line 6, the
function 1og() is applied to each member of the resulting vec-
tor.

Besides the arithmetic operations and scalar functions applied
to vector elements, there are a set of functions that operate
on vectors. Listing 4 demonstrates some of these functions.
Note that the listing already includes a few statistical functions
(finally we are getting closer to the point!).

Listing 4: More vector operations.

1 > length(nwords)

2 [11 10

3 > sum(nwords)

4 [1] 35116

5 > min(nwords)

6 [1] 3468

7 > max (nwords)

8 [1] 3558

9 > head(nwords,2) # first two elements

10 [1] 3510 3508

11 > tail(nwords,3) # last three elements

12 [1] 3519 3558 3487

13 > sort(nwords)

14 [1] 3468 3487 3505 3508 3510 3516 3519 3520 3525
3558

15 > range(nwords)

16 [1] 3468 3558

17 > mean(nwords)

18 [1] 3511.6

19 > median(nwords)

20 [1] 3513

21 > summary (nwords)

22 Min. 1st Qu. Median Mean 3rd Qu. Max .

23 3468 3506 3513 3512 3520 3558

Exercises

Exercise 1.1. You want to do a ‘Multivariate ANOVA’, but
you do not know the exact command that does it. Use
help.search() (or 77) to find the name of the command.

>

Exercise 1.2. The R function shapiro.test() implements
well-known Shapiro-Wilk normality test.

1. How many of the initial characters you need type before
R can complete the function name using tab completion?

2. How many R functions start with sh?

Exercise 1.3. Perform the following actions in R:
1. store 20 in the variable x
2. store 10 in the variable m
3. store 5 in the variable s
4. subtract m from x, store the result in t

5. divide t by s, store the result in variable z

‘What is the value of the variable z? >

Exercise 1.4. Redo the calculations in Exercise 1.3 steps 4 and
5 without the use of the temporary variable t. Use parentheses
if necessary to get the same result. >

Exercise 1.5. R supports a wide range of mathematical func-
tions. A function that is often useful in statistical analysis is
the logarithm function. Using the shortcut you learned in Sec-
tion 1 search for the function name that returns logarithm of a
given number, and use it to calculate logarithm of 2.7. >

Exercise 1.6. You should have obtained a value close to 1 in
Exercise 1.5. This is because of the fact that R calculates nat-
ural logarithm (base e=2.718282...) by default. Often we use
base-2 logarithm. The function you used above can be used
to calculate base-2 logarithm as well. Using the shortcut you
learned in Section 1 read the help for the logarithm function
to learn how to specify which base to use. Calculate base-2
logarithm of 2.7. >

Exercise 1.7. After completing the exercises in this section,
you should have a set of variables that we will not use in the
future. List the variables in your R session, and delete the vari-
ables t and x (If you wish, you can delete all variables except
the vectors nwords and nwords2. We will not use the other
variables in the rest of the tutorial.). List your variables again
to see if you have achieved the desired result. >

Exercise 1.8. Remember that the standard error of the mean
can be calculated using the formula

S

vn

where s is the (estimated) standard deviation, and # is the size
of the sample. Calculate the standard error of the mean for
the word count data stored in nwords. You can calculate the
standard deviation using the function sd (). It is easy to just
count the number of elements in nwords, but you can use the
length() function to get the number of elements in a vector.
>



Exercise 1.9. In Exercise 1.3 you calculated z-score for a sin-
gle value using pre-specified mean and standard deviation.
More formally, z-score is calculated with the following for-
mula:

_x—¢

o

Calculate z-scores of the values in the vector nwords, and as-
sign it to a new vector variable named znwords. Display the
resulting vector, its mean and the standard deviation.

>

Exercise 1.10. In a (hypothetical) country, four political par-
ties got 36,35,8 and 71 seats in the parliament with 150 seats.
Sort the numbers of seats in reverse order, with the largest el-
ement first and the smallest as last. >

Exercise 1.11. Use the seat counts in Exercise 1.10 to calculate
the percentages of seats for each party. Use a single expres-
sion, and do not hard code the number of seats in the parlia-
ment into your expression. You may want to store the data in
a variable for convenience. >

Exercise 1.12. You realized that the word counts we used in
this section included the essay title and the student’s name
by mistake. For each essay, we would like to discount word
counts by 6,8,6,5,7,5,9,7,10,9. Store these values in a
new vector variable wdiff. >

Exercise 1.13. Create a backup copy of the data stored in the
vector nwords in the vector nwords?2 (this may sound like se-
rious work, but you can simply use the assignment operator).
Subtract the vector wdiff from the vector nwords and store
the result again in the vector nwords. Display the contents of
nwords and nwords2. >

Exercise 1.14. Find the differences of means of the values
stored in nwords2 and nwords. Is it the same as the mean
of the vector wdiff? (In other words is the difference of the
means the mean of the differences?) >

2 Basic data exploration and inference

This section provides a brief glance at some of the basic sum-
marization, visualization and inference techniques. We will
return to most of the tools and topics introduced here in the
rest of the tutorial.

In this section we will use data from a hypothetical experiment
where the number of words spoken per day by 10 female and
10 male English speakers were measured. Note, again, that
the data we will use is fictional, for a real investigating of the
problem see Mehl et al. 2007.

The following R commands create four vector variables.

words.f <- c(17667, 15347, 14401, 5037, 20845,
11211, 6008, 17140, 13284, 10930)
words.m <- c(5599, 19776, 13961, 10144, 6107,
16776, 31955, 21140, 5482, 2152)
words <- c(words.f, words.m)
age <- c(24, 31, 28, 21, 29, 29, 25, 32, 30, 31,
33, 26, 22, 24, 23, 23, 20, 21, 29, 27)

The vectors words . f and word.m hold the number of words
measured from female and male participants, respectively.
The vector words holds their combination, and age contains

the ages of the participants. Organizing this data in separate
vector variables is not what we normally do. We will later use
data frames for storing a related set of vectors such as the ones
above.

2.1 Summarizing and visualizing one-dimensional data

Even for a data set as simple/small as words above, it is dif-
ficult draw conclusions only by looking at the raw data. We
generally want to summarize the data at hand to understand
it better. In Listing 4, we have already seen how to get some
useful summaries in R.

For one dimensional data, here are a few functions that pro-
duce common summaries:

» mean () mean of the given data set.

» median() median of the given data set.
* min() minimum value.

* max () maximum value.

* summary() So-called 5-point summary (minimum,
lower quartile, median, upper quartile and maximum) and
mean.

» sd () standard deviation.
* mad () maximum absolute deviation from the median.

You are encouraged to try these functions (again) on words
data set.

These summaries are often useful, indicating the center and
spread of the data at hand. However, we often want to under-
stand the data in more detail. In that case graphical summaries
are more helpful.

One of the ways to visualize small data sets is stem-and-leaf
plots. Stem-and-leaf plots can be produced with the function
stem() in R.

Exercise 2.1. Produce a stem-and-leaf plot of words. Does
the plot indicate an outlier? Can you say more about the dis-
tribution of the word counts?

One of the better ways of inspecting your data is producing a
histogram. You can display a histogram in R using hist ()
function.

Exercise 2.2. Produce a histogram of words. >

Yet another method of visualizing your data is plotting box-
and-whisker plots (or box plots). Box plots display a sum-
mary similar to the five-point-summary in a graphical way. In
a box plot, the box covers the range between first and third
quartile (the interquartile range, IQR). The middle bar repre-
sents the median. The whiskers extend 1.5 interquartile range
from the box, or up to the maximum or minimum values if they
are within this range. The data points more extreme than the
whiskers are considered outliers and plotted separately.

Exercise 2.3. Display a box plot of words. >

Exercise 2.4. Normally, box plots are more useful for com-
paring two or more samples, or groups. Plot box plots for
words.f, and words.m side by side. Do women talk more
than men? TIP: you can use help () if you do not know how
to use boxplot () to display two groups instead of one. >
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2.2 Summarizing and visualizing two-dimensional data

The basic measure of relatedness of two sets of continuous
variables is their correlation. The correlation of two can be
calculated using the function cor ().

Exercise 2.5. Find the correlation between words and age.
Do people speak more as they get older? Is this a strong cor-
relation? >

Exercise 2.6. Do you expect any correlation between the vari-
ables words.f and words.m? Calculate the correlation co-
efficient between these two variables. Can you explain your
findings? >

The function cor () by default calculates the Pearson product-
moment correlation coefficient, known as Pearson’s . We
will return to the topic of correlation later, and discuss inter-
pretation and inference of it in more detail.

To visualize the relationship between two numeric variables,
we can use scatter plots. Given two vector variables of the
same size, the function plot () creates a scatter plot.

Exercise 2.7. Create a scatter plot for visualizing relationship
between words and age. Which variable should be plotted
along the x-axis? >

The relationship between two variables can also be summa-
rized and visualized by a straight line. The equation for a
straight line is

y=a+bx

This equation forms the basis for nearly all statistical methods
in modern science. y and x in this equation are the variables
of interest, and a and b are called intercept and slope. The
standard method of estimating such a line that fits the data is
called least squares regression. To estimate a least squares
regression line from related sets of data points, we use

Im(y ~ x)

You should note that unlike correlation, regression is asym-
metric (lm(y~x) and 1m(x~y) will produce different results).
We put our response variable (outcome or dependent variable)
before the tilde ‘~’, and the predictor (explanatory or indepen-
dent variable) on the right side. Similar to the sign of the corre-
lation coefficient, the sign of the slope indicates the direction
of the relationship. The magnitude of the slope indicates mag-
nitude of the effect of the predictor on the response variable.
Here is how we fit a regression line that reflects the effect of
the age on number of words spoken per day:

> lm(words ~ age)

Call:

Im(formula = words ~ age)

Coefficients:

(Intercept) age
25610.1 -468.3

The output indicates that the intercept is 25610.1 and slope
is —468.3. In other words the fitted regression line can be
expressed as

words = 25610.1 —468.3 x age

Like in many other cases we will study, there is no meaningful
interpretation of the intercept (according to this equation one is
expected to speak 25610.1 words per day at age 0). The slope

indicates that we expect 468.3 fewer words spoken per day
with every year of age. To arrive at these conclusions we need
to make sure that the ‘model” above meets certain criteria.

Exercise 2.8. The command

abline (lm(words ~ age))

plots least-squares regression line over the existing graph. Plot
the regression line. Does the regression line agree with the
correlation coefficient you have calculated earlier? >

Exercise 2.9. Create a scatter plot of words.f against
words.m, and also draw the corresponding regression line. >

Note that this section includes a rather quick and dirty intro-
duction to correlation and regression as exploratory/descrip-
tive tools. Both topics will be revisited in more detail later.
Similarly, the above graphs are a very first introduction to
making graphics in R. We will explore the graphical capabili-
ties in R as we go, and dedicate a special section for producing
informative and pretty graphics.

2.3 Simple inference

The summaries and graphs we discussed in this section so far
helps us understand the data at hand better. Often, our ques-
tions are not about the particular sample we have at hand. We
would like to know whether ‘women talks more than men’ in
general, not only in this particular sample. We use our sample
to estimate some quantities of the population that the sample
comes from, e.g., mean number of words spoken per day for
all humans. Naturally, we do not expect two samples taken
from the same population to be exactly the same, and our esti-
mation will include some uncertainty due to not having all the
information about the population. Inferential statistics is about
quantifying this uncertainty and making sure that the estimates
we have reflects the population values within certain bounds.

It is worth to mention a very important aspect of statistical
analysis here: the sample you took should be representative
for the population you are interested to study. No statistical
technique can fix the effects of wrong sampling. For example,
for our ‘words per day’ example, you cannot generalize any-
thing about the number of words spoken per day by very young
and very old people, nor people speaking another language.

The simplest inference we can make is about the mean. The
standard error of the mean (SE) we have calculated in Exer-
cise 1.8 is an important quantity for assessing the uncertainty
of the mean value estimated from a sample.

Exercise 2.10. Calculate the SE for the complete words data
set. Store the result in a variable and display it. >

In practice, it is more common to report confidence intervals.
95% confidence intervals are the most commonly reported
ones. A quick way of calculate approximate 95% confidence
intervals that works fine for large samples is (i -2 x SE where
{1 stands for the estimated mean.

Exercise 2.11. Calculate the 95% confidence interval for
words data set with the above approximation.

If the population standard deviation is known, or if the data
set is large, we can use normal distribution to calculate the



confidence intervals. For 95% confidence intervals we need
to know the lower 2.5% and upper 97.5% quantiles. These
values can be looked up in tables that most statistics textbooks
include. Or, easier, can be calculated using the gnorm () func-
tion in R. The number 2 used in the above approximation is
based on the fact that these quantiles fall between +1.96 stan-
dard deviations away from the mean for the normal distribu-
tion. In most cases, we estimate the population standard devia-
tion from the sample, to correct for the uncertainty introduced
by this, we use ¢ distribution with n — 1 degrees of freedom.
Similarly, we can use the function qt () for this purpose. For
example, qt (0.025, 9) will give you the value correspond-
ing to the lower 2.5% quantile for the t distribution with 9 de-
grees of freedom.

Exercise 2.12. Calculate the 95% confidence interval for
words data set using values obtained with gnorm () and qt ().
Compare the results to each other and the values obtained with
the approximate calculation above. >

Confidence intervals are related to the classical hypothesis
testing. If a particular value does not fall into the 95% confi-
dence interval, we can reject the null hypothesis that the mean
is equal to this value. For example if we calculated a 95%
confidence interval of [10000, 16000], we can reject the (null)
hypothesis that the mean of the population is 20000, at the sig-
nificance level of 0.05.

Exercise 2.13. Assume that it is known that average number
of words spoken by a Dutch speaker per day is 16000. Using
confidence intervals you have calculated above on words, test
the alternative hypothesis that the number of words spoken per
day is different for Dutch and English speakers. >

The standard way of testing hypothesis like the one above is to
perform a ¢ test, in this particular setting, a one-sample t test.
The function t.test () in R performs one- and two-sample t
tests.

Exercise 2.14. Perform the same test in Exercise 2.13 using the
function t . test (). TIP: see built-in help for specification of
the null hypothesis. >

Exercise 2.15. A popular book claims that, on average, women
speak 20000 words per day. Can you reject this hypothesis
using the data (words. f) above? >

Exercise 2.16. Finally: do women speak more than men?

Try to answer this question using the data sets in words . f and
words.m. Note that our hypothesis is directional, hence, you
should use a one-sided test.

What is your conclusion based on the R output? >

3 Linear regression: a first introduction

This section will introduce the simple linear regression briefly.
We will return to the topic in almost all of the sections that
follow.

The typical application of linear regression is when you have a
continuous outcome with continuous predictor(s). In this sec-
tion, we will consider the case with only one predictor. First,
we describe the data that we will exercise with.

During language acquisition, it is claimed that caregivers adapt
their language to the language abilities of children. We fol-
low a particular child and record an hour conversation be-
tween the child and the mother once every month between the
child’s second and fourth birth dates. We calculate a well-
known measure of language complexity/competency for chil-
dren Mean Length of Utterance (MLU), for the child and her
mother for each recording session. The data is real (from the
CHILDES database). However, it is still a ‘toy’ data set, and
you should be careful not to make generalizations based on
this data.

Here is how to create our data set (you can copy & paste):

mlu <- data.frame(
age=seq(25,48),
chi=c(1.46, 1.41, 1.66, 1.74, 1.90, 1.91,

1.85, 2.06,
2.27, 2.43, 2.70, 2.81, 2.69, 2.72,
2.64, 3.05,
3.22, 3.42, 3.70, 3.90, 3.57, 3.49,
3.66, 3.64),
mot=c(5.42, 5.69, 6.27, 6.10, 6.06, 5.98,
6.10, 6.09,
6.10, 6.14, 6.42, 6.35, 6.21, 6.07,
5.84, 6.17,
5.74, 6.11, 6.41, 5.50, 6.00, 6.90,
6.65, 6.40)

This time we have created three vectors, and wrapped it into
a data frame. Data frames are the data structure we will use
most of the time, although, we will rarely create them by hand
as we did above. The way we specified the chi and mot vari-
ables (vectors) should be familiar. We have created age using
seq() which returns a vector of integer values between 25 and
48 in this example (the age of the child in months). The result-
ing data frame will have corresponding values of each variable
(or vector) on the same row.

The following listing gives some examples of how to access
individual columns, rows and items in a data frame.

> mlu$age
[1] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
[16] 40 41 42 43 44 45 46 47 48

> mlul[2,2]
[1] 1.41

> mlul,1]
[1] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
[16] 40 41 42 43 44 45 46 47 48

> mlul2,]
age chi mot

2 26 1.41 5.69

> mlu$chi [2]

[1] 1.41

In a nutshell, you can extract certain variables (or columns)
from a data frame using the $ notation.In essence you can se-
lect any individual cell with the notation mlu[r,c], where r
refers to the row number and c refers to the column number. If
you leave either column or the row number unspecified, you
get the complete column, or the row respectively (note, you

keep the comma °,’ in both cases). You can also mix and
match the dollar-notation and the vector indexing.

You should study each line, and make sure you understand
what it means. We will exercise with more complex ways to
access and manipulate data in data frames. However, the ba-
sics above will be used rather frequently.


http://en.wikipedia.org/wiki/Mean_length_of_utterance

3.1 Some preliminaries

The basic way of visualizing two related sets of numerical data
is to plot them using a scatter plot.

Exercise 3.1. Plot a scatter plot for visualizing the effect of
the child’s MLU on the mother’s MLU. Remember that we put
the predictor (or independent variable) on the x-axis. >

In simple linear regression, our aim is to find the best linear
equation that fits the data points. The general form of the equa-
tion is
Yi=a+bxi+ e

where y and x in this equation are the variables of interest, the
index 1 ranges over all observations, and a and b are called
coefficients, or individually they are called intercept and slope
respectively. The term € reflects the fact that our best estimate
of a and b will not result in perfect prediction of y; from x;
for every observation. In other words, €; is the error made
by the model for observation i. Our best estimate is the one
that makes the least error (for some definition of ‘least error’).
We will come back to the proper estimation of the regression
equation, shortly after some exercises with drawing lines in R.

We already used the function abline () to draw the line es-
timated by 1m(). If you give two numeric arguments to the
abline() function (instead of the 1m() result), it takes the
first argument as the intercept (a), and the second one as the
slope (b) and draws the corresponding line (hence, the name
‘abline’). For example abline(0,1) will draw a line with
intercept O and slope 1 (a line that passes from the origin with
a 45 degrees of slope).

Exercise 3.2. Using the scatter plot you have produced in
Exercise 3.1, try to draw the line that you think fits the data the
best. Do not use 1m() to estimate the line yet, draw multiple
straight lines using abline () until you are convinced that you
have the best line. >

Exercise 3.3. Many plotting commands in R accept a ‘col’
argument for specifying the color of the objects drawn. Sim-
ilarly, you can specify the width of a line using the argument
‘lwd’. Redraw the best-fitting line from Exercise 3.2. Make
sure the line is ‘red’ and it is twice as thick as the standard
lines. >

We already know that the function 1m () in R finds the best line
using the least squares regression. In fact, this function can
estimate any general linear model, and we will use it in most
of the sections that follow for performing different analyses.
First here is a simple call to Im() (the output is slightly edited
to save space):

> Im(mlu$mot ~ mlu$chi)

Call: Im(formula = mlu$mot ~ mlu$chi)
Coefficients:
(Intercept) mlu$chi

5.7133 0.1503

The estimated intercept is 5.7133 and the slope is 0.1503. The
intercept represents expected value of the mother’s MLU when
the child’s MLU is 0. Although this is a reasonable quantity
to predict, our sample would not allow us to predict it reliably
(why?). On the other hand the slope tells us that for every unit
increase in child’s MLU, we expect mother’s MLU to increase
by 0.15.

Exercise 3.4. Draw the estimated regression line in color blue
over the ones you have drawn in Exercise 3.2 and Exercise 3.3.
Compare it with the line you estimated. >

The estimated regression line tells what we found in our data.
However, it does not tell anything about generalizability of
these results outside our sample. The 1m() function does more
than what we see when we just run it. It returns an R object that
we can investigate further, and inferential question we have
just raised can be answered by asking for a summary (), as
shown in Listing 5.

Listing 5: Summary of a linear regression fit.

I >m <- Ilm(mlu$mot ~ mlu$chi)

2 > summary (m)

3 Call: lm(formula = mlu$mot ~ mlu$chi)

4 Residuals:

5 Min 1Q Median 3Q Max

6 -0.79928 -0.14665 0.06142 0.14003 0.66232

7 Coefficients:

8 Estimate Std. Error t value Pr(>|tl)
9 (Intercept) 5.7133 0.2326 24.559 <2e-16
10 mlu$chi 0.1503 0.0839 1.791 0.0871
11

12 Residual standard error: 0.3182 on 22 degrees of

freedom

13 Multiple R-squared: 0.1272,
R-squared: 0.08757

14 F-statistic: 3.207 on 1 and 22 DF,
0.08708

Adjusted

p-value:

First, instead of using the 1m() output directly, we save the
‘model object’ returned in a variable. In line 2, we get the
summary of the model using the variable ‘m’. The same could
be achieved with the command ‘summary (1m(mlu$mot ~
mlu$chi))’ without storing the intermediate result. The first
line in the output above reminds us the way we run 1m (). The
lines 4—6 present the 5-point-summary for the residuals, the
€ in our formula above. For now, we skip these, but it will
soon be clear why this is important for interpreting linear re-
gression results. Next, lines 8—10 present the estimated coef-
ficients (intercept and the slope) along with some inferential
statistics about them. The standard error presented is similar
to the standard error of the mean we have discussed earlier. It
represents the standard deviation of the coefficient estimates
that would be obtained from similar samples. The t-tests pre-
sented have the null hypothesis that the coefficient tested is
0. For the intercept, this test is not quite useful. The other
problems regarding estimation and interpretation of the inter-
cept in this problem aside, we do not really think that mothers
start speaking to their children only when their children start
talking. The inference for the slope is generally something we
are interested. Remember that the slope represents the unit in-
crease in the mother’s MLU, given the child’s MLU. In other
words, this is the effect of the child’s MLU on the mother’s
MLU. If we cannot reject the null hypothesis that the slope is
0 (=no effect), we cannot be certain that the effect we estimated
is not a chance effect.

The lines 12—14 present further statistics that are useful in our
interpretation of the linear regression results. We will return
to these later. For now, we note that the reported ‘R-squared’
value is the standardized effect size for linear regression, and
interpreted as the ‘amount of variance in the response variable
that is explained by the predictor(s)’.

Exercise 3.5. Find the Pearson correlation coefficient between



the mother’s and the child’s MLU. Compare square of the cor-
relation coefficient with the R-squared reported in Listing 5.
>

3.2 Some model diagnostics

The 1m () function in R will find the regression equation with
the minimum sum of squared errors (}_; €?). However, the re-
sults may be irrelevant if the following modeling assumptions
are not checked.

* Observations, or equivalently residuals (€) are indepen-
dent.

* Residuals should be normally distributed with O mean.

» The residual variance is constant.

Besides these, the least squares regression estimation is sensi-
tive to extreme values or outliers.

We will return to all these assumptions, and how to check them
later. For now, we will only check the residuals for normal-
ity, as we already know how to do it. Note that almost all
assumptions of the linear regression is about residuals. Now
you know why the summary presented in Listing 5 includes a
five-point-summary of residuals. To extract residuals from a
model you can use the resid () function.

Exercise 3.6. Extract residuals from the model fitted in List-
ing 5,

+ visualize the residuals using a histogram,

* Check normality of the residuals using a normal quantile-
quantile plot. A normal Q-Q plot can be used to visually
check whether a given sample follows the normal distri-
bution or not. The R function gqqnorm() produces a nor-
mal Q-Q plot, and qqline () plots the theoretical normal
line.

>

Exercise 3.7. We wonder whether MLU is a good measure of
a child’s language ability. For a normally developing child,
we expect the age of the child to be a good predictor of his/her
language ability. Using age as a proxy to child’s language
ability, investigate the relation between the MLU and the lan-
guage ability.

1. What is the best choice of predictor and response vari-
ables for this problem?

2. What is the estimates of intercept and the slope, and how
do you interpret them?

3. Produce a scatter plot of the data, and draw the regression
line.

4. Is the slope estimated statistically significant at level
0.05?

5. Do you observe any clear outliers in the scatter plot?

6. Extract residuals form the model, and check whether they
are normally distributed or not.

4 Linear models with categorical predictors

In this set of exercises we will study methods to analyze data
where the response variable is continuous (e.g., pitch, dura-
tion, reaction time), the predictor is categorical (e.g., gender,
language, part-of-speech tag). Crucially, all methods we dis-
cuss here works with independent samples (e.g., no multiple
measurements from the same individual). Analyzing ‘repeated
measures’ or non-independent data will be addressed in the
next section.

In Section 2, we have already seen an example where we tried
to see whether ‘talkativeness’ can be predicted by gender, and
analyzed the data using the t test.

For the first part of this section, we revisit the t-test exercises
from Section 2, so you will need the words data set used there.
If you do not have the variables from Section 2 in your R envi-
ronment (remember, you can check this using 1s()), use the
commands given at the beginning of the Section 2 to create it.

Now that we know that the related sets of variables should be
stored in data frames instead of individual vector variables, we
would like to put these variables together in a data frame.

Exercise 4.1. Create a data frame containing only the vari-
ables words and age. Name your data frame ‘talk’.

The talk data frame does not yet contain the information on
the genders of the participants. From the way we constructed
the words vector earlier, we know that the first 10 values cor-
respond to the female participants, and the last 10 values corre-
spond to the male participants. In a properly constructed data
frame, we typically do not want unrelated values on a row.
So, a data frame that contains word counts for male and fe-
male users in different columns is not a good option (although
this data format, called ‘wide format’, is used by some other
statistical software by default). Instead, we will keep the data
frame as created in Exercise 4.1, and add a new column with
the categorical variable gender.

Like numeric data types, R supports a ‘factor’ data type that is

suitable for categorical or nominal data (which can optionally

be ordinal, but this is not a concern for us in this section). Here

is how to add the gender column to the talk data frame.

> talk$gender <- factor(c(rep('F', 10), rep('M',
10)))

> talk$gender

[{] FFFFFFFFFFMMMMMMMMMDUNM
Levels: F M

The first line, has two new R functions that we haven’t seen
yet. rep () returns a vector where its first argument repeated
as many times as its second argument. As we have seen be-
fore, c () concatenates the results. And, factor () makes sure
that the resulting vector contains factors. If we display it as in
the second line of the listing above, R will also give you the
possible values ‘levels’ the factor variable can take.

We will return to some of the details regarding the factor vari-
ables. For now, it suffices to understand that we have a factor
variable gender with values F for the values in words that
were collected from the female participants, and M for male
participants.

Besides the talk data we reorganized, we will use another
hypothetical set of data where we investigate early language
development of children, given their parents’ socio economic
status (SES). Our fake data set include mean length utterance



(MLU) values from 10 girls and 10 boys for each three levels

of SES we consider (low, mid, high). You can load the data

with the following command.

> mlu.ses <- read.csv(
'http://coltekin.net/cagri/R/data/mlu-ses.csv')

> mlu.ses$ses <- factor(

mlu.ses$ses, levels=c('low', 'medium', 'high'))

If you are working offline, you should use the local file name
instead of the URL in the first command. Note that in R strings
backslash “\” has a special function. When using local path
names on Windows, you should either use double backslash
(like ‘C:\\My files\\R\\mlu-ses.csv’)inpathnames, or
use forward slash ‘/’ instead. The second command in the
above listing corrects the ordering of the SES levels (and yes,
we will return to this one t0o).

If all goes fine, you will have a data frame with four vari-
ables (subject, ses, gender, mlu) and 60 rows (observa-
tions, cases). Note that the talk data frame we have created
earlier also have variables with the same name. For each ex-
ercises that follows, we will tell explicitly which data to use.

Exercise 4.2. The function str () prints a readable summary
ofavariable (an R object). Inspect the data frame using str ().
Does the summary match what you expect from the description
above? >

Exercise 4.3. You should have seen in Exercise 4.2 that R took
the variable subject (which corresponds to the arbitrary ID of
participant in the study) as a numeric value. Convert subject
variable in mlu. ses to a factor variable. >

Earlier, we saw how to extract the value of a particular cell,
column or row from a data frame. Often, we want to extract
values that meet a certain condition. The row and column and
indices that we used earlier can contain arbitrary conditional
expressions. For example, the following listing demonstrates
how to extract all rows where m1u is greater than four and ses
ishigh.

> mlu.ses[mlu.ses$mlu > 4 & mlu.ses$ses == 'high',]

subject ses gender mlu

54 54 high female 4.20
59 59 high female 4.62

Note that equality in a comparison is expressed with double
equal signs ‘==" and the sign ‘&’ means boolean ‘and’ opera-
tion. Similarly some common operators you can use are,

* I=not equal to
 >= greater than or equal to
+ <= less than or equal to

* | boolean ‘or’

Exercise 4.4. Choose only the mlu values from mlu.ses
where the gender is male. >

4.1 Comparing two means

The classical method for comparing two means is the Student’s
t test that we have experimented with in the previous section.
Here we will repeat some of the earlier t-test exercises in a
slightly differently way. An alternative notation for running
the t test in Exercise 2.16 is The output will be the same. The

Listing 6: T test with formula notation.

> t.test(talk$words ~ talk$gender,
alternative='greater')

reason for this repetition is to familiarize you with the categor-
ical variables and the formula notation. Both of these concepts
will be used throughout this section, and for the rest of the tu-
torial. Note that you need to prefix the variable names with
‘talk$’ to specify which data you are referring to. If you do
not what to type the data frame name you can use the command

> attach(talk)

after which, the columns in talk data frame will be accessible
from your default R environment without referring to the data
frame name. You can detach() if you want to go back to the
state before the attach() command.

The notation words ~ gender can be translated into plain
words as ‘words is explained by gender’, or more technically
‘words is the response variable, and gender is the predictor’.
We will use this notation frequently, and Appendix B explains
the formula notation in some detail.

4.2 Checking assumptions of t test and ANOVA

All statistical methods (or models) come with a set of assump-
tions. For independent-samples t test and the ANOVA that we
will work on shortly, there are three important assumptions:

» Observations are independent.

* The data in each group follow an (approximately) normal
distribution.

* The variances for each group is (approximately) the
same.

The first assumption above is related to how you collect your
data (or conduct your experiments). We will discuss methods
for analyzing non-independent data later. For now we will
work with a few graphical and analytic tools for investigating
the last two assumptions.

Exercise 4.5. One of the ways of visualizing the distribution
of a set of data points is to plot a histogram. Plot necessary his-
tograms to inspect whether the talk data meets the normality
assumption required by the t test in Listing 6. Note that you
will need to check both subsets. >

Exercise 4.6. Use normal Q-Q plots to inspect whether the
data meets the normality requirement. >

A non-graphical method of testing for normality is ‘Shapiro-
Wilk test of normality’. The R function shapiro.test()
performs this test.

Exercise 4.7. Verify whether Shapiro-Wilk test of normality
agrees with your earlier judgments from the histograms and

Q-Q plots. >

By default, t.test() in R will apply a correction for the
unequal variances. This is the reason why earlier t tests
we run were reported as ‘Welch Two Sample t-test’. If
you want to override this behavior you can pass the option
var.equal=TRUE to t.test ().



Exercise 4.8. Run an independent samples t test to test the
alternative hypothesis that women talk more than man, using
the words data set as before, but instruct t. test () to assume
equal variances, and use the formula notation.

Do the t-test results with or without corrections differ substan-
tially?

Can you reason about the change in the ‘degrees of freedom’
reported by the t tests with and without the Welch correction?
>

Exercise 4.9. A good way of visualizing whether variances of
two (or more) samples are equal is to use box plots. We have
already produced the plot necessary in Exercise 2.4. Produce
the same box plot, but use the formula notation this time. Do
the variances of male and female subsets look equal?

Exercise 4.10. Another (non-visual) way of checking equality
of variances is to use var.test () (which basically performs
an F-test). Do the variances of male and female subsets differ
according to var.test () ? >

We have already seen that t . test () includes a correction for
the non-homogeneity of variances by default. On the other
hand, if divergence from normality is a concern, then we pre-
fer a non-parametric test. The non-parametric alternative of
independent two-samples t test is called Mann-Whitney test
(equivalently, Wilcoxon rank sum test).

Exercise 4.11. In R, the non-parametric alternatives of
all flavors of the t test are performed using the function
wilcox.test (). Perform a Mann-Whitney test, and compare
the results with the results from the t tests performed earlier. >

4.3 Single ANOVA

If we have more than two levels or ‘groups’ in our predic-
tor variable, the classical test to perform is the single, or one-
way, ANOVA (remember that in this section we only work
with independent samples). Traditionally ANOVA and lin-
ear regression would be considered very different analyses. In
this subsection and the next, we will follow this approach and
study these methods as ‘hypothesis testing’ methods. How-
ever, single and multiple ANOVA we discuss in this section,
and the linear regression are, in fact, part of a general frame-
work called general linear models. We will make a first at-
tempt to demonstrate this connection in Section 4.6.

To demonstrate ANOVA in R, we try to investigate the effect
of socio-economic status (SES) on children’s mean length ut-
terance (MLU) using the hypothetical data set introduced at
the beginning of this section. Before doing the actual analysis
we will inspect our data and check whether the data meets the
requirements of ANOVA or not.

Exercise 4.12. Generate side-by-side box plots of MLU for
each level of SES.

Remember that you can access the individual columns (vari-
ables) in a data frame using the dollar ‘$’ operator. For exam-
ple mlu.ses$mlu will give you the mlu column of the data
frame. Alternatively, you can give the option data=mlu.ses
to boxplot () to and use the column names directly.

Based on the box plots,

1. Do the variances look similar?
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2. Can you see any clear divergences from normality?

3. Do you expect any significant differences in MLU due to
SES?

Exercise 4.13. Check normality of each group using graphical
methods, and shapiro.test(). >

All (independent samples) linear models can be fit using the
function 1m() that was introduced briefly in Section 3. Our
use here will differ in two ways. First, our predictor is a cat-
egorical variable, and second, we summarize the model fit by
1Im() in a different way. Listing 7 shows how to do a single
ANOVA investigating the effect of ses on mlu. We use the
1m() function to fit a general linear model, and summarize it
using the function summary.aov () which prints out the rele-
vant information for a classical ANOVA.

Listing 7: Single ANOVA.

1 > summary.aov(lm(mlu~ses, data=mlu.ses))

2 Df Sum Sq Mean Sq F value Pr (>F)
3 ses 2 20.71 10.357 21.07 1.41e-07 *x*x*
4 Residuals 57 28.02 0.492

If you remember ANOVA from your basic statistics course,
the output requires little explanation. The sums of squared dif-
ferences, and ‘mean squared difference’ you see on the third
line represent the variation between ses groups. Degrees of
freedom are 2 since we have three groups. The quantities in the
fourth line are due to ‘within group’ or ‘error’ variation. De-
grees of freedom value is 57 since we have 60 data points and
three groups. The F-value is the result of dividing ‘“Mean Sq’
ses to ‘Mean Sq’ Residuals, which results in a very small p
value, more precisely 1.41 x 10~/ = 0.000000141. Note that
R typically uses the scientific notation when presenting very
small numbers. If you are convinced that ANOVA is the cor-
rect analysis to run with this data, the result tells us that SES
plays a role on MLU of a three-year-old child, and this role is
(very) unlikely to be due to chance. Note, however, whether
this effect has a practical importance is another question that
needs some further information than the p-value, and also de-
pendent on the particular problem studied.

Exercise 4.14. When you have only two groups, ANOVA is
equivalent to the t test. Using the data frame talk, analyze
the effect of gender on words using ANOVA. Compare your
ANOVA results with the equivalent t test results from Sec-
tion 4.1,.

Can you test ‘directional” hypotheses with ANOVA as we did
earlier with the t-test? >

At this point, you may wonder why do ANOVA at all, or why
not perform multiple t-tests instead? One of the answers to
this question is that you may not have a specific hypothesis
about differences in individual groups (e.g., ‘low’ SES and
‘medium’ SES differ), but you may expect that the categorical
predictor has an overall effect. This is probably reasonable for
our example analysis of the effect of SES on MLU.

The second reason have to do with the logic of hypothesis test-
ing in general. In an exploratory study looking for differences,



every pairwise difference you test will increase the probabil-
ity of finding a difference by chance. As the number of groups
increases, the number of possible (pairwise) comparisons in-
crease. So, your chances of getting a significant difference
where there isn’t one increases. That said, if you have a set of
specific hypotheses, you should go ahead and test them. The
concern is valid when you would take ‘any’ pairwise differ-
ence interesting.

For an amusing story of multiple comparisons causing false
positives, see http://www.wired.com/wiredscience/
2009/09/fmrisalmon/, which reports on an fMRI study that
finds “significant evidence” that a dead salmon shows emo-
tional responses. For another fun but less ‘scientific’ demon-
stration, see http://xkcd.com/882/.

If you want to explore the data for potential pairwise differ-
ences and also want to perform valid hypothesis tests, then
you should apply appropriate corrections (typically by lower-
ing your significance level).

There are a number of different corrections that differ in their
assumptions. Some of these corrections are implemented by
the R function pairwise.t.test ().

Exercise 4.15. Performs all pairwise SES compar-
isons of MLU values in the data set mlu.ses using
pairwise.t.test(). Note that pairwise.t.test () uses
a different correction method than well-known Bonferroni
correction. However, it can do Bonferroni correction if
the appropriate options are given. Also perform pairwise
comparisons with Bonferroni correction, and compare the
results with the R default.

Which correction is more conservative? >

4.4 Factorial ANOVA

Often there are multiple categorical predictors that may affect
the response variable of interest. In such cases, it is more eco-
nomical (in terms of effort spent on experimentation or data
collection) to perform a combined analysis. At least as im-
portantly, analyzing multiple effects together also allows in-
vestigating their interactions. The extension of ANOVA with
multiple groupings of the response variable is called factorial,
or n-way, ANOVA.

The way to run factorial ANOVA is not much different than
the single ANOVA example in Listing 7. Only difference is
in the model specification, or the way we write the model for-
mula. We will first start with an example where we ignore
possible interactions. To specify a factorial ANOVA to inves-
tigate the independent effects of ses and gender on mlu, the
formula to be used is ‘mlu ~ ses + gender’. Note that you
should not read the sign ‘+” here as an arithmetic operation.

Exercise 4.16. Perform a factorial ANOVA that investigates
the effects of ses and gender on mlu. Compare your results
with the single ANOVA results in Listing 7. >

If we also want to include the interactions our formula be-
comes ‘mlu ~ ses * gender’ (witha * instead of +. Again,
you should refrain yourself from reading this as arithmetic
multiplication).

Exercise 4.17. Perform a factorial ANOVA to investigate the
effects of ses and gender and their interactions on mlu.

>
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The conventional visualization of interactions between two
categorical variables can be displayed using the function
interaction.plot (). Interaction plot puts one of the fac-
tors (categorical variables) on x-axis and the response (nu-
meric) variable on the y-axis. It plots a dot for the mean of
the response variable for all combinations of both factor vari-
ables, and draws a line between all dots that have the same
level of the second factor. As a result, you need to give
interaction.plot () two factor variables, and the response
variable as arguments. It will calculate means of the each ‘cell’
from the data plot according tot the description above.

Exercise 4.18. Plot the interactions of ses and gender, and
interpret the resulting graph with reference to the findings in
Exercise 4.17. >

4.5 If ANOVA assumptions are not met

If normality and homogeneity of variances assumptions of
ANOVA is violated with the data at hand, you typically have
two sensible ways to go

* transform your data.

* use the non-parametric alternative, the Kruskal-Wallis
rank sum test (for single ANOVA).

Finding correct transformation is not always easy. We will
work with some sensible transformations later. For com-
plicated methods, including most configurations of factorial
ANOVA, there aren’t straightforward non-parametric alterna-
tives. As a result, trying to tame the data (e.g., by transforma-
tions) might be the only option at hand.

The function to perform Kruskal-Wallis rank sum test in R
is called kruskal.test (). Kruskal-Wallis test does not as-
sume normality, however, you should be aware that it re-
quires the samples to come from identically-shaped distribu-
tions, which is not true if the variances are not similar.

Exercise 4.19. Perform the alternative non-parametric test for
the ANOVA presented in Listing 7. Is the test more conserva-
tive or less sensitive than ANOVA? >

4.6 T-test as a linear model

You have been hinted along the way that there is a strong con-
nection between the t-test (and also ANOVA) and the linear
regression. In this subsection, we will try to demonstrate this
connection with the t test, and extend it to ANOVA(s) later.

Exercise 4.20. Perform (yet another) the t-test testing the dif-
ferences in number of words spoken per day between male and
female speakers. Force t.test () to assume equal variances,
do not use a directional alternative hypothesis. >

Exercise 4.21. Fit a least squares regression model using
1m(), where the response is words and the predictor is
gender. Produce a summary of the model with the function
summary () (not with summary.aov()).

Which numbers match with the t-test results form Exer-
cise 4.20. Can you explain what is happening?


http://www.wired.com/wiredscience/2009/09/fmrisalmon/
http://www.wired.com/wiredscience/2009/09/fmrisalmon/
http://xkcd.com/882/

The trick is in the way the categorical variables are used in
regression. Remember the usual equation for a linear line:

y=a+bx

Now, consider x is a categorical variable, e.g., gender, and we
set it to O for women, and 1 for men. This means that expected
value of y is equal to a for women (put O instead of x above
formula and calculate), and expected value of y is a + b for
men. In other words, the difference between expected values
of y for men and women is b. Hence, the t test performed for
the slope means testing whether the mean difference between
women and men is 0.

The above description is only a special case of what is called
indicator, or dummy, coding. The coding turns analyses like
t-test or ANOVA into linear regression. The concept is also di-
rectly related to the so-called ‘contrasts’ used in ANOVA. The
particular way the variable x above is coded is called treatment
contrast, which is the default in R.

We will return to this topic after we work on multiple regres-
sion.

5 Repeated measures

The analysis methods we have studied so far assume that the
observations are independent. This assumption is often wrong,
and it is intentionally violated in some experimental designs to
increase the sensitivity of the tests. In this section we will exer-
cise with a well known procedure repeated-measures ANOVA
for analyzing (experimental) data where same subjects are
measured more than once (hence, observations are not inde-
pendent).

We will use two (again hypothetical) new data sets. In the
first data set we assume that we investigate whether newborns
distinguish their mother’s native language from another lan-
guage. We recruit 30 newborns, and when we find them awake
during their first day in life, we let them listen to two compa-
rable short stories, one in their mother’s language and another
in a foreign language. While they are listening to these stories,
they are equipped with a pacifier through which we can mea-
sure their sucking rate. Crucially, each infant is tested on both
conditions (the order of languages are randomized). Since our
hypothetical newborns never fall asleep, start crying or spit
out the pacifier in the middle of the story, we have 60 mea-
surements from 30 infants. You can load the data set using,
> print(load(

url('http://coltekin.net/cagri/R/data/newborn.rda

")

))
Notice that this time the file extension is different, and we used
load() function. This data file is in R’s native binary for-
mat. The advantage is that you retain all the information in
the original data (including the variable name). The disadvan-
tage is in its portability. The CSV files we used earlier can
be read virtually in any environment by many applications,
while the .rda files can only be read by R (but you do not
need to worry about the platform or the operating system in-
compatibilities). The reason we wrapped the 1oad () within a
print is because of the fact that 1oad () silently loads the vari-
ables in the data file. If you print () the return value, you
will know which variables are loaded. Otherwise, you need
to inspect your R environment to figure out the changes intro-
duced by 1oad (). If all went fine, you should have a new data
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frame named newborn. Note again that the data is fake, but
the method, high-amplitude sucking paradigm described here
without many details is a well-known technique for studying
infants. For a real study of the sort described here see Nazzi
et al. 1998.

The second data set we will use comes from another hypothet-
ical language acquisition study. This time we are interested
in children who are raised bilingually, where one of the lan-
guages they speak is ‘home only’ and the other language is
also used in their school. The data set can be found athttp://
coltekin.net/cagri/R/data/bilingual.txt as a ‘tab-
separated file’.

Exercise 5.1. Read the tab-separated file http:
//coltekin.net/cagri/R/data/bilingual.txt into a
new data frame with name bilingual (we will refer to this
data set with this name throughout this section, but you can
use a shorter name if you prefer).

You can use read.delim() for reading this file. Note that
generic function for reading ‘tabular files’ is read.table().
>

Exercise 5.2. Inspect the data frame bilingual, and make
sure that all variables in the data frame have correct data type.
Particularly, we would like to make sure that all categorical
variables are identified as factors.

Optionally you can repeat Exercise 5.1, but supply the
read.delim() (or read.table()) command with a
colClasses option (see help on these functions for detailed
use of this option). >

5.1 Paired t-test

As we did with independent-measures ANOVA, we will start
with the simplest case: when we have only two conditions.
If we only have two conditions measured repeatedly over a
sample of individuals (people, animals, countries, hospitals,
...) the we typically use a paired t test. Our data set newborns
provides a textbook case application of paired t test. But for
the sake of comparison, we will first take a detour, and revisit
the independent samples t test.

Exercise 5.3. Assuming the newborn data came from two
independent groups of babies (no baby is tested twice), test
whether the babies respond differently to their native language
and the foreign language.

Check whether t-test assumptions (except independence) are
violated or not. >

In R, The paired t test can be performed using the same func-
tion, t.test(). All you need to do is pass the argument
paired=TRUE.

Exercise 5.4. Perform a paired t test. Compare your results
and to the independent-samples t test you have just performed.

>

Exercise 5.5. Check whether the normality assumption of
paired t tests holds for the newborn data with a normal Q-Q
plot. What quantity has to be distributed normally?

Do you also need to check whether variances across the groups
are approximately equal? >


http://coltekin.net/cagri/R/data/bilingual.txt
http://coltekin.net/cagri/R/data/bilingual.txt
http://coltekin.net/cagri/R/data/bilingual.txt
http://coltekin.net/cagri/R/data/bilingual.txt

Exercise 5.6. Plot side-by-side box plots of sucking rates for
the native and the foreign language. Is the difference we are
interested in clearly observable in the box plots? >

5.2 Repeated-measures ANOVA

Repeated measures ANOVA can be performed in R using a
few different ways. In this tutorial, we will exercise with the
function aov () that comes with the base R installation (‘stats’
package). aov() can handle only standard cases—no viola-
tion of the assumptions, no missing data— and only displays
minimal information—no effect sizes. For more complex de-
signs, one can use utilities found in additional packages or li-
braries, such as Anova () (note the capital ‘A’) from the car
package and ezANOVA () (read ‘easy ANOVA”) from the pack-
age ez. We will conclude the section with an example run on
ezANOVA (). However, we note that if your design is not ideal
for repeated measures ANOVA you should probably use the
‘multi-level” or ‘mixed-effect’ linear regression that we will
see later in this tutorial.

As before, we will start with the simplest case. Remem-
ber that when we have two groups, the independent-measures
ANOVA is equivalent to two-samples independent measures
t test. Similarly, when we have only two groups, the repeated-
measures ANOVA gives you the same results as the paired t
test. Here is how we do a repeated-measures ANOVA using
aov () on the data set newborn.
> m <- aov(rate ~ language +

Error (participant/language),

data=newborn)

> summary (m)
Error: participant

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 29 5792 199.7

Error: participant:language

Df Sum Sq Mean Sq F value Pr (>F)
language 1 306.9 306.95 28.24 1.06e-05 x*x
Residuals 29 315.2 10.87

Not surprisingly, the p-value matches to the p-value found in
Exercise 5.4. As in earlier ANOVA models, we specified a
model predicting the rate from the language using the for-
mula notation. Crucial difference is in the specification of
the Error () term. This term specifies the replication in the
experiment design. In this case, we tell aov() that the re-
sponse corresponding to every level of language is measured
for each participant. The specification of the error term
could be confusing at first sight. Within the Error () term,
the part before the slash °/’ specifies the ‘case’ or ‘subject’
variable. The part after the slash specifies the ‘within sub-
ject’ variable(s). Note that we used summary () instead of
summary.aov (), since the default summary method for an
aov () object is ANOVA-like summary.

Without the Error () term, the function aov() is equiva-
lent to the 1m() function we used for independent measures
ANOVA.

Exercise 5.7. Perform an independent measures ANOVA us-
ing aov () on the newborn data set. Compare your results with
the repeated measures ANOVA results presented in the listing
above. >

Exercise 5.8. Perform a repeated measures ANOVA that tests
the effect of age on mlu in the bilingual data set. >
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Extending the repeated measures ANOVA in Exercise 5.8
to include more predictors is easy. We just add all pre-
dictors to the formula notation as we do for the factorial
ANOVA. You only need to be careful to include all the
‘within-subject’ variables in the error term. For example,
for two-way within-subject factorial ANOVA with interaction
term where age and language are the predictors, the error term
becomes Error (subj/(language*age)).

Exercise 5.9. Perform a repeated measures ANOVA that tests
the effect of age and language onmlu inthe bilingual data
set. Also include the interaction term in your analysis. >

Exercise 5.10. Use interaction.plot() to visualize the
interaction between the variables age and language in the
bilingual data. >

Often, we want to include predictors that are not or cannot be
replicated in a repeated measures design. Such a variable in
ourbilingual datasetis gender, which is a good example of
a variable that can hardly be measured within-subjects. In this
cases we use so-called mixed-design ANOVA analysis. There
is nothing interesting specifying a mixed-design ANOVA in
R. We just add the between-subject variable(s) to the model
formula, but exclude it from the error term.

Exercise 5.11. Perform a mixed ANOVA with age and
language as within-subject predictors, and gender as a
between-subjects predictor. >

The above exercises exemplify a variety ANOVA designs that
can be fit using aov (). However, aov ()

* does not run any diagnostics or present corrected results
in case of violation of the assumptions,

* does not report any effect size,
+ cannot handle unbalanced designs or missing data.

In such cases a few packages in R provide solutions that are
similar to other statistical software. We will only present an
example using ezANOVA () from the package ez. However,
when things are not perfectly balanced, and neat, the repeated-
measures ANOVA becomes difficult to interpret. One reason-
able course of action when ANOVA design becomes too com-
plicated, or assumptions are violated at some level is to switch
to so-called mixed-effect models which also offer some other
benefits. We will discuss mixed-effect linear models later in
this tutorial.

Listing 8 repeats Exercise 5.11 using ezANOVA (). The listing
is slightly edited for clarity (you still need to exercise your
skills in reading scientific notation).

The first thing to note in Listing 8 is the command 1library ()
on line 1. This includes the functions defined in library ez.
There are a large number of (mostly free/open-source) libraries
for R for various (statistical) tasks. In this tutorial, we try to
stick to the bare-bones, but you should check existing libraries
for the tasks that are not possible or difficult to do with the ba-
sic packages of R. The central repository for all R packages is
athttp://cran.r-project.org/. If the package you need
is not installed on your computer, you can install any package
from CRAN with the command install.packages().

Returning to the ANOVA results Listing 8, the main find-
ings should be the same as what you found with aov() in


http://cran.r-project.org/

1
2

Listing 8: An example with ezANOVA(Q).

> library('ez')
> ezANOVA (data=bilingual,

dv=mlu,
wid=. (subj),
within=. (language, age),
between=sex)
$ANOVA
Effect DFn DFd F P ges
2 sex 1 18 2.92e-04 9.87e-01 1.02e-05
3 lang 1 18 6.78e+00 1.80e-02 3.38e-02
5 age 2 36 1.74e+01 5.07e-06 1.47e-01
4 sex:lang 1 18 1.98e-01 6.62e-01 1.02e-03
6 sex:age 2 36 6.48e-01 5.29e-01 6.36e-03
7 lang:age 2 36 3.07e+00 5.87e-02 1.66e-02
8 sex:lang:age 2 36 1.42e+00 2.54e-01 7.76e-03
$ "Mauchly's Test for Sphericity’
Effect W P
5 age 0.9937147 0.9478173
6 gender:age 0.9937147 0.9478173
7 language:age 0.9905139 0.9221786
8 gender:language:age 0.9905139 0.9221786
$ " Sphericity Corrections’
Effect GGe p[GG] HFe p [HF]
5 age 0.99 5.38e-06 1.12 5.07e-06
6 gender:age 0.99 5.28e-01 1.12 5.29e-01
7 language:age 0.99 5.93e-02 1.11 5.87e-02
8 gender:language:age 0.99 2.54e-01 1.11 2.54e-01

Exercise 5.11. The additional information presented here in-
clude the effect size on the column labeled with ges (general-
ized n?); the results of Mauchly’s Test; and in case we could
not maintain the sphericity assumption two common correc-
tions used in the literature: Greenhouse-Geisser € (GGe), and
Huynh-Feldt € (HFe) and their corresponding p-values. Fur-
thermore, ezZANOVA() includes options for cases when the
data is not balanced (so called type I, type II and type III sums
of squares—aov () only calculates type I sums of squares.).
However, you should better read and understand these before
using it in a real analysis.

We will stop the discussion of repeated measures ANOVA
here, but we will revisit some of the concepts and exercises
when we discuss the mixed-effect models.

6 Graphics

Graphs are important tools for making sense of our data and
communicating our results. R provides many graphical rou-
tines to produce graphs that visualize data in useful ways. We
have already worked with a few basic graphs in R. In this sec-
tion, we will work with graphics in some detail.

As usual, first we will introduce some new data to work with.
The new data set comes from a corpus study of child language
acquisition. In a nutshell, the study is about how children may
be extracting words out of a continuous data stream. Partic-
ularly, we are interested whether a set of statistics is helpful
for identifying the word boundaries. The data can be found at
http://coltekin.net/cagri/R/data/seg.csv. It con-
tains four different statistics: (pointwise mutual information
(PMI), successor variety (SV), boundary entropy (H) and re-
verse boundary entropy (RH) ) calculated on all potential
boundary locations for three child-directed utterances. The de-
tails are not that important for our purposes here, but if you like
to know more about it, the data comes from Coltekin 2011.
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Exercise 6.1. Load the CSV file http://coltekin.net/
cagri/R/data/seg.csv into a data frame named seg in
your R environment.

Make sure that all columns in the data frame has sensible data
types. Do appropriate conversions if necessary.

>

6.1 Basic graphics

We used the plot () function before for scatter plots. This
function behaves differently depending of the type of object
to be plotted. In the simplest case, you can give a simple list
of numbers, and plot () will plot them against their index,
i.e., integers starting with one up to the number of elements in
the data provided.

Exercise 6.2. Plot the h values in the order given in the data
(against thier index value) for only the first utterance in the
data frame seg. >

Exercise 6.3. Using the seg data set, display the relationship
between pmi and h using a scatter plot. Make sure that pmi is
placed on the x-axis, and the color of the points is red.

Plot the linear regression line over the scatter plot in blue.
>

If you plot a data frame with plot (), it will result in a matrix
of scatter plots where each variable is plotted against the other.

Exercise 6.4. Plot scatter plots of pmi, h, rh and sv against
each other on a single graph.

TIP: remember that you can extract the relevant columns of
the data frame with the syntax seg[,4:7], or using symbolic
names like seg[,c('pmi', 'h', 'rh', 'sv')].p>

We will see more examples of plotting different types of ob-
jects, and prettifying the plots like the one in the exercises
above. For now, we will first exercise with some of the ba-
sic graphics we have seen before, and build on them slowly
towards more advanced and nice-looking graphs.

Exercise 6.5. Plot the histograms of pmi and h values. Do
the distributions look similar?

Exercise 6.6. Using normal Q-Q plots, check whether pmi
and h are distributed normally. >

Exercise 6.7. Plot side-by-side box plots of pmi for bound-
ary (where boundary == TRUE) and non-boundary (where
boundary == FALSE) locations in the first utterance in the
seg data. >

So far, we have used plot () for plotting relations between
two samples. We can also plot mathematical functions. For
example, the following plots the well-known bell curve of the
Gaussian function.

> x <- seq(-4,4,by=0.1)
> plot(x, dnorm(x))


http://coltekin.net/cagri/R/data/seg.csv
http://coltekin.net/cagri/R/data/seg.csv
http://coltekin.net/cagri/R/data/seg.csv

We first create a vector variable that holds numbers between
—4 to 4, and plot these number against dnorm(), which re-
turns the value of the normal density function (more on den-
sity functions later). If you run the above command, you will
see a set of dots tracing the standard Gaussian curve. If you
want to see lines connecting these points instead, you can pass
the option type='1" to the plot () function. Similarly, the
option type="'b" plots both (lines and points).

Exercise 6.8. Another interesting distribution is the Student’s
t distribution. The density function for the t distribution in R
is dt (). Plot t distribution with degrees of freedom 5 using
lines instead of individual points. Make sure that the curve
is plotted in green, and the line is three times as thick as the
default line width. >

It would be interesting to see both the normal and t distri-
butions on the same graph. However, every time we run a
plot () command R clears the earlier plot, and initializes a
new ‘canvas’. We have already seen the abline () function
which allowed us to plot on an existing plot. There are more
functions that draw over an existing graph. Most commonly
used ones include,

* points () for plotting points.
* lines() for plotting lines.
* linespoints() for plotting lines.

* text () for plotting arbitrary text.

Exercise 6.9. Plot the density curves of the standard normal
distribution and the t distribution with degrees of freedom 5
on the same graph. Make sure both are drawn with lines, and
use a distinct color for each curve. >

The colors are useful for distinguishing different lines in a
graph. However, the color distinction will be unreliable in
black-and-white print. A common practice for identifying dif-
ferent lines on the same graph is to use different line types, or
patterns. The commands that draw lines allow you to specify
a different pattern using the option 1ty. For example, setting
1ty=2inplot () or lines () will draw a dashed line (the de-
fault is 1, which draws a 'solid' line). Alternatively, you
can use symbolic names like 'dotted’', 'dashed’ etc.

Exercise 6.10. Plot the standard normal distribution and t
distributions with degrees of freedom 1, 5, and 20 on the same
graph. Use different colors and line types for each curve. >

Similar to 1ty that sets the line-pattern, you can also cus-
tomize the type of the points drawn by plot () or points().
The parameter that decides the shape of the points drawn is
pch. If you provide a single-character text string to pch it will
use this character instead of the default. Alternatively, you
can provide a numeric value to obtain a number of predefined
shapes. For example pch=22 will plot a filled square (see help
text for points () for other symbols).

Exercise 6.11. Repeat Exercise 6.3, but use ‘small solid cir-
cles’ instead of the default hollow circle. >

15

With the text () command, you can place an arbitrary text
on any point in the x-y plane. In its typical use, it is used
like text(x, y, labels), where all arguments are vectors
of equal size. Furthermore, you can adjust the position of the
labels with pos and offset options (see help text for more
information).

Exercise 6.12. Repeat Exercise 6.9. Place the text strings
standard normal and ¢(5) on appropriate places on the graph
to identify the curves. Use the same colors for the text as the
corresponding curve. >

Exercise 6.13. Repeat Exercise 6.2. However, use dotted
lines instead of plotting individual points, and place the corre-
sponding phoneme value above each point.

** Use red for the phonemes that correspond to boundaries and
blue for word-internal locations.

This exercise, especially the last part, is rather tricky, but you
have all the tools at hand to achieve this.

>

6.2 Labels, axes, legends ..

In graphs like the ones in exercises 6.9 and 6.10, we typically
include a legend to explain what colors or patterns mean. The
command legend () in R adds a legend to an existing plot.

Exercise 6.14. Add a legend for the graph you produced in
Exercise 6.10. Make sure that both line type and color matches
with the lines on the graph. >

We improved the graph in Exercise 6.14 quite a bit, it is al-
most ready to be printed. However, the y-axis is labeled as
‘dnorm(x)’ which definitely is not the typical axis label found
in printed material. You can specify the axis labels using x1ab
and ylab options, and a title on top with the option main.

Exercise 6.15. Repeat Exercise 6.10 but this time set the main
title as ‘normal and t distributions’, set the y-axis label to ‘den-
sity’, and remove the axis label of the x-axis. >

By default R determines for a reasonable x-y region for your
plots when you use plot () and the other functions that ini-
tialize a new graph. Sometimes, you may want to change the
range of the values on the x- or the y-axis. Often you need to do
this to make sure that the subsequent points() and 1lines ()
fit into the canvas prepared by a plotting function, sometimes
you may want to extend one of the axes to leave some space for
your legend, and sometimes you may want to include a partic-
ular reference point, for example, the origin (coordinates 0, 0)
in the graph no matter what data to be plotted. To set the ranges
that will be visible on a graph we use x1im and ylim param-
eters to the plotting functions. For example, x1im=c (0, 10)
will result in the x-axis to cover the range between 0 and 10.
Note that any graphics drawn outside the region specified by
x1lim and y1lim will be clipped out, they will not be visible.

Exercise 6.16. Repeat Exercise 6.10 but this make sure that
the origin, the point (0, 0), is included in the graph. >



(a) par (mfrow=c (2,2)) (b) par (mfcol=c(2,2))

12 13
34 24

Figure 1: Order of graphs in 2x2 plots set up by (a) mfrow and
(b) mfcol.

Exercise 6.17. Repeat the scatter plot in Exercise 6.3 in two
steps. First, plot only the points that correspond to the bound-
ary locations using a plus ‘+’ sign instead of a circle. Next,
plot the points that correspond to the non-boundary locations
on the same graph using a minus ‘-’ sign. Use different col-
ors in each step. Include a main title, e.g., ‘PMI vs. H’, and
make sure that the axis labels are printed in all capital letters.
Place an appropriate legend indicating meanings of the sym-
bols used.

Make sure all points fit into the graph. >

6.3 More than one graph on the same canvas

Often, we would like to display more than one graph on
the same figure in a publication or presentation. One way
to achieve this is to set one of the graphical parameters
mfrow or mfcol. The graphical parameters in R are set us-
ing the command par(). Once set, these parameters will
be effective for all graphics related commands. For mfrow
and mfcol we specify a two-element vector, where the first
element specify the number of rows, and the second one
specifies the number of columns. For example, the com-
mand par (mfrow=c(4,5)) creates a grid of four rows and
five columns where next 20 plot () (or others like hist (),
boxplot ())commands will place their output. The difference
between mfrow and mf col is the order of the plots. mfrow fills
the specified grid following a row order, while mf col fills the
columns first. Figure 1 shows the order of graphs produced
with mfrow and mfcol options.

Exercise 6.18. In Exercise 6.7, we have created box plots of
boundaries and non-boundaries for the pmi values.

Plot four graphs on a 2x2 grid on the same canvas each dis-
playing side-by-side box plots for boundary and non-boundary
positions for pmi, h, rh and sv values. Set the main title ac-
cordingly to identify the graphs.

>

The par () command sets many other graphical parameters.
Some of these parameters, e.g., pch or 1wd, serve as defaults
to the later graphical commands, and can be overridden by the
later commands like plot (). Some others, like mfrow, affect
behavior that you cannot set through the individual commands.
You are encouraged to skim through the help text for par ()
to get an impression of the parts of the R graphics that you can
customize.
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6.4 Writing your graphs to external files

Once you are happy with your graph, you will want to in-
clude it in your presentations and/or publications. You can, of
course, get a screenshot, but in most cases, this method pro-
duces less than optimal graphics, especially for publishing. R
supports a number of formats that produces ‘publication qual-
ity’ graphs. The possible file formats include Postscript, PDF,
PNG and JPEG. Typically, if you want to have a bitmap file
(for the web and possibly for your presentations), you should
use PNG graphics. If it is for a publication, you should pick a
vector file format, such as PDF (If you are a KTgX user, you
should definitely check tikzDevice, though).

To plot your graphics to an external file, you first need to use
appropriate function to initialize the output ‘device’. The ini-
tialization functions are typically the (lowercase) name of the
graphics format you are interested in. For example, pdf (),
postscript(), png() or tiff (). These functions some-
what differ depending on the file type you want to produce, but
in almost all cases you need to specify a filename and the width
and height of the resulting graphics. For bitmap graphics, the
width and height are specified in pixels, for vector graphics it is
specified in physical dimensions, e.g., in inches. You should
consult the documentation of the functions you want to use.
In general it is important to specify the correct size since some
properties of the resulting graph, such as font sizes and line
thickness, will be determined based on the size of the graph-
ics. Once you have initialized the output, the commands you
use for producing graphs are the same. When you are done
with plotting your graph(s), you should type dev.off (). The
resulting graphics will be written to the file you specified dur-
ing the initialization.

Exercise 6.19. Plot the histogram and Q-Q plot (including the
theoretical line) of the pmi values in seg data set on the same
canvas next to each other (one row, two columns). Make sure
that your graphs have sensible titles and axis labels. Use filled
triangles for the Q-Q plot instead of the default circle. Write
the results to a PDF file suitable for printing on A4 paper with
one-inch margins on both sides. The width of an A4 paper is
8.27 inches, and you probably do not want to fill the whole
paper, so you should use an image height about half of the
image width. >

Exercise 6.20. Repeat Exercise 6.19 two times for producing
PNG graphics of different sizes, 1024x512 (width x height)
and 640x320. Display and compare the quality of the resulting
graphics. >

6.5 Additional exercises

Exercise 6.21. Plot line segments passing through the follow-
ing X-Y coordinates: (0,0), (1,1), (2,3) and (4,4). >

Exercise 6.22. In R, you can draw a pie chart with the func-
tion pie (). Plot a pie chart for the data used in Exercise 1.10.
Use capital letters A’ to "D’ as labels. >

Exercise 6.23. The function barplot () in R produces a bar
plot. Repeat Exercise 6.22, but use a bar plot instead of a pie
chart. >



Exercise 6.24. Draw sine, sin(), and cosine, cos (), func-
tions in the range [-7t, 7t]. Use a different color for each curve.
TIP: for smoother curves, you need to use seq() to obtain
data points with an interval smaller than one, for example 0. 1.
TIP2: R defines a standard variable pi with the value of 7t. >

Exercise 6.25. We already know that abline(a, b) drawsa
straight line whose intercept is a and slope is b.

Using abline (), add horizontal and vertical lines that pass
from the origin (0,0) to the graph you produced in Exer-
cise 6.24. >

Exercise 6.26. Replicate the graph in Figure 1.
>

7 Regression again

Linear regression is one of the basic tools in data analysis.
In its classical application, linear regression is used when the
response variable and the predictor(s) are both numeric (in-
terval or ratio scale) variables. However, as exemplified in
Section 4.6, and as we will demonstrate further, many of the
statistical analysis techniques can be cast as variations (or ex-
tensions) of linear regression. In this section we will revisit
the correlation and regression with single predictor variable,
and continue with the multiple regression and model selection.
First, we will again prepare the data we will use.

The new data set we will use in this part contains geograph-
ical distance and aggregate pronunciation difference of 613
locations in the Netherlands. It has two variables, linguis-
tic distance measured by average string edit distance of a
set of words, and geographic distance in kilometers. The
data is a subset of the Dutch date set analyzed by Nerbonne
2010. Note that (to save myself from some difficult ques-
tions) the distances corresponding to the sites very close to
each other are not included in the data set we will use here.
The data can be found athttp://coltekin.net/cagri/R/
data/ling-geo.rda.

Exercise 7.1. Load the R data file from http://coltekin.
net/cagri/R/data/ling-geo.rda into your R environ-
ment. If all goes right, you should have a new data frame
named 1g. >

We will also make use of the data set seg from Section 6, and
the m1u data set from Section 3. If you do not have the data in
your R environment, you should return to Exercise 6.1 and to
the beginning of Section 3 to load or create these data sets.

7.1 Correlation

We have introduced how to calculate some of the correlation
coefficients earlier in Section 2.2. Here, we will revisit this,
and introduce the way to make inferences regarding correla-
tion. We will not dwell on the assumptions of correlation. The
Pearson’s correlation coefficient shares all its assumption with
least-squares regression with a single predictor, and we will
check these assumptions in the next subsection.

Exercise 7.2. Using the seg data set, find the following cor-
relation coefficients between pmi and h.

¢ Pearson’s r
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» Kendall’s T
* Spearman’s p

Remember that all can be calculated using the same function
cor(). >

The correlation coefficient calculated by cor() gives you
the expected correlation in the population. However, it
does not include any inferential information. The function
cor.test () gives you the confidence interval and a hypothe-
sis against with the null hypothesis ‘there is no correlation (the
coefficient is equal to 0)’.

Exercise 7.3. Perform cor.test () for the values you have
calculated in Exercise 7.2. >

If you pass a data frame to cor (), it will return a matrix of all
pairwise correlations between the variables in the data frame.
This is handy if you have a large number of variables, and
you’d like to inspect correlations between them.

Exercise 7.4. Calculate pairwise r values between pmi, h, rh,
sv and boundary columns of the seg data frame.

TIP: In this exercise, we want to take a subset of 5 columns
from a 7-column data frame. It is easier to exclude the re-
maining two columns instead of listing all 5 we need. In R a
negative index value results in exclusion of the data point. For
example, a index value of —1 will exclude the first item, and
likewise, a vector index of the form —c(1,2) will exclude the
first two items. >

One thing to note in Exercise 7.4 is that one of the variables
we have included in the correlation analysis (boundary) is
not a numeric variable. Correlation coefficient between the
numeric and categorical variables can be calculated using so-
called Point-biserial correlation coefficient, which gives yet
another hint that linear models can handle both numeric an
categorical data types.

7.2 Least-squares linear regression

In Section 3, we already did some exercises with linear regres-
sion. In summary, we fit a linear model using 1m(), and ex-
tract the information we need in most cases using summary ().
We worked on these steps earlier in Listing 5 for predicting
mother’s MLU from the child’s MLU (repeated here as List-
ing 9 for convenience).

Youshould already be able to interpret most of the information
presented in Listing 9. If not, you are encouraged to revise
Section 3.

Exercise 7.5. Using the 1g data set, fit a linear regression
model predicting the linguistic difference from geographic dis-
tance. Produce the summary of linear regression fit.

Assuming the modeling assumptions are sound (we’ll check
these shortly),

1. Is geographic distance reliably reflected in linguistic dif-
ference, e.g., is the slope of the model statistically signif-
icant?

2. What does the intercept represent in this model?

3. How much of the linguistic difference is explained by the
geographic distance?
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Listing 9: Summary of a linear regression analsysis (repeated
from Listing 5).

> m <- Im(mlu$mot ~ mlu$chi)
> summary (m)
Call: Im(formula = mlu$mot ~ mlu$chi)
Residuals:

Min 1Q Median 3Q Max
-0.79928 -0.14665 0.06142 0.14003 0.66232

Coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) 5.7133 0.2326 24.559 <2e-16

mlu$chi 0.1503 0.0839 1.791 0.0871

Residual standard error: 0.3182 on 22 degrees of
freedom

Multiple R-squared: 0.1272, Adjusted
R-squared: 0.08757

F-statistic: 3.207 on 1 and 22 DF,

0.08708

p-value:

7.3 Model diagnostics

Here, we will first focus on model diagnostics, checking
whether the least-regression assumptions hold or not. Previ-
ously we extract residuals and tried to check whether they are
normally distributed or not. R provides an easier way of check-
ing various assumptions of linear regression. All you need to
do is to type plot (m) (assuming you saved your model as m).
This produces four graphs presented in Figure 2.

All graphs in Figure 2 expose possible violations of model-
ing assumptions. The top-left graph, residuals vs. fitted gives
an indication of whether your residuals are correlated or not
(independent). What you do not want to see here is to have
any sort of pattern. The graph at the bottom left, fitted vs.
\/| standardized residuals | is basically the same graph with
a different scale. It helps seeing some patterns that are diffi-
cult to see in the first graph. In both graphs, you could detect
nonlinearities and if variance is not constant across the pre-
dicted values. For a regression analysis with single predictor,
you can see these values from a simple scatter plot (you may
need to tilt your head a bit to see the resemblance). However,
as the number of predictors increase, scatter plots will not be
as useful, but fitted vs. residuals graphs will still be a useful
diagnostic.

In both graphs, although it is difficult to decide due to small
number of data points, it seems variance decreases around
the region that correspond to fitted values of 6.0 to 6.1 of
the mother’s MLU. The fitted vs. \/ | standardized residuals |
graph also indicates some mild non-linearity. The cases that
may be causing the problems are labeled (by their row num-
bers in the data frame). These graphs identify data points 1,
20 and 22 as potential causes of poor model fit.

The top-right graph is the familiar Q-Q plot. For least-squares
regression, we want our residuals to be normally distributed.
Again, it is difficult to judge due to small number of cases, but
our example seems to diverge slightly from the ideal line in
both tails.

The last, bottom-right graph gives an indication of influen-
tial data points. Leverage of a data point is the distance of a
data point from an average data point on the x-axis (or on the
multidimensional space defined by all predictors). The points
that have high leverage and/or large residuals are likely to be
very influential. Cook’s distance is a measure of influence of
a particular data point. You can think of Cook’s distance as

Residuals

JIStandardized residuals|
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Figure 2: Diagnostic plots for linear regression.

measuring the effect of removing a data point from the regres-
sion analysis. If resulting parameter estimates change drasti-
cally, the point will have larger Cook’s distance. The contour
lines drawn (at Cook’s distance 0.5, and 1.0 if you have such
points) indicate influential data points. The points that appear
outside the contour lines need particular attention. The data
point 20 is obviously the most influential case, and 1 and 22
may also needs some attention. Although opinions differ, a
rough guideline is that a Cook’s distance above 1 should be a
cause of concern.

Once you are convinced that a particular observation is an out-
lier, you may want to remove it from the model fit. 1m()
and similar functions provide a handy notation to select or
exclude certain observations. The argument subset may
be used to specify the row index for data in use. Alter-
natively, you can specify the data option with already se-
lected rows, e.g., data=mlul[c(1:19,21:24),], or simpler
data=mlu[-20,].

Exercise 7.6. Repeat the analysis in Listing 9 twice. First,
without the most influential observation according to Figure 2.
And second, without an observation (approximately) at the
center with respect to the child’s MLU values (such an ob-
servation is unlikely to be influential, why?).

Compare the change in coefficient estimates, and 72 value with
respect to the summary displayed in Listing 9. >

Exercise 7.7. Produce the diagnostic plots for the model you
fit in Exercise 7.5. Make sure all four diagnostic plots are plot-
ted on the same graph, and use gray ‘dots’ for the points plot-
ted to reduce the clutter you get due to large number of points
(this will also make the lines without a specified color gray,
but that’s fine).

0.5

0.5

1



1. Do you see any non-linearity?
2. Do the residual look normally distributed?
3. Is the variance of the residuals constant?

4. Are there very influential data points?

Exercise 7.8. Repeat the plot you have produced in Exer-
cise 7.7, this time save the result into a PNG file. >

7.4 An example transformation

If you were careful enough in Exercise 7.7, you should not
be content with the assumptions of the model we fit in Ex-
ercise 7.5. When regression assumptions especially the lin-
earity assumption, are violated, one of the ways to fix it is to
transform the predictor or the response variable. Normally, in-
specting your data is helpful in detecting non-linearities, and
deciding for possibly useful transformations. Here, we will
first do the transformation first, and then justify it.

Exercise 7.9. Add a new variable log.geo to 1g data frame
which contains the log-transformed geographic distance. >
Exercise 7.10. Fit a linear regression model using log.geo

as the predictor of the linguistic differences.

1. Compare the output with the earlier output without log

transformation.
2. Plot the diagnostic graphs, and compare them with the
one you saved in Exercise 7.8.
>

7.5 Predictions of a linear model

The inference for the slope indicates a reliable relationship be-
tween the outcome variable and the predictor. In other words,
if modeling assumptions are correct, and the t-test performed
for the slope is statistically significant, we confirm that pre-
dictor has an affect on the response variable within the chosen
level of significance. Besides this ‘hypothesis testing’ inter-
pretation, a linear regression fit can also be used for predicting
the outcome variable for new values of the predictor. Given
a predictor value x, and the coefficients a and b, the value of
the outcome variable, {j, can simply be calculated using the
formula
J=a+bx

Note that this prediction does not include the uncertainty as-
sociated with the estimate.

In R, you can use predict () to calculate model predictions
(and confidence) about unseen data points. For example, as-
suming the variable mlog contains the model that predict lin-
guistic difference from the logarithm of the geographic dis-
tance (from Exercise 7.10), Listing 10 demonstrates the use of
predict () function to obtain the predicted linguistic differ-
ences between sites whose distances are 10, 20, 50 and 100km,
along with the lower and upper values of the 95% confidence
interval for the estimated regression line.
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Listing 10: Example use of predict ().

1 > predict(mlog,

2 newdata=data.frame (

3 log.geo=log(c (10, 20, 50, 100))),
4 interval='confidence ')

5 fit lwr upr

6 1 0.1053994 0.1045929 0.1062059

7 2 0.1462061 0.1456081 0.1468042

8 3 0.2001497 0.1998106 0.2004888

9 4 0.2409565 0.2407551 0.2411578

Note that the newdata option of predict () requires a data
frame where the predictor variable(s) are named the same as
the original data frame used for fitting the model. This may
seem unnecessary for simple regression, but it will be clear
why a data frame is required when we work with multiple re-
gression. If you do not provide the newdata option, predict
will use the data used for fitting the model.

The option interval="'confidence' in Listing 10 results in
the confidence interval for the estimated regression line: the
expected value of the response variable at a given predictor
value. If you specify interval='prediction', instead, you
will get an interval where 95% of the future observations are
expected to fall. You should think about the former as your
estimate of the mean in the population, and the latter as the
expected range of individual observations. If the number of
observations used for fitting the model is large, the former (the
confidence interval of the estimated mean) will be tight. How-
ever, the latter (the individual values sampled from the popu-
lation) is unlikely to be affected by the increased number of
observations during the model fit. If you skip the interval
option, predict () returns only the predicted values without
any interval.

Exercise 7.11. Using the m1lu data set (see the beginning of
Section 3) perform the following:

1. Plot a scatter plot of the mother’s MLU vs. the child’s
MLU.

. Fit a linear regression model predicting the mother’s
MLU from the child’s MLU, assign the result to a vari-
able.

. Draw the linear regression line over the scatter plot using
a red solid line.

. Draw lines for the lower and upper bounds of the 95%
confidence interval for the linear regression estimate over
the scatter plot and the regression line. Use a different
color and line type than the regression line.

TIP: You can create a number of, e.g., 20, equally
spaced values that span the x axis by
seq(min(mlu$chi), max(mlu$chi),
length.out=20),

and use it with predict to obtain the lower and upper
bounds of the confidence intervals.

Exercise 7.12. Plot the scatter plot of geographic distance vs.
linguistic difference. Use gray dots for the points plotted.



Plot geo vs. predicted values from the linear model without log
transformation (the model in Exercise 7.5) using a red solid
line.

Plot geo vs. predicted values from the linear model with
log transformation (the model in Exercise 7.10) using a blue
dashed line.

Use sensible axis titles, and include an appropriate legend in
the resulting figure.

>

Exercise 7.13. We did not plot our confidence bands using
the 1g data set since due to large number of data points the
confidence intervals is very small and not visible on the graph.

For the sake of demonstration, draw the confidence bands as
in Exercise 7.11 for the model predicting linguistic differences
from the logarithm of geographic distances. While plotting
the confidence bands, use newdata option of predict () to
obtain 20 equally spaced points over the x axis.

>

8 Muiltiple regression

In our many passes over the regression so far, we have only
worked with a single explanatory variable. In this part ex-
tend it to multiple predictors. Although it does not change
the model fitting drastically, there are a number of issues that
come with multiple predictors.

The data we will use in this part is another hypothetical study
on child language acquisition. This time we want to inves-
tigate the effects of amount of time spend in front of TV to
two-year-old children’s language development. The data can
be found as an R data fileathttp://coltekin.net/cagri/
R/data/tv.rda. The response variable in this data set, cdi,
is a standard measure of children’s language abilities based
on parental reports. The predictor we are mainly interested in
is tv.hours, which is the weekly hours of TV time for each
child. We have some other predictors that we will explain in
the relevant exercises below. As in most cases in this tuto-
rial, the problem/design is simplified and the data is randomly
generated.

Exercise 8.1. Read the data from http://coltekin.net/
cagri/R/data/tv.rda. If all goes fine, you should have a
new data frame called tv. >

8.1 Reuvisiting single regression (for the last time)

Multiple regression is not very different than simple regres-
sion we studied piece-by-piece in multiple steps so far. In this
subsection, we will fit two simple regression models for later
comparison with the multiple regression.

Exercise 8.2. Fit a simple regression model where tv.hours
is the only predictor of the cdi score. Store the model object
in variable m1.

1. Summarize the results, what does the model predict about
the effect of watching TV?

2. Produce the diagnostic plots. Make sure that all four di-
agnostic plots produced are shown on the same graph.
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3. Plot a scatter plot of cdi against tv.hours, and the re-
gression line over it.

4. Plot 95% ‘confidence’ and ‘prediction’ bands around the
regression line. Use distinct colors and line types.

Exercise 8.3. Fit a simple regression model where
mot.education is the only predictor of the cdi score. Store
the model object in variable m2. Summarize the results, and
compare it with m1.

You are encouraged to repeat Exercise 8.2 fully for m2. >

8.2 Multiple regression

To fit a regression model with multiple predictors, we add each
predictor to the right side of the tilde ‘~’ in our model speci-
fication (formula). Note that for numeric predictors, the inter-
action terms are difficult to interpret. As a result we almost
exclusively use + between the predictors.’

Exercise 8.4. Fit a multiple regression model predicting cdi
from tv.hours and mot . education using the tv data set.

Save the new model object as m3.

Summarize the new model, and compare it with the earlier
models m1 (from Exercise 8.2) and m2 (from Exercise 8.2).

In particular, you should be checking the changes in the p-
values, and the 2. Can you explain the differences that you
observe? >

The scatter plots that were so useful in single regression be-
comes rather useless in the context of multiple regression. For
two predictors, you can plot so-called 3D scatter plots. A 3D
scatter plot is hardly digestible except for simple/demonstra-
tive data sets. We will not experiment with them here, but note
that a number of R packages, including scatterplot3d and
rgl and Remdr have functions to plot 3D graphs.

Exercise 8.5. Plots two side-by-side scatter plots using the tv
data set. One cdi against tv.hours and another cdi against
mot.education.

On both plots, draw the single regression line, and the resulting
line from the multiple regression m3 (the intersection of the
regression plane and the plane defined by the relevant axes).

TIP: You can use coef () to extract coefficients from m3. For
example, coef (m3) [1] will give you the estimated intercept.
>

Exercise 8.6. A typical visualization trick for representing
high dimensional data is to use colors (or shades) to represent
one of the dimensions. In this (somewhat tricky) exercise, we
want to see for which values of the predictors tv.hours and
mot .education we have high cdi values.

Plot squares filled with shades of gray that represent
the predicted cdi scores for each pair of tv.hours and
mot . education values within the range of data.

The maximum CDI value should be plotted in black, and the
minimum should be plotted in white. Put tv.hours to x axis,

11f you include interactions with : or *, R will include new predictors that
are products of the original variables. Technically, there is nothing wrong
with this, but it rarely has a straightforward interpretation.
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and mot .education to the y axis. For both, use the integer
values within the range in the tv data set.

TIP1: you can initialize a new graph, but do not plot anything
on it (except axes, labels etc.) using the option type='n".

TIP2: the function gray () returns color values that can be
used with plotting functions. Alternatively, you canuse rgb ()
produce a colorful graph instead. >

8.3 Multicollinearity

One of the problems that affect the parameter estimates and in-
terpretation of a multiple regression analysis is multicollinear-
ity. If two predictors are collinear, part of the variance in the
response variable is explained by both. Multicollinearity does
not affect the predictive power of the model. However, the
coefficient estimates will become less certain, and difficult to
understand. If a predictor which is collinear with the existing
predictors is added to a regression model, the earlier estimates
may change. A sign of multicollinearity is the high linear cor-
relation between the predictors.

Exercise 8.7. Check the correlation between the predictors of
m3 from Exercise 8.4, using cor (). >

An extreme case of multicollinearity is when one of the pre-
dictors is a linear combination of one or more other predictors.
If this is the case, the least-squares estimation will not be pos-
sible.

Exercise 8.8. Fit another model, where as well as tv.hours
and mot.education, their sum is also a predictor. Note
that to make sure that + works as an arithmetic operator in
a model formula, you need the function I(). In this case
the new predictor should be specified as I(tv.hours +
mot.education).

Summarize the result.
>

A well known measure of collinearity is variance inflation fac-
tor (VIF). The VIF represents the increased uncertainty of a
coefficient (slope) estimate of a predictor due to the predictors
in the model. The details of the calculation is, as usual, not we
are interested here, but the following formula may give you
some insights. Variance inflation factor for the j predictor,
Xj, 18
1
2

VI = 1 —r1¢
j

where sz is the 1% value obtained by fitting a model predict-
ing x; from the rest of the predictors. For example, if our aim
is to check VIF of x1 in the model specified by y ~ x1 +
x2 + x3, we use the 7> from the regression x1 ~ x2 + x3.
Clearly, the higher the VIF, the higher the variability on es-
timates of coefficients. Although there is no clear-cut rule, a
common suggestion to consider values above 5 to high VIF.
You should have already realized that each predictor has an
associated VIF.

You already know how to calculate VIF without any additional
help. However, you can also use the function vif () from car
package (Fox and Weisberg 2011). The (Fox and Weisberg
2011) package contains quite a few useful/convenient func-
tions for regression and ANOVA.
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Exercise 8.9. Calculate VIF values for the predictors in the
largest model we studied so far, m3.

Reminder: to be able use the functions from the library car,
you need to first run

> library('car')

If your installation does not have the 'car' library, you can
install it (with proper rights on a computer connected to Inter-
net) using the command

> install.packages('car')

>

8.4 712 and adjusted 12

We already know that 1 is the square of the Pearson’s correla-
tion coefficient, and interpreted as the ‘the ratio or percentage
of the variance in the outcome variable explained by the pre-
dictor’. With multiple regression, there is no straightforward
correlation coefficient anymore. However, the ‘Multiple R-
squared’ reported in the regression summary still has the inter-
pretation of ‘the ratio of the variance in the outcome variable
explained by the predictors’.

Despite this nice interpretation, 12 is inflated by adding more
predictors, even if the new predictors have no explanatory
power. The adjusted version, noted as 72, corrects for this be-
havior. The following formulation of the ¥2 helps relating it to
12 (it looks crowded but is is quite easy to digest if you make
the attempt).

n—1
n—k—1

where n is the number of observations, and k is the number
of predictors (not including the intercept term). You should
realize that T2 is always smaller than 12, and as k gets larger,
the difference will be bigger. For large data sets, on the other
hand, the difference will be smaller (k will have little effect on
the adjustment). One can also view T2 as the estimate of 72 for
the population (this will be more apparent if you rearrange the
formula in terms of the ‘model sums of squares’ and the ‘total
sums of squares’).

=1- x (1=12)

Exercise 8.10. The function runif () returns a random sam-
ple from a uniform distribution. For example, runif (80,
0, 1) returns a vector of 80 random numbers between 0 and
1, which are distributed uniformly.

Create two additional columns in tv data set, and fill it with
random numbers from a uniform distribution (the range of the
numbers does not matter).

Fit a new model where these two ‘random’ columns are added
as predictors besides tv.hours and mot.education.

Compare the ‘R-squared’ and ‘Adjusted R-squared’ values
with and without the new irrelevant (random) predictors. >

8.5 Model selection

In fitting models with multiple predictors, we typically exper-
iment with including or excluding predictors. Deciding for an
adequate model depends on many factors, such as the predic-
tors that are measured/collected and aim of the model. For ex-
ample the choice of a model over another can be very different
if the aim of the modeling is to make predictions as opposed



to understand the coefficients (effects). The ground rule is, all
else being equal, we prefer simpler models. As well as the
Occam’s razor, for the purpose of understandable coefficient
estimates, simplicity is also motivated by the fact that with
many predictors, the parameter estimates become too variable
to be interpretable. For the purposes of prediction, large num-
ber of predictors will typically be costly to be measured, and
they will cause overfitting: the model will perform well for the
know data, but will perform poorly on unseen data. Here, we
will not make any strong suggestions about model selection,
but try to introduce some common tools that help comparing
models.

The function update () in R allows you to modify an exist-
ing model gradually. Once we have a base model, instead of
specifying a new model from scratch, we can define a model
that adds or removes variables to or from the base model. For
example,

> update(m, . ~ . + x1)

adds a new predictor x1 to a model m that is fitted earlier, for
example, with 1m(). Similarly,

> update(m, . ~ . - x2)

returns a new model where the predictor x2 is removed from
the original model m. The dot °.” in these formulas represents
the set of values from the original model (m). In both cases,
the result is a new model object.

Exercise 8.11. The tv data set includes another predic-
tor daycare.hours which specifies the number of hours per
week the child spends in a daycare.

Using update () create a new model that adds this predictor
to the model m3 from Exercise 8.4. Name the new variable m4.

Does the new predictor affect the model fit? Is the effect sta-
tistically significant? >

Any additional predictor, even a completely random one, will
result in a better fit: the residual variance will be lower (and
2 will be higher). The question we often ask is whether the
reduced residual variance can be a chance effect or not. This
leads us to compare residual variances of two models. You
should already be familiar with the concept of comparing two
variances: this is what we do in ANOVA. If you run anova ()
on two model objects, it will perform an F-test, and tell you
whether the residual differences are statistically significant.

If amodel (with all the predictors) is doing something useful, it
should be doing better than predicting the mean of the response
variable for any predictor value. Such a test is automatically
done when we summarize linear regression results. The F-test
result on the last line of a linear regression summary is from
such a test.

Exercise 8.12. The formula ‘response ~ 1’ specifies a
model with no predictor, or more correctly a model with a con-
stant prediction.

Using the tv data set, fit such a model predicting cdi. Assign
the resulting model to variable m0.

Check whether the estimated intercept is the same as mean of
the response variable.

What does the standard error of the estimated intercept corre-
spond to? >
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Exercise 8.13. Perform an ANOVA comparing m0O (Exer-
cise 8.12) and m1 (Exercise 8.2).

Do the improvement (reduction) in residual variation inm1 sta-
tistically significant (at level 0.05)?

Compare your result with the F-test reported in the summary
of model m1.

>

Exercise 8.14. The ANOVA we have performed in Exer-
cise 8.13 serves only as a demonstration. The same test is al-
ready included in the model summary. It is more interesting
to compare two different models with predictors.

Compare m1 vs. m3 and m3 vs. m4 using anova().
Note: conventionally, the smaller model is listed first.
What conclusions do you get out of these comparisons? >

If you run anova () on a single model object, it will perform
F-tests incrementally for each predictor. The order of tests
performed depend on the order the predictors in the regression
formula. anova () first tests the model with the first predictor
against the model of the mean, then the model with first two
predictors against the model only with the first predictor, and
so on. As a result, changing the order of predictors will result
in different results.

Exercise 8.15. Repeat the tests performed in Exercise 8.14 by
a single call to anova (). >

Akaike information criterion (AIC) is a measure used for
model selection. The AIC is

AIC = 2k — 2log(L)

Where k is the number of predictors, and the L is the likelihood
(of the data given the estimated model), which is another mea-

sure of model’s fit to the data (we will return to discussion of
likelihood).

Given two models, the model with lower AIC value is pre-
ferred. Notice that the AIC rewards good fit (higher L), ? and
penalizes the modes with large number of predictors (lower
k).

The function AIC() calculates the AIC value for a given
model.

Exercise 8.16. Compare the models you compared with
anova() in Exercise 8.14 with AIC(). Which model is the
best according to AIC? >

When there are many predictors, one may want to employ an
automatic method for model selection. Note that the number of
models to compare when you have k predictors is 2*. For ex-
ample, for k = 10 this amounts to 1024 comparisons, and for
k = 20 the number of comparisons required is over a million.
With increasing k, comparing all possible models becomes in-
tractable.

Even if comparing all possible combinations of coefficients
is possible, you should not expect any mechanical procedure
to find you the best model. Normally your model selection
should be guided by the knowledge relevant to the problem at

2Hint: logarithm of a number between 0 and 1 is between —oo and 0 re-
spectively



hand. However, a few search procedures that look for an opti-
mal model are commonly used in the literature. The function
step () provides the well-known backward (starting with the
full model, and eliminating variables that are deemed not use-
ful), forward (starting with no or a few predictors, and adding
ones that improve the model most) procedures, or a combina-
tion of both. If you want larger models to be explored, you
will need to use the scope option to specify which predictors
step should consider adding.

Exercise 8.17. Apply step() to the full-model (m4 from Ex-
ercise 8.11) on tv data set. >

9 General Linear Models

The main distinction we made between the models (or analysis
methods) we discussed so far has been based on the type of the
predictors. This follows the historical distinction made in the
literature. If the predictors are categorical, we use ANOVA.
If they are numeric, we use regression. These distinction turns
out to be superficial. Both type of analyses can be carried out a
generalization of the linear regression, general linear models.
We have already made an excursion into general linear mod-
els in Section 4.6, by analyzing a categorical predictor with
1m(). In this part, we will built on this, working with categor-
ical variables with more than two levels, and also mixing the
categorical and numeric predictors.

The new data set we use comes from another hypothetical
study where we try to assess the factors that affect school chil-
dren’s success in learning a second language (L2). We assume
that all our participants are kids at the same age and schooling
but from different backgrounds. The response variable is a test
score for second language learners (12score), and we will use
a variety of predictors including the amount of L2 exposure
outside the class (12exposure), a standardized score of over-
all achievement in school (gpa), proficiency in their first lan-
guage (11score), socio-economic status of the parents (ses)
and the gender (gender). The data set is available as a CSV
file at http://coltekin.net/cagri/R/data/12.csv.

Exercise 9.1. Load the CSV file from http://coltekin.
net/cagri/R/data/12.csv. Name the resulting data frame
12. Make sure that the variables gender, ses and subject
are factor variables. >

Exercise 9.2. Using the 12 data set, test whether gender af-
fects the school success (gpa) using a linear model fit by 1m ().

What does the intercept and slope represent in this model?
Verify your conclusions with an equivalent t-test. >

9.1 Categorical variables in regression

A categorical variable with k levels (groups) is represented
with k — 1 separate variables in linear regression. The most
common way of representation is called indicator, treatment
or dummy coding. In this type of coding, one of the levels are
taken to be the base or the reference level (e.g., control group
in a experimental study). For the reference level, all k — 1
variables are set to 0. For the other levels, one of the k — 1
variables are set to 1, the rest are set to 0.

In our gender example above, since we have only two lev-
els, we have only one indicator variable (should be named
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genderM in Exercise 9.2). The indicator variable is set to 0
for female subject, and it is set to 1 for male subjects. If we
write the linear predictor as

gpa =a+b x genderM

it should be clear that for girls, we prediction of the GPA to be
a+Db x 0 = q, the intercept. For male subjects, the prediction
will be a + b x 1. As a result the slope, b, will represent the
difference between the means of male and female participants.
Then, the t-test performed for the slope indicates whether there
is a difference between the means of male and female partici-
pants.

Extending this idea to a variable with more than two levels is
easy. For example, if we perform a similar analysis predicting
gpa from ses, the estimated linear predictor is (assuming low
is the base level)

gpa = a-+b; x ses.mid + b, x ses.high

where ses.mid and ses.high are two indicator variables, that
are set to 1 only for the corresponding level of the ses. Table 1
shows the relationship between the levels of the ses and the
indicator variables.

Table 1: Indicator variables for three-level factor ses.

indicator variable

ses.mid ses.high
low 0 0
mid 1 0
high 0 1

Exercise 9.3.  Fit a linear regression model predicting
12score from ses using the 12 data set.

How do you interpret each coefficient and the corresponding
significance value? >

Exercise 9.4. We already know that we can get a classical
ANOVA summary using summary.aov(). Summarize the
model in Exercise 9.3 using summary.aov (). Which quan-
tities are the same on both summaries? >

The interactions of categorical variables are represented in a
straightforward way in indicator coding. What we do is sim-
ply include the product of each of the indicator variables. For
example, for the gender and ses factors we were working
with, the resulting predictor would be like

In this case, the intercept represents the case where both vari-
ables are in their reference level (gender = F and ses =
low in our example). The slope values should now be inter-
preted with care. For example, if gender = M and ses =
mid, the expected response is a + by + by + by4.

Exercise 9.5. Fit a linear model predicting 12score from ses,
gender and their interactions.

Try to interpret each coefficient.

Specification of intercept is implicit in R formulas. We can
force intercept to be O by adding -1 to the right side of a for-
mula. For linear models with continuous predictors this does
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not make much sense. For linear models with categorical pre-
dictors, on the other hand, forcing intercept to be 0 makes the
coefficient estimates the estimates of means for each level. In
combination with the standard errors of each estimate, this
parametrization of a linear model may be more insightful in
some cases.

Exercise 9.6. Fit a linear model predicting 12score from ses
with no intercept. >

9.2 Other ways of coding categorical variables: contrasts

The indicator coding of categorical variables we worked with
so far is easy to interpret. However, there is nothing special
about this 0-1 coding scheme. A categorical variable with k
levels can be coded as k—1 variables many different and useful
ways. We will not go into details of contrast coding in this
tutorial, but just mention a few ways to do it.

The default contrasts for a factor variable, as we saw above,
is so-called treatment contrasts. However, if you create a fac-
tor variable as an ordered factor (either using the ordered ()
function or ordered=T option of factor()),® the default
contrasts become so-called polynomial contrasts. Instead
of differences between means, the polynomial contrasts test
whether there is a polynomial trend of some sort along the or-
dered levels.

Exercise 9.7. Add a new variable named ses.ordered to
the 12, which is an ordered copy of the ses variable.

First plot side-by-side box plots of 12score for each
ses.ordered group. Do you observe of trend based on SES?

Now, fit a linear regression model predicting 12score from
ses.ordered.

Compare the summary of the model with the one from Exer-
cise 9.3.

>

Exercise 9.8. Change the order of levels of the ses . ordered
created in Exercise 9.7 as "high"<"low"<"mid", repeat the
model fit, and compare your results with Exercise 9.7.

>

So, far we worked with the default contrasts for different types
of factor variables (ordered and unordered). You can dis-
play and set contrasts for a factor variables using the function
contrasts().

Exercise 9.9. Inspect the contrast matrices of variables
gender, ses and ses.ordered in the 12 data set. >

You can create well-known contrasts using a set of functions
that start with contr.. For example, contr.poly(5) will
create the contrast matrix (similar to the one presented in Ta-
ble 1) for a factor with five levels. These matrices then can be
assigned to a factor variable through the contrast () func-
tion. For example,

> contrast(ses) <- contr.poly(3)

3Note that this is different than specifying the order the levels of an ordi-
nary factor variable. The levels of an unordered factor variable can only be
checked for (un)equality. On the other hand, the ordered factor variable has
a defined ordering. So, one can compare ordered factors with operators like
>, <, <=etc.
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sets the contrast for the factor ses to polynomial contrasts.

In fact, you can use any k by k — 1 matrix as contrasts.
Of course, it will be useful only if the resulting comparisons
makes sense. As said at the beginning, we will not cover con-
trasts in much detail here. However, before concluding, we
will experiment with another well-known contrasts, Helmert
contrasts, which are used to compare each level of a factor to
the previous one. Helmert contrasts in R can be obtained with
the function contr.helmert ().

Exercise 9.10. Re-order the ses . ordered factor from low to
high.

Set the contrasts for the ses.ordered to Helmert con-
trasts. Fit a linear regression model predicting 12score from
ses.ordered with the new contrasts.

Compare your results with the model with the treatment con-
trasts.

>

In closing, we note that in all the contrast experiments we did,
the main (ANOVA) results are the same. The reason for set-
ting contrasts is to facilitate the hypothesis tests performed
with a linear model for different purposes. Contrasts that obey
certain criteria are called orthogonal contrasts. Orthogonal
contrasts are safe against the multiple comparisons problem
we discussed in Section 4.

For the rest of this tutorial we stick to the default (treatment)
contrasts.

9.3 Mixing categorical and numeric predictors

As we just saw, we can convert a categorical variable with
k levels to k — 1 indicator variables, and use multiple linear
regression to estimate a linear predictor. This also opens up the
possibility of using both categorical and numeric predictors in
the same model. Traditionally this sort of analyses would be
called analysis of covariance (ANCOVA).

Given our formula notation, there is nothing interesting for
fitting mixed-predictor models. We just specify all predictors,
categorical or numeric, on the right hand side of the formula.

Exercise 9.11. Fit a linear model predicting 12score from
gender and gpa (without interaction). Summarize and inter-
pret your results.

Compare the results with a model where gender is the only
predictor. How do you explain the change in the coefficient
estimates of gender between these two models? >

We can conceptualize the model we fit in Exercise 9.11 above
as having two intercepts, one for girls and one for boys, result-
ing in two regression lines with the same slope.

Exercise 9.12. Plot 12score against gpa, using the gender
symbols ¢ and &, and colors red and blue for points corre-
sponding to girls and boys respectively. (use other symbols if
your R environment does not support Unicode characters).

Plot two lines over the scatter plot with the same slope and ap-
propriate intercepts for girls and boys based on the estimations
from Exercise 9.11. >

If we specify interaction between a categorical and a numeric
variable, we can conceptualize it as fitting separate intercepts
and slopes for all levels of the factor variable.



Exercise 9.13. Fit a linear model predicting 12score from
gender and gpa without interaction. Summarize and interpret
your results.

>

Exercise 9.14. Repeat the Exercise 9.12 with varying inter-
cepts and slopes estimated in Exercise 9.13. >

Exercise 9.15. Fit two separate linear models predicting
12score from gender, one only using the data correspond-
ing to gender=F, and the other one for gender=M.

Compare the coefficient estimates with the ones from Exer-
cise 9.13. >

Exercise 9.16. Fita linear model predicting 12score from all
other variables in the 12 data set, except subject. Include all
interaction terms (also interactions between the numeric pre-
dictors). We will refer to this model for the rest of this section
asm.full.

1. Does the model fit to the data well?
2. Which coefficient estimates are statistically significant?

3. Is the overall model fit statistically significant? How do
you interpret that the inference for the overall model, con-
sidering the inference for the individual coefficients?

>

Exercise 9.17. Starting from the m.full from Exercise 9.16,
do a stepwise elimination of the variables.
What does step () return as the best model?

How many variables are attempted for removal at the first
step? (and why?) >

Exercise 9.18. Do another stepwise analysis, but this time
start from a model with no predictors (the model of the mean),
and allow addition and removal of the variables at each step
The scope should be equal to the predictors of the m.full
defined in Exercise 9.16.

Compare the AIC value with the one suggested by the step ()
in Exercise 9.17. Which procedure returns you the best model?
Is this the best possible model with these predictors?

>

Exercise 9.19. Produce the standard diagnostic plots for the
best model identified by step () in Exercise 9.18.

1. Do you see any sign of non-linearity?
2. Is there any evidence for non-constant variance?
3. Are the residuals distributed approximately normally?
4. Are there any influential observations?
>

The following exercise is useless in practice. However, un-
derstanding the model fit, and the consequences will help you
understand the models we will discuss in later sections.

Exercise 9.20. Fita model predicting 12score using subject
as the only predictor. What does the coefficient estimates
mean in this model? Can you explain the v and the inference
about the coefficient estimates and the overall model? >

10 Probability distributions

This section walks you through a set of utilities R provides
for working with probability distributions. Probability distri-
butions underlie all statistical analyses we perform. In most
cases you will not use these utilities directly, R provides func-
tions to do the analysis you are interested in without requiring
to work with the distribution functions. Nevertheless, it is im-
portant to understand the concepts behind the analyses you are
performing. If you read this section and do the exercises here,
you will refresh your memory about probability distributions,
and get a few additional tips and tricks about using R.

The probability distributions we have already mentioned di-
rectly or indirectly include normal (or Gaussian) distribution,
Student’s t distribution, F’ distribution. There are many other
theoretical distribution that are interesting for statistical anal-
ysis. Most data in real life comes in the form of one distribu-
tion or another, and in statistics we often assume that the data
comes from a certain distribution, typically the normal distri-
bution. Even in non-parametric tests, where we do not assume
that the data is distributed according to a theoretical distri-
bution, we use the fact that a relevant statistic is distributed
(roughly) according to a well-known probability distribution.

For each distribution it knows about, R provides four functions
that may come handy at times.

d The functions that start with d are the probability density
functions. The value of these functions indicate the like-
lihood of observing the given data point.

For example dnorm(1.96) will give you value of the
density function at 1.96. You should remember that the
values of density functions of continuous distributions,
like dnorm() or dt (), are not probability values.

p The functions that start with p are the cumulative distribu-
tion functions (CDF). Cumulative distribution functions
return the probability of observing a value lower than the
given data point. The value of the CDF correspond to
the area under the distribution function up to the given
value. For example, pnorm(-1.96) will give you the to-
tal probability of observing a value less than or equal to
—1.96, given the data is distributed according to standard
normal distribution.

The CDFs are the way of obtaining the p-values. You can
use these functions instead of the p-value tables that dec-
orate inner covers or appendixes of statistics textbooks.

q The functions that start with q are the quantile functions.
The quantile function of a distribution is the inverse of its
CDF. In other words, given a probability p, the quantile
function returns x where probability of observing a value
less than or equal x is p.

If you are lost with the explanation don’t worry (yet),
the following example may help. Assume that we want
a p-value of 0.025, for values distributed with stan-
dard normal distribution. If you run the command
qnorm(0.025) in R, you will get the value of the vari-
able for which you would obtain a p-value of 0.05 (in a
two-tailed test).

r The functions that start with r are sampling functions. They
return a vector of specified size that is sampled randomly
from a given distribution. For example, rnorm(10) will



produce 10 random numbers that are distributed accord-
ing to standard normal distribution. The sampling func-
tions are particularly handy for doing simulations.

A probability distribution is specified using a number of
parameters. For example normal distribution is typically
parametrized by its mean and standard deviation, and the t-
distribution has a single degrees of freedom parameter. For
example, rnorm (10, mean=10, sd=5) will produce 10 ran-
dom number from normal distribution with mean 10 and stan-
dard deviation 5. If a distribution has standard parameter val-
ues, R will use the standard values if you do not specify the
parameters. For normal distribution this is mean=0 and sd=1.

Exercise 10.1. For the normal distribution with u = 3500 and
o =200,

« find the probability that a value from this distribution is
less than or equal to 3000.

+ find the probability that a value from this distribution is
greater than or equal to 4000.

+ what is the probability that a value from this distribution
is between 3000 and 4000.

« find the value of the density function at 3400. Is this value
a probability?

* find the maximum value for which p-value is less than
0.01.

+ find the upper and lower bounds for which p < 0.005.

>

Exercise 10.2. Plot the cumulative distribution functions of the
standard normal distribution and t-distribution with degrees of
freedom 1, 5 and 20 on the same graph. Make sure all func-
tions are plotted in the range -4 to 4 as smooth curves (not
points), and choose different colors for each function. Use
sensible axis labels, and include a legend to indicate which
line belongs to which distribution.

Note that this is similar to the Exercise 6.10 but this time we
plot the CDFs instead of the density functions. >

The binomial distribution characterizes n trials of an event
with one of two outcomes. One of the outcomes occurs with
probability p. For example, the binomial distribution with
n=10 and p=0.5 characterizes number of heads (or tails) you
get for 10 flips of a fair coin. Every 10 flips you perform will
produce a number between 0 and 10 (more likely 5 than 1 or
9 though). The binomial distribution is not only for coin flips.
Many interesting quantities are binomially distributed. Just
name a few: whether a sentence is judged ‘grammatical’ or
‘ungrammatical’, whether a student passes the exam or not,
whether one is diagnosed with dyslexia or not...

Exercise 10.3. Produce a random sample of 200 values from a
binomial distribution with n = 100 and p = 0.55, and plot its
histogram. Make sure that the histogram is ‘normalized’ such
that the area under the histogram sums to 1, and modify the
axes ranges to contain all possible values. Plot the theoretical
density (or more correctly mass) function over the histogram.
>
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Exercise 10.4.

For large samples, it is said that the binomial distribution can
be approximated by the normal distribution.

Plot histograms of increasing numbers of samples from from
the binomial distribution with parameters p = 0.5 and size =
20, determine visually what sample size looks like the normal
distribution.

Note that in this exercise you are simulating multiple runs of
an experiment with fair coin where we count number of heads
(or tails) in 20 coin flips. >

Exercise 10.5. Repeat Exercise 10.4 with p=0.9. Is the
number of samples similar to what you have decided in Ex-
ercise 10.4?

Once you are convinced that the number gives you an approx-
imately normal distribution, draw the normal distribution with
the same mean and standard deviation over the histogram.
TIP: specifying probability=TRUE option to hist () will
produce a histogram with ‘relative frequencies’ making it
comparable to probability the density function.

>

Another interesting probability distribution that is sometimes
used when the data are counts of occurrence of and event (in
a fixed time period or location) is called Poisson distribution.
It has a single parameter A (lambda) which corresponds to the
rate of occurrence of the event.

Exercise 10.6. Draw probability density function for the Poi-
son distribution with rate parameters 3, 10, and 30 for the range
0 to 50 on the same graph.

>

Exercise 10.7. Create samples of 10000 items from each of
the following distributions:

+ standard normal distribution

* t-distribution with 3 degrees of freedom

* F-distribution with degrees of freedom 3 and 10
* log-normal distribution with standard parameters
* Poisson distribution with rate parameter 3

* binomial distribution with size=10, p=0.1

Plot normal Q-Q plots for each distribution on separate graphs
on the same canvas.

Repeat the exercise for only 20 (instead of 10000) samples
from each distribution.

This exercise will give you a better idea of how non-normally
distributed data looks like on a Q-Q plot.

>

11 Logistic Regression

Logistic regression is a member of the generalized linear mod-
els (GLMs),* a generalization of linear regression to case

4Not to be confused with general linear models of Section 9.



where residuals (error) is not normally distributed. Further-
more, the linear model is related to the actual response through
a link function. In logistic regression we will study here, the
link function is the logit function, and the residuals are dis-
tributed binomially.

We will use two data sets in this part. First, a larger ver-
sion of a familiar data set, the seg data set from Section 6.
This data can be found at http://coltekin.net/cagri/
R/data/seg-large.csv.

Second, we will use another data set related to language ac-
quisition. The data contains information on ‘overregularized’
past tense verb forms in CHILDES recordings. The observa-
tions (lines in the data) correspond to recording sessions. For
each session, the data contains the age of the child in months
(age), the number of times the child utters irregular verbs in
past form in (n. past) and number of times that form is over-
regularized (n.or). We are interested in predicting the proba-
bility (or rate) of overregularizations from a child’s age. You
can get the full data set at http://coltekin.net/cagri/
R/data/past-tense-or.csv.

Again, the problem is real, but the data is fake (The counts of
past tense forms are from CHILDES, but error rate does not
have any empirical basis.). You should not take the conclu-
sions out of this analysis seriously.

Exercise 11.1. Read the CSV file http://coltekin.net/
cagri/R/data/seg-large.csv into your R environment.
Name the resulting data set seg (overwriting the earlier one
if exists).

Make sure that the variables utterance and phoneme are
factor variables.

>

Exercise 11.2. Read the CSV file http://coltekin.net/
cagri/R/data/past-tense-or.csv into your R environ-
ment. Name the resulting data set or.

Add anew variable correct to the or data frame that contains
the rate of correct (not overregularized) production of the past
tense forms.

>

11.1 Regression and binomial response variables

Exercise 11.3. Fit an ordinary least squares regression model
predicting the rate of correct past tense production from the
age of the child using the data set or.

Check the model assumptions through diagnostic plots, and
refit a model excluding the most influential data point. Save
the resulting model as or.ols.

Repeat the diagnostic plots. Do you see any other problems
with the model diagnostics? >

Exercise 11.4. What is the predicted correct past-tense rate
for children at ages 1.5 and 8? Note that age in our data is in
months. >

If you were careful in Exercise 11.4, you should have real-
ized that the model predicts a probability value greater than
one. One of the first problems with using ordinary regression
to predict probability values is that the probability values are
bounded between 0 and 1, while our linear model is happy
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to predict any value between —oo and +oo. The first step in
logistic regression to relate the regression prediction to our re-
sponse variable through a function. Instead of predicting the
probability value p, we predict logit(p) which is

109(131@)

Since probabilities are between 0 and 1, the quantity in the
parentheses above, the odds, transform it between 0 and —oo,
and taking logarithm of the value expands the range from —oo
and +oo0.

Exercise 11.5. Plot the curve of the logit function defined
above. >

Transforming the response variable with logit is just part of
the solution, and we do not normally do the transformation
manually. However, just for the demonstration, we will trans-
form the data and fit a ordinary regression model in the next
exercise.

Exercise 11.6. Add a new variable, 1log. odds, to the or data
frame which contains the log odds for the probability of correct
responses.

Fit a linear regression model predicting the transformed vari-
able log.odds from age. Exclude the outlier we identified
earlier. Save the model as or.logit.

Produce the diagnostic plots and inspect the results. How do
you interpret the coefficients? >

Exercise 11.7. What are the expected rate of overregulariza-
tion for children at ages 1 to 10 (years) according to the model
fit in Exercise 11.6?

>

11.2 Binomial data and generalized linear models

The exercise above aims to give you a sense of how logistic
regression proceeds. Specifying a non-linear function as our
response variable (logit transform) is only part of the solution.
The model fit in Exercise 11.6 still assumes that the residuals
are normally distributed, which is incorrect for binary or bino-
mial response data. We cannot fix this with 1m(). The 1m()
function in R fits models with normal residuals. To fit a proper
logistic regression, as well as other GLMs, we use the glm ()
function.

The syntax of glm() is similar to the syntax of Im(). The
differences are the specification of the response variable, and
the type of GLM (e.g., logistic or count regression) with the
family parameter. The value of the famliy parameter we
use with the logistic regression is binomial. If no family pa-
rameter is specified, the default gauissian is used, in which
case the glm() is equivalent to 1m(). In logistic regression,
we specify our response variable either as binary 0 and 1 val-
ues, or as a two column matrix of ‘success’ and ‘failures’ for
each observation. Since the or data fits the second format,
Listing 11 presents specification and summary of a logistic re-
gression model using glm () using the success/failure notation.

The output should mostly be familiar. The first important dif-
ference to keep in mind is that the coefficient estimates are
not the estimates of the probabilities, but the logit of the prob-
ability values. The hypothesis test performed is a z-test (the
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Listing 11: Logistic regression example. The output is edited
for clarity.

> or.glm <- glm(cbind(n.past-n.or, n.or) ~ age,
family='binomial', data=or, subset-68)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.93872 -0.54742 0.01848 0.75018 2.31268

Estimate Std.
(Intercept) 0.558637
0.037836

Error z value Pr(>lzl)
0.153005 3.651 0.000261
age 0.003878 9.756 < 2e-16

1
2
3
4
5
6 Coefficients:
7
8
9
0
1

(Dispersion parameter for binomial family taken

to be 1)
12 Null deviance: 190.765 on 90 degrees of
freedom
13 Residual deviance: 93.036 on 89 degrees of
freedom
14 AIC: 385.24
15 Number of Fisher Scoring iterations: 4

z-value here is also called Wald’s statistic), but the interpreta-
tion is the same. The other differences you should have noticed
include the frequent use of the term deviance, and no sign of
2 in the output. These are because of the fact that the logistic
regression model is estimated using maximum likelihood es-
timation (MLE) rather than least squares regression used in
ordinary linear regression. The deviance measures the differ-
ence between the model of interest, as measured by log likeli-
hood, and a model that fits the data perfectly.® The deviance
in GLMs is similar to the residual sums of squares in ordinary
regression. Smaller deviance indicating better model fit. The
AIC we introduced in Section 8 is also reported here. Remem-
ber that this is a combination of the model fit (likelihood) and
number of parameters in the model, and lower values of AIC
indicate better models.

A problem with logistic regression (as well as other GLMs)
is overdispersion. Overdispersion occurs when error (residu-
als) are more variable than expected from the theorized dis-
tribution. In case of logistic regression, the theorized error
distribution is the binomial distribution. The variance of bi-
nomial distribution is a function of its mean (or the parameter
p). If there is overdispersion, the coefficient estimates will
be more confident (smaller standard error values) than they
should be. One can detect overdispersion by comparing the
residual deviance with the degrees of freedom. If these two
numbers are close, there is no overdispersion. Residual varia-
tion much larger than degree of freedom indicates overdisper-
sion. Underdispersion, detected by lower residual deviance
than the degrees of freedom, is also possible but more rare. In
our example in Listing 11, there is no indication of overdis-
persion.

The last line in Listing 11 indicates the number of iterations
used in the MLE estimation. The MLE, unlike least squares
estimation, is not an analytic procedure but an iterative opti-
mization procedure. All else being equal, large number of it-
erations means that the model was difficult to fit, and in some
cases glm() will give up and announce that the model could
not be fit within the maximum number of iterations defined.
Sometimes, you will get a result (probably accompanied by a
warning) but the estimates be will far from optimum. This is
generally evidenced by very large standard errors in compari-

5This is called a saturated model, it typically includes as many parameters
as the number of data points.
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son to the coefficient estimates.

We will first deal with the overdispersion problem. A sim-
ple solution for overdispersion is to estimate an additional pa-
rameter indicating the amount of the oversidpersion. With
glm(), this is done so-called ‘quasi’ families, i.e., in logis-
tic regression we specify family=quasibinomial instead of
binomial.

Exercise 11.8. Although we concluded that there is no overdis-
persion with the model presented in Listing 11, fit the same
model with quasibinomial family, and compare the sum-
mary with the model or . glm above.

>

The predict () function for GLMs can present you either the
value of the linear outcome (logit value in this case), or the ac-
tual response value (the probabilities). The fist one is the de-
fault, if you want to get the response values, you should specify
type='response' option of the predict () function.

Exercise 11.9. What are the expected rate of overregulariza-
tion for children at ages 1 to 10 (years) according to the model
or.glm from Listing 11? >

Exercise 11.10. Plot the scatter plot of observed correct past
tense rates against age in the or data. Plot the curve represent-
ing the expected correct past tense rate against the age range
in the data using the model or.glm. >

11.3 Binary data

Another case of binary or binomial response is when we have
binary ‘success/failure’ information for each observation. In
the or data set we worked with above, the unit of observation
has been a recoding session. Alternatively, we could consider
every single past tense verb uttered by any child as the unit
of observation, and indicate whether it was correct or overreg-
ularized (why is this a bad idea?). As a tricky exercise, you
can try to expand the or data set as binary responses, and fit a
GLM and observe the differences. However, we will switch to
the seg data set for experimenting with binary-response data.

To fita GLM with a binary response, we simply use our binary
response variable (the response variable it can be in different
data types, but it should have only two values), and use the
binomial family with glm.

Exercise 11.11. Using the seg data set, fit a logistic regres-
sion model predicting whether there is a boundary or not for a
given pmi value. Save the model as seg.pmi.

Do you observe overdispersion?

Plot the observed data, and the prediction curve on the same
graph. >

A measure of fit for a logistic regression model is to check
how accurately the model predicts the data. Note that since
the predictions of the model are probabilities rather than direct
success/failure indications, we need to set a threshold value.
Using a threshold of 0.5, i.e., assuming probabilities over 0.5
indicate success, is common in practice. However, there may
be cases where a different threshold may be applicable, or in
some cases we are not interested in converting probabilities to
decisions at all, as in the or data set above,



Exercise 11.12. Calculate the accuracy (ratio of successful
predictions divided by total number of predictions) of bound-
ary predictions by the model fitted in Exercise 11.11.

TIP: You ~can compare seg$boundary
predict(seg.pmi, type='response')> 0.5.
that type="'response' is important here.

with
Note

>

Exercise 11.13. We can view logistic regression as a clas-
sification method. For a classifier, we often want to know
whether it achieves better than a trivial baseline. In most cases
the trivial baseline is not just choosing the response randomly,
but guessing the majority class. In our segmentation problem,
majority class is non-boundary, that is there are more word-
internal phoneme pairs than word boundaries.

What is the majority-class baseline accuracy for the seg data
set?

>

11.4 Further exercises in model selection

In the exercises above, we have worked with only one predic-
tor for simplicity. The logistic regression, and the GLMs in
general, is an extension of the general linear models we studied
earlier. As aresult, we can use multiple numeric or categorical
predictors with the logistic regression as well.

Exercise 11.14. Fit a logistic regression model predicting
boundaries from all variables in the seg data frame. Make sure
that the variables utterance and phoneme are processed as
categorical variables. Name the resulting model seg.full.
Summarize the results. >

Exercise 11.15. Compare the models glm.pmi and
glm.full using anova (). Note that if you like to perform hy-
pothesis testing, you should specify test="Chisq", since the
difference between the deviances for the two models follows
an approximate x? distribution (as opposed to F-distribution
we use with 1m() residuals). >

Exercise 11.16. You should see in Exercise 11.15 that the
difference between the models seg . pmi and seg.full is sta-
tistically significant, but you should have also realized that the
smaller model has much fewer degrees of freedom.

The AIC values (in the model summaries) also indicate that
the big model is better. However, some of the variables in the
big model may not be necessary.

Perform a stepwise selection starting from the full model
model.full. Save the model identified by step() as
seg.model. >

Exercise 11.17. Calculate the accuracy of the seg.model
from Exercise 11.15. Compare it with the accuracy of the
model seg.pmi you calculated in Exercise 11.12.

Is the difference statistically significant? TIP: You could
either use Fisher’s exact test, or Chi-Square Test for Inde-
pendence for this purpose. The names of the functions are
fisher.test() and chisq.test () respectively.

>
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Exercise 11.18. A model’s predictions are most useful out-
side the data used to fit the model. Fit another logistic regres-
sion model that predicts the boundaries from pmi, h and rh
using the first half of the data (utterance numbers O through
49). Calculate the accuracy of the model on the first and sec-
ond half of the data, and compare the results. TIP: converting
utterance back to numeric may be useful here. >

Exercise 11.19. Repeat Exercise 11.18 with only a single pre-
dictor, pmi.
>

11.5 More on logistic regression and GLMs

In this tutorial we only discuss the binary (or binomial) case.
Logistic regression can also be used with a multinomial re-
sponse, where you have more than two categories, e.g., noun,
adjective or adverb. Ifthe response is ordered, multinomial lo-
gistic regression can be fit using polr () from the MASS pack-
age. Unordered multinomial logistic regression can be fit us-
ing the mnp package.

The 1rm () function from the rms package also provides func-
tions for fitting logistic regression models, with some ad-
ditional options and output with additional statistics (e.g.,
pseudo 12 values). The package also contains other useful util-
ities for fitting and diagnosing GLMs.

12 Multilevel / mixed-effect models

Except for repeated-measures ANOVA, all methods we have
studied so far assume independent observations. Often, this is
not correct for the data at hand. And sometimes, we do break
the independence assumption in data collection, because some
questions are answered more directly or naturally by data with
some systematic dependence between the observations. In
this section, we will study so-called mixed-effect or multilevel
models. The first name implies that some of the effects, the
coefficients, which we always assumed to be fixed quantities
so far, can be random, distributed according to a probability
distribution. The second name emphasizes that the (some of
the) coefficients are also ‘modeled’. That is, coefficients vary
according to a model at a different ‘level’. The term ‘level’
here does not necessarily include a strict hierarchy. The use of
the first name mixed-effect models is more common in (psy-
cho)linguistics literature. However, there is also a large num-
ber of valuable resources that refer to this type of models as
multilevel models. Both, at the end, refer to the same sort of
modeling practice we will work on in this section.

We will use three different data sets in this section. Besides
two familiar data sets, bilingual and newborn from Sec-
tion 5, we will also introduce a new data set.

In our somewhat hypothetical investigation here, would like to
know whether parenthetical expressions, expressions like this
one, behave similar to intonational phrases (IP), or phonolog-
ical phrases (PP). The proper definitions of these phrase types
and the theoretical motivation behind this investigation are not
important for our purposes. We will use the rate at which
these different classes of phrases uttered for the comparison
here. The data is available as an R data file containing multi-
ple data frames at http://coltekin.net/cagri/R/data/
par.rda. The problem is inspired by Giines (2014), but heav-
ily simplified, and the data is modified for these exercises.


http://coltekin.net/cagri/R/data/par.rda
http://coltekin.net/cagri/R/data/par.rda

Exercise 12.1. Load the data from http://coltekin.
net/cagri/R/data/par.rda. Make sure that you print and
check the object(s) loaded from this file.

You probably realized that the data set loaded in Exercise 12.1
consists of three data frames. The data frame par.data con-
tains the individual observations. par.item contains infor-
mation regarding ‘items’, the different phrases used in the
study, and par.subj contains information about the partici-
pants. This sort of organization is more suitable for storing and
organizing your data. It avoids replication of the same infor-
mation. For example, if we have stored everything in a large
data frame (or spreadsheet), we would need to replicate age of
a participant for each observation from the same participant.
The problem is not the storage (it is plenty and cheap nowa-
days). However, a data organization with replicated values
calls for inconsistency, and it should be avoided while storing
and updating the data.

Exercise 12.2. Although the organization of the data in Ex-
ercise 12.1 is the correct way of storing the data, The analyses
we will perform are more convenient with a single large data
frame. The functionmerge () in R can be used to combine two
data frames into a single data frame by replicating the values
in some columns when necessary. Note that the data frames
will be merged based on the columns with the same name on
both data frames. In our case, the variables are consistently
named. So you would not need to reorganize the data frames,
or specify which columns to be used as keys during the mere.

Merge all three data frames into a single data frame with name
par. Remember from Section 6 that par is also a built in func-
tion name. This is fine. Different types of objects (a function
and a data frame in our case) can have the same name in R. We
do this here for demonstration, but you should avoid using the
names of built-in R objects to prevent potential confusion. >

12.1 Background

We start with a(nother) reminder of the simple regression ex-
pressed by the following formula:

yi =a-+bxi +e;

where y is the response variable, x is the predictors, i indexes
each observation or data point, a and b are the coefficients of
the model, and e is the variation that cannot be explained by
the model. In general linear models, we assume this error to
be normally distributed with zero mean. Generalized linear
models (GLMs) allow us to work with different error distri-
butions. For example, in logistic regression, e is distributed
binomially. However, a crucial assumption of all these mod-
els is that e is the only source of random variation. The rest
of the model a + bx is deterministic. Hence the coefficients
a and b are unknown but fixed quantities.

The mixed-effect models we will study here allow other (more
systematic) random sources of variation. This additional
source of variation typically occurs due to multiple correlated
measurements. For example, in the newborn data set we
worked with in Section 5, we had multiple measurements of
sucking rates from the same baby. Besides the random vari-
ation that we cannot account for, this includes a systematic
variation due to individuals: some babies will be faster, and
some will be slower. In repeated-measures designs, we make
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use of this variation to estimate the effects of interest more
precisely. The mixed-effect models we will study here allow
more flexible modeling of additional sources of variation. For
example, extending the linear equation above to include vari-
ation due to each subject j would result in the following set of
equations:

Yi = Q5[] + bxi + e;

Although this can be written in other forms, the notation nec-
essarily gets complicated with mixed-effect models. Here we
introduce a random variation due to each subject j that only
affects the intercept. In other words, now we have as many in-
tercept terms as the subjects. Intercept vary between the sub-
jects. The term a;[i] means the intercept that corresponding to
the subject j that the observation i came from. Crucially, the
aj are estimated from all the data, not only from the data that
belongs to subject j. As a result, the estimation of a; will be
pulled towards the 1. This means for subjects whose inter-
cept is not estimated precisely from their own data (because
of small number of observations or high variation), the popu-
lation estimates will play a role.

The equation above defines a rather simple form of mixed-
effect model. In this model we only vary the intercept for
each subject. One can also define varying slope(s), in which
case our assumption would be that the subjects not only have
a different base rate (intercept) but they also have different
slopes. In this case, we assume, for example, that the sub-
jects react to experimental manipulation differently. Further-
more, we are not limited to a single source of variation. The
mixed-effect models can incorporate multiple sources of vari-
ation. For example, subjects and the items (the experimental
material, e.g., words, sentences, stories) can be defined as two
different sources of variation each having systematic effect on
the intercept, slope(s) or both. The mixed-effect models are
a generalization of generalized linear models, which means
you can also fit mixed-effect logistic regression, or any other
GLM.

In this section, we will use the 1mer () function from the 1me4
package for fitting mixed-effect models. To match the lmer ()
output better, we rewrite the equation for the mixed-effect
model above as

Yi = Ha + €)’[i] +in + ey

The model is the same, but 1Imer () syntax follows a more flat
representation as in here. Writing it this way allows us to un-
derstand 1mer () output better. Now we have a common inter-
cept for all subjects, but two error terms: one is due to subjects
(€) and the other (e) is the unexplained ‘residual’ variation.
Both errors are normally distributed with zero mean for the
models we will discuss here, but as noted earlier for mixed-
effect GLMs that can have non-normal error terms.

This much of explanation is already too much for a ‘hands-on’
tutorial. Hopefully, the above gave you a general sense of the
theory behind the exercises we will do in this section. You will
learn the details while working on the exercises below. At the
end of the section we list a few books that cover multilevel or
mixed-effect models in a comprehensive but also accessible
way.


http://coltekin.net/cagri/R/data/par.rda
http://coltekin.net/cagri/R/data/par.rda

12.2 Random intercepts

As usual, we will start with a simple case. In Section 5, we
worked with a hypothetical experiment where we wanted to
see if newborn babies react to their mother’s native language
differently than a foreign language. The response variable was
the sucking rate, and the predictor was the input language. Ear-
lier, we used paired t-test and repeated measures ANOVA for
analyzing the same data set. It will also be our first example
in mixed-effect models.

Exercise 12.3. Fit an ordinary regression for predicting the
effect of input language on the sucking rate using the newborn
data set. We will refer to this model as nb.1m. Note the co-
efficient estimates and the residual variance. Can you see any
parallels with this analysis and the t-test performed in Exer-
cise 5.37 >

Exercise 12.4. Plot a scatter plot of sucking rate vs. language
in the newborn data set, and the fitted regression line over it.

Note that the default plot method for numeric vs. factor is a
box plot. For a scatter plot, you need to convert the factor
language to integer values between O and 1 (to match the
indicator coding). TIP: adding small amount of noise to the
data points in the x-axis will make the individual data points
more visible. For this, you can use the function jitter(), or
alternatively, you can add your own noise by random numbers
sampled from a uniform distribution.

>

We know that this analysis is not correct (the observations are
not independent). This would only be correct if there would
be no differences between the subjects. In other words, our
analysis would be correct if all the variation we observe was
due to random (or randomized) factors outside the experimen-
tal design.

We already hinted that there are multiple mixed-effect mod-
els that can be specified for the same the problem. The sim-
plest form of the mixed-effects specification includes a single,
‘intercept-only’ random effect. In this type of model, we as-
sume that the individuals measured have different ‘base rates’,
but all react to the different conditions (e.g., experimental ma-
nipulation) the same way, except for the completely random
variation. Hence, the intercept varies per subject, but slope is
the same.

To specify a random intercept term in 1mer () we use a nota-
tion like (1|subject). Here we assume that the source of ad-
ditional variation (the random effect) is the variable subject.
This term needs to be added to the right side of our model for-
mula. Listing 12 shows the way to fit a random-intercept-only
model to the newborn data.

The first line in Listing 12 loads the relevant functions from
the 1me4 library, and it is needed only once in an R session.
The 1mer () call is similar to 1m (). Only big difference is the
specification of the random intercept term.

Summary of the model fit first includes information about the
‘random effects’. Here, the line labeled participant refers
to the variation due to participants. It corresponds to the error
term € in the formula above. The column Name indicates that
this random effect only affects the intercept. The line labeled
residuals is the general variation that cannot be accounted

Listing 12: Random-intercept-only mixed-effects model.
Parts of the output is supressed for clarity

1 > library(lme4)
> nb.lmerl <- lmer(rate ~ language +
(1|participant), data=newborn)

[\

3 > summary(nb.lmerl)

4 Linear mixed model fit by REML ['lmerMod']

5 Formula: rate ~ language + (1 | participant)
6 Random effects:

7 Groups Name Variance Std.Dev.

8 participant (Intercept) 94.42 9.717

9 Residual 10.87 3.297

10 Number of obs: 60, groups: participant, 30

11 Fixed effects:

12 Estimate Std. Error t value
13 (Intercept) 31.8437 1.8734 16.997
14 languagenative 4.5237 0.8513 5.314

for by the model. The 1mer () summary presents both the esti-
mated variance and the standard deviation (square root of the
variance), since standard deviation is easier to interpret. In
essence the summary tels us that the estimated intercept varies
according to a normal distribution with zero mean and a stan-
dard deviation of 9.72. The residual variation is a lot smaller.
This is a good case for using mixed-effect modeling (or re-
peated measures). One last thing note here is that in compari-
son to the ordinary regression fit from Exercise 12.3, residual
variation is reduced a lot.

Exercise 12.5. Compare the total random variance of the
mixed-effect model in Listing 12 with the residual variance
of the ordinary linear regression model from Exercise 12.3.

>

Returning to the fixed effects report in Listing 12, we see that
the intercept is estimated as 31.84 and the slope of the language
effect is estimated as 4.52. These correspond to mean sucking
rate while listening to stories in the foreign language, and the
rate difference between foreign and native languages, respec-
tively. These estimates are almost the same as the estimates
from the ordinary regression fit from Exercise 12.3. This is a
coincidence, due to simple (and fabricated) the data set. The
important difference lies in the standard error of the slope esti-
mate. Compared to the ordinary regression estimate, we now
have a much smaller standard error. Using the rough approxi-
mation £2x SE, the 95% confidence interval for the slope es-
timate is [2.8211,6.2263]. The difference from zero will cer-
tainly be statistically significant. However, lmer () summary
does not include a p-value. We also do not see the 1% or an F-
test for the overall model fit. As in generalized linear models,
due to the estimation method(s) used to fit mixed-effect mod-
els, we do not have straightforward ways to calculate these.
For now, we will use approximate +2xSE confidence inter-
vals to asses the reliability of the coefficient estimates, and we
will return to these problems later.

We said earlier that for the random-intercept model in List-
ing 12, each subject is assigned to a different intercept. How-
ever, the summary of the Imer () fit gives us only one intercept
estimate in the fixed effects, which corresponds to the mean of
the estimated intercepts. We only get the standard deviation
of the estimated subject intercepts in the summary () output.
In most cases, this is what we are interested in, we are inter-
ested in overall trends in the data, not the individual behavior.
In some cases, on the other hand, investigating random effect
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estimates may be crucial, and without any doubt, it is instru-
mental for learning what the mixed-effect models do.

To obtain the estimated random coefficients we use the func-
tion ranef (). The intercept value corresponding to a particu-
lar participant is the sum of the estimated random intercept and
the mean intercept value reported in the fixed-effects section
of the summary. To obtain only the fixed effects, you can use
the function fixef (). The coef () function we used earlier
with 1m () returns both fixed and random effects.

Exercise 12.6. The dotplot () function from lattice pack-
age provides a convenient way to plot the random effects. Plot
the random-intercept estimates of nb.1lmer1 from Listing 12
using dotplot ().

TIP: if you specify condVar=T to ranef (), it will return
(co)variance information together with the random effects
which will be picked up by dotplot () and it will plot 95%
confidence intervals along with the estimated random effects.

And a note: the lattice library includes many useful, easy-
to-use plotting commands multivariate data that you may want
to explore further (see Sarkar 2008, for more information). >

Exercise 12.7. What is the estimated sucking rates during ex-
posure to the foreign and the native language stimuli of par-
ticipant 1 and 3 according to the model nb. 1mer1 from List-
ing 127

Are these estimates different from the observed values?

>

Exercise 12.8. Repeat Exercise 12.4, creating the scatter plot
and the estimated regression line from the ordinary regression
fit (nb.1m). Also plot regression lines for subjects 1 and 3
according to the model nb.1mer1 from Listing 12.

Use different colors, and re-plot (without jitter) the data points
belonging to these two participants as filled circles with the
color of the corresponding regression line.

Make sure that the x-axis does not contain numeric labels, but
two labels foreign and native at the corresponding values.
TIP: for this you can first prevent drawing the x-axis with
xaxt='n" during plot (), and then, you can use the function
axis () to create a custom one. >

The least squares regression we fitted in Exercise 12.3 ignores
the subject variation completely. We will now study another
extreme example.

Exercise 12.9. Fit an oridinary regression model predict-
ing rate from language and participant (without inter-
actions). Name your model nb. 1m2.

Compare your results to earlier models nb. lmer1 and nb. 1m.

1. Does intercept and slope estimates (of langauge)
change?

2. How does the residual variance compare with the earlier
models?

3. What is the estimated intercept and slope of langauge
for participants 1 and 3?
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Exercise 12.10. Add the regression lines corresponding to
participants 1 and 3 estimated by the model nb.1m2 on the
graph produced in Exercise 12.8. Use dotted lines, but the
same color as the corresponding lines from the mixed-effects
model estimate. >

Although it does not make much sense in our example, the
model of the sorts we fit in Exercise 12.9 is not uncommon
in practice. The variables that are entered into analyses to
reduce the unknown variation are sometimes called blocking
variables.

The point of the exercises 12.8 and 12.9 for us is to demon-
strate that the estimates of a mixed-effect model will fall in
between a model that ignores the subject variation completely,
and the one that includes individual subjects as predictors. In-
cluding subject and language interaction in the model would
be another instructive exercise. However, since our newborn
data does not contain replication, such a model will be a sat-
urated model, and it will not be useful in practice (you are
encouraged to try it, though).

12.3 Random slopes

So far, we worked only with random intercepts. If there is
interaction between the random and fixed effects, e.g., if we
expect the subjects to react to the experimental manipulation
differently, the way to express this is to allow slopes to vary. If
we model random slopes, we will almost certainly model ran-
dom intercepts as well. Varying-slopes-only models are con-
ceivable but uncommon. When we talk about a model with
‘random slopes’ in this tutorial, it means we also include ran-
dom intercepts.

Specification of random slopes for lmer () is easy. We ex-
tend the random effect expression like (1 + language |
participant). Note that as in other parts of the formula no-
tation, the intercept is implicit in random effects term as well.
The expression (language | participant) have the same
meaning. If you happen to fit a model that only includes ran-
dom slopes, you need to specify it as either (language - 1

| participant),or (language + O| participant).
We will not be able to fit a random-slopes model with our
newborn data. If we include both intercepts and slopes, the
number of random coefficients will be equal to number of ob-
servations. Hence, the model cannot be fitted. We fit our first
random-slopes model using the bilingual data. Remember
that in this data set we are interested in differences in linguistic
skills of bilingual children between the language spoken only
at home, and the language which is also spoken in the lan-
guage community, particularly at school. Listing 13 presents
lmer () summary for predicting the language skills only from
the type of language (home.only or school), using random
slopes and intercepts.

The model specification does not need much explanation: we
want to predict mlu based on language, but we also specify
subj as a source of variation that affects both the slope and
the intercept. The resulting model can be described mathe-
matically as follows:

Yi = Ha + €] + (Ko + 851) X xi + ey

Before going into the interesting part, we quickly observe
that the fixed effects indicate an MLU of 4.3123 for the
home . only language for an average kid, and on average they



Listing 13: Mixed-effects with random intercepts and slopes.
Some output is supressed for clarity

1 > bl.1lmerl <- lmer(mlu ~ language +
(1+language|subj), data=bilingual)

2 > summary(bl.lmerl)

3 Random effects:

4 Groups Name Variance Std.Dev. Corr
5 subj (Intercept) 0.7576 0.8704

6 languageschool 0.0402 0.2005 1.00
7 Residual 1.1823 1.0873

8 Number of obs: 120, groups: subj, 20

9 Fixed effects:

10 Estimate Std. Error t value
11 (Intercept) 4.3123 0.2400 17.970
12 languageschool 0.4898 0.2035 2.407

show an MLU of 4.3123 + 0.4898 = 4.8021 for the school
language. These correspond to the 1, and py, in our formula
above. Our rule of thumb of +2 x SE confidence interval indi-
cates that the MLU difference between languages are statisti-
cally significant.

More interesting differences are in the random effects, since
we now have both random intercepts and slopes. The individ-
ual values of €;(;) and 8;(; are not visible in the summary, but
the random effects part indicate that the standard deviations of
estimated random effects are 0.8704 and 0.2005 respectively.
The residual standard deviation e is 1.0873 in this model fit.
lmer () also reports the correlation between the two random
effects. The correlation between the random intercepts and
slopes are reported to be 1. In general, there is nothing wrong
with high correlation between random intercepts or slopes. In
our case, that would mean that the kids who are more profi-
cient in their home language also show the higher difference
between home and school languages (it may be difficult to rea-
son about, but it can happen). However, a perfect or near per-
fect correlation (close to T or —1) indicates problems with fit-
ting the model. One option is to specify a model without ran-
dom effect correlations, which we will revisit later. Another
option, especially after observing that the variance of random
slope is close to zero is to check whether it is worth opting
for this more complex model instead of random-slopes-only
model.

12.4 Random intercepts or random slopes

So far, we have been fitting mixed-effect models with so-
called residual or restricted maximum likelihood (REML)
which is 1mer () default. This method has some advantages,
particularly for estimating variance components, over the max-
imum likelihood estimation (MLE) while fitting mixed-effect
models. However, MLE fit provides some additional informa-
tion such as AIC that we have used for model selection earlier.
To fit a mixed-effect model with MLE, you need to specify the
option REML=FALSE. In most cases, the differences between
MLE and REML estimates should be small.

Exercise 12.11. Refit the model bl.1lmer1 from Listing 13
using MLE. Name this model bl.1lmer2. Fit and another
model without random slopes (call it bl . lmer3) and compare
the AIC values reported for each model.

Which model does AIC prefer? >

Another way to compare two models is to test them using
anova(). In case of models fit by MLE, anova() will do
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a x? test for the differences between log likelihoods of two
models. The test result will be statistically significant if the
reduction in the log like likelihood is supported by the data.

Exercise 12.12. Compare the models bl.lmer2 and
bl.mler3 from Exercise 12.11 using anova().

What is your conclusion? >

Exercise 12.13. Plot the random intercepts and slopes of
the model bl.1lmer2 from Exercise 12.11 using dotplot ().
Make sure to include the confidence intervals in the
plots. The above assumes that you have already typed
library(lattice) to access this function from your current
R environment. >

12.5 Where are my p-values?

With mixed-effect models, it is no more straightforward to cal-
culate the p-values for the model coefficients. The difficulty
has to do with calculating degrees of freedom for the t-values
calculated from the coefficient standard errors. In most cases,
especially if you have enough data, +2xSE will give a crude
but useful approximation to 95% confidence intervals for a co-
efficient estimate. Other more precise alternatives include,

» comparing models with and without the coefficient using
anova(). If the models are significantly different, then
we conclude that the ‘effect’ is real.

calculating so-called ‘profile-based’ confidence intervals
(we will not discuss these in detail here, see Bates (2010)
for the details). Once you have confidence interval es-
timates, you can announce statistical significance at the
corresponding level if the interval does not contain 0.

 another alternative to calculate simulation-based p-
values. With older version of 1me4, this was made easy
with pvals.fnc () from languageR package by Baayen
(2008).

other packages such as mixed and 1merTest deals with
calculating p-values from mixed-effect models fit by
lmer ().

We will work only with the first two.

Exercise 12.14. this exercise we return to the newborn data
set, and want to test whether the input language makes a sta-
tistically significant difference on sucking rate of babies. We
fitted a mixed-effect model in Listing 12 for this data. Fit and
alternative model excluding the input language as predictor,
and compare the models to asses the effect of the input lan-
guage.

Reminder: To fit a model without any predictors (i.e., only
with an intercept), we use the syntax response ~ 1. Of
course, you will need to specify the random-effects term for
your new model to be comparable to the model nb. 1lmer1 fit-
ted earlier.

TIP: to make sure the likelihood-ratio test performed makes
sense, you should normally (re)fit the models with the MLE.
However, anova () will do it for you if your models were fit
with REML.

>



You can obtain ‘profile’ of a model with profile() com-
mand. The model profile can be inspected for inspecting the
coefficient estimates. Here, we will only use the profiles to get
the confidence intervals. To get the confidence intervals from
a profile, all you need to do is to run the function confint ()
on the profile object. Although you can perform hypothesis
tests at any significance level, it makes more sense to report
the confidence intervals directly. This is particularly true for
random effects whose confidence intervals tends to be asym-
metric.

Exercise 12.15. Using profile-based confidence intervals,
check whether the effect of input language is statistically sig-
nificant at «-levels 0.05 and 0.01?

Does the random effect due to the participants statistically sig-
nificant at the same levels?

TIP: 95% confidence intervals are the default for confint ().
To obtain 99% confidence intervals, you need to specify
level=0.99. >

12.6 Multiple fixed and random effects

As in factorial repeated measures ANOVA, we can have mul-
tiple fixed effects in an mixed-effect model. The specification
of the fixed effects are straightforward in the model formula.

Exercise 12.16. In Section 5, we analyzed the bilingual
data in a 3x2 repeated ANOVA design, where the response
were measured for each level of two variables: language
(home. only or school) and age of the children (preschool,
firstgrade and secondgrade).

Fit a mixed effect model with random intercepts and slopes.
(The repeated measure ANOVA corresponds to a mixed-effect
model with both random intercepts and slopes.)

* Decide for the best random effects configuration based
on AIC values. Note that not all random effect structures
are possible to fit with Imer (). In some cases lmer ()
will fail to converge and indicate this in its output.

* Determine the significance of the fixed-effects at level
o = 0.05 for your final model.

In our bilingual data, the bilingual kids were measured on both
languages, and different ages. In repeated measures ANOVA
terms, both language and age are within-subjects variables.
As in ANOVA, we can also analyze ‘mixed’ data between-
and within- subjects predictors with mixed-effect models. In
multilevel modeling literature, a between-subjects predictor,
such as gender in our bilingual data set, is associated with
a different level in the hierarchy. In the formula notation used
with 1Imer () you do not need to distinguish the between- or
within-subject variables. This will be apparent in the data or-
ganization. Of course, you do not specify random slopes for
such predictor if you are fitting a model with random slopes.

Exercise 12.17. Add gender as an additional predictor to your
best model from Exercise 12.16.

Does gender have a significant effect (at o« = 0.05)? >
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12.7 Crossed random effects

In the data sets we have been working with in this section,
we have only one sensible random effect (due to the partic-
ipants). Mixed-effect models has been advocated in (psy-
cho)linguistic research, particularly for their capability of han-
dling crossed, non-hierarchical random effects. The problem,
named ‘language-as-a-fixed-effect fallacy’ after Clark 1973,
arises because in a typical ‘repeated measures’ psycholinguis-
tics study one does not only repeat the measurements over the
participants, but also over the items, e.g., phrases, words, sen-
tences and maybe pictures, that are used as experimental mate-
rial. A typical repeated measures ANOVA generalizes to the
population the participants are sampled from, but not to the
language where the items are sampled from. In such an ex-
periment, the subjects and the items are crossed. That is, all
subject react to all items. Although there are some approxi-
mate solutions, including one suggested by Clark 1973, clas-
sical repeated measures methods cannot deal with this sort of
crossed random effects in a straightforward way see Baayen
2008; Raaijmakers et al. 1999, for further discussion.

There is nothing special in specification of multiple random
effects for Imer (). We simply add the additional random ef-
fects as before to the formula notation. For example specifica-
tion of random intercepts both due to subject and item would
be specified like (1|subject)+(1]item).

Exercise 12.18. Fit a model model with random intercepts and
slopes with subject and item as two sources of variation pre-
dicting speech rate from context using par data set. We
will call this model par.m1.

How do you interpret the fixed and random effects? >

Exercise 12.19. Fit the following simplified models.

par.m2 random intercepts due to items and random slopes
and intercepts for subjects.

par.m3 random intercepts due to subjects and random slopes
and intercepts for items.

par.m4 random intercepts only (due to both subjects and
items).

par.m5 random intercepts only due to subjects.
par.m6 random intercepts only due to items.

Pick the best model suggested by AIC(). >

Exercise 12.20. Add phrase length (Length) as a fixed effect
to model par . m4 from Exercise 12.19. We will call this model
par.m4a.

Compare the coefficient estimates with par .m4. Which fixed
effect estimates (and their inferences) change? Why? >

Exercise 12.20 points to a common problem with the estima-
tion of mixed-effect models with numeric predictors. In Exer-
cise 12.20, besides the fact that we have an intercept term with
no straightforward interpretation, you should have noticed that
the now the estimate is less certain, and there is a large correla-
tion between the intercept and the slope of the 1lenght. These
problems are due to the fact that the intercept is now far away
from the observations, and can be remedied by centering or
scaling the numeric predictor.



Exercise 12.21. The scale () functionin R centers and scales
a its argument. Repeat Exercise 12.20, but add the scaled ver-
sion of length.

How do you interpret the intercept term now? Do you observe
improvements in the estimation of the intercept term?

In the models we fitted in the last two exercises, we observe
another interesting aspect of the mixed-effect models. In a
normal linear model, the phrase id item and the phrase length
would be collinear. As a result, the coefficient of one of these
predictors would not be estimable. In mixed-effect models this
is fine, since the predictor length is only used for estimating
the intercept due to items. In other words, the length is a pre-
dictor in a different ‘level’. You should also observe this in
the reduction of the estimated variance of the random intercept
due to item (but almost no other changes) with the addition of
length as a predictor.

Exercise 12.22. Add the fixed predictors age and sex as pre-
dictors to the model par . m4a fitted in Exercise 12.21. We will
call this model par.m4b.

What is the new interpretation of the intercept?
Which random effects has changed? Why? >

Exercise 12.23. Use dotplot () from the lattice library to
plot the random intercepts with their confidence intervals due
to subjects from models par .m4 and par.m4b, and compare.

Do you observe the reduction in the subject variation in the
graphs?

TIP: The argument which="subject" to ranef () causes to
extract only the random effects due to subject from the model.

TIP2: dotplot () resets the values set by par (). So, plotting
these side-by-side is a bit tricky (you will not be tortured with
this). >

Exercise 12.24. Using profile-based confidence intervals, test
whether the effects estimated by the model par .m4b are sig-
nificant at level « = 0.01. >

12.8  Where to go from here?

Although we try to include some introduction to mixed-effect
models in this section, our aim in this tutorial, as usual, is not
to be comprehensive. Here we mention a few books that you
may want to consult for learning more about multilevel mod-
els, or possibly, study along with the exercises here, especially
if you are using this tutorial for self-study. A rather acces-
sible and comprehensive textbook on mixed-effect or multi-
level modeling is Gelman and Hill (2007). Another ‘must-
read’ book, if you will be using mixed-effect models in prac-
tice is Bates (2010). This book is written by the author of the
1me4 package, includes many practical examples with clear
explanations, and also available online (see the references at
the end for the URL). The focus of Baayen (2008, ch. 7) is
also mixed-effect models, discussed through examples from
linguistic data.
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A Answers

A.1 Starting R and finding your way around

Answer of 1.1.

> ??7'multivariate anova'
stats::manova
Variance
stats::summary.manova
Multivariate

Multivariate Analysis of
Summary Method for

Analysis of Variance

So, manova () should be the function we are looking for. Now
it’s time to type ?manova and learn how to use it. Note that
part of the output is trimmed for readability.

Answer of 1.2.

The answer may change depending on the version of R and
the packages loaded in the R environment. On my system if |
press tab after the third letter (the initial segment sha) the full
function name is displayed. And, after sh pressing tab twice
gives me a list of 9 commands.

Answer of 1.3.
Here is a way to do it:

> x = 20
>m = 10
>5 = s
>t <- x - m
>t /s -> z
> z

[1] 2
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Note the different assignment operators, <- and ->, in lines 4
and 5. We have already mentioned <-. —> is similar, but you
place the target variable to the right of —>, which is sometime
handy when you start writing a complex expression and what
to store the result in a variable.

Answer of 1.4.

(x - m) /s

z

Thing to note is that you need parentheses around the sub-
traction operation for correct interpretation. What is the result
without parentheses?

Answer of 1.5.
First we search using the keyword ‘logarithm’

> ?7logarithm

base::log Logarithms and Exponentials
nlme::logDet Extract the Logarithm of the
Determinant

Some additional information is excluded from this listing. In
this case R finds two matches. We are interested in the first
one. The notation base: : 1og tels that there is a Log function
in package base. We will study use of packages later. It is re-
assuring that it is in base package. Which means it is directly
accessible.

Now we know the function name, we calculate the logarithm
of 2.7:

> log(2.7)
[1] 0.9932518

Answer of 1.6.

If you have tried help(log) or ?1log (or ?base: : log), you
see that you can give a second parameter as base of the loga-
rithm. Furthermore, R gives you ‘shortcut’ functions for com-
mon bases like, 1og2() and 1og10(). We will use the first
method:

> log(2.7, base=2)
[1] 1.432959

We could just type 1log(2.7, 2), since the value is the first
and base is the second argument. The notation we use speci-
fies the base parameter explicitly, so that you do not need to
remember the order of the parameters. This notation is partic-
ularly useful for well known parameters (like mean or sd) of
other commonly used functions as well.

Answer of 1.7.

> 1s ()

[1] Ilmll "S" Iltll ”X" ||Z||
> rm(t,x)

> 1s ()

[1] llmll ||s|| |lz||

Here is a tip for deleting all variables without needing to list
all files (use with caution!):

> rm(list=1s())
> 1s ()
character (0)

Answer of 1.8.

> sd(nwords)/sqrt(length(nwords))
[1] 7.485096

The sqrt (x) function we used here is an alternative to x~0. 5.

Answer of 1.9.


http://lme4.r-forge.r-project.org/book/

1 > znwords <- (nwords - mean(nwords)) /sd(nwords)

2 > znwords; mean(znwords); sd(znwords)

3 [1] -0.06759625 -0.15209156 -1.84199776 0.35488030
4 [5] 0.18588968 0.56611858 -0.27883452 0.31263265
5 [9] 1.96029119 -1.03929231

6 [1] 3.852463e-15

7 [1]1 1

On line 2, we specified multiple commands on a single line,
separating them with semicolons “;’. You could, of course,
run each command on a separate line.

Note that R displays the mean on line 6 using the scientific
notation. This means 3.86 x 107", a very small number (but
should it not be 0?).

Answer of 1.10.

> sort(c(36,35,8,71), decreasing=T)
[1] 71 36 35 8

Another side note here: T is a shorthand for TRUE. It is unlikely
to make a difference for most purposes, but TRUE is a language
reserved keyword, and T is just a convenience variable. If you
are interested, the following proves the point:

> T
[1] TRUE
> T = FALSE
> T
[1] FALSE
> TRUE = FALSE
Error in TRUE = FALSE :
invalid (do_set) left-hand side to
assignment

If you try these, do not forget to rm(T) at the end of your
trial. Otherwise, at some point later, you may have a hard
time understanding ‘why things stopped working as they used
to be’.

Answer of 1.11.

> seats = c(36,35,8,71)

> (seats / sum(seats)) * 100

[1] 24.000000 23.333333 5.333333 47.333333

> round ((sort(seats, dec=T) / sum(seats)) * 100,
[1] 47.33 24.00 23.33 5.33

2)

Line 3 gives the answer, but line 4 uses the sorted list and
rounds the result to two significant digits after dot, which
makes it easier to read.

Answer of 1.12.

> wdiff <- ¢(6,8,6,5,7,5,9,7,10,9)

Answer of 1.13.
> nwords2 = nwords
> nwords = nwords - wdiff

> nwords; nwords2
[1] 3497 3495 3456 3506 3503 3515 3486 3504 3541
3469
[1] 3510 3508 3468 3520 3516 3525 3505 3519 3558
3487

Note, again, the use of multiple commands on the same line.
This time it is particularly useful, since it allows easier com-
parisons of the (short) vectors.

Answer of 1.14.

> mean (wdiff)

[1] 7.2

> mean(nwords2) - mean(nwords)
[1] 7.2
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A.2 Basic data exploration and inference

Answer of 2.1.

> stem(words)
The decimal point is 4 digit(s) to the right of

the |
0 | 255666
1 | 0113445778
2 | 011
31 2

The value displayed on the last line (corresponding to the per-
son who spoke 31955 words) seem to be quite far away from
the others.

Answer of 2.2.

> hist (words)

you should see the histogram on a separate window. For
now, we will only display our graphs on screen without much
makeup. R allows you to control every aspect of your graphs,
and you can save graphs from R in many different formats.
We will frequently revisit graphs later in this tutorial.

Answer of 2.3.

> boxplot (words)

Answer of 2.4.

> boxplot(words.f, words.m)

Answer of 2.5.

> cor(words, age)
[1] -0.2604937

We have a negative correlation, indicating people speak less
with age. The correlation is not strong, you should interpret
the strength of the correlation with respect to the problem at
hand, but typically absolute values less than 0.5 would not be
regarded as a strong correlation.

Answer of 2.6.

> cor(words.m, words.f)
[1] -0.3212523

There is no reason for these two values to be correlated (unless
sampling is done horribly wrong, and order of the numbers
reflect it somehow). Best explanation for the above correlation
coefficient is ‘chance’. And we will be discussing inference
for correlation later.

Answer of 2.7.

> plot(age, words)

The convention is to put the predictor on the x-axis and the
response variable on the y-axis. Presumably, we are interested
in effect of age on talkativeness (unless you hypothesize that
talking keeps you young). We should put age on the x-axis
and words on the y-axis.

Answer of 2.8. Here is the result, including the scatter plot:
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The regression line indeed agrees, it indicates that as age in-
creases, people become less talkative. In fact, the correlation
coefficient, Pearson’s r, is simply normalized simple regres-
sion slope. However, as we will stress later, least squares re-
gression (and also correlation) is sensitive to extreme values.
In our example, it seems the regression line is affected (possi-
bly substantially) by the youngest and most talkative partici-
pant.

You may want to remove this data point (or replace with a
more moderate value) and try last three exercises again. You
are encoraged to exercise with removing or replacing data
points as you like here. However, when you remove data
points in ‘real’ research, you should be convinced (and be
ready to convince others) that it is a sensible thing to do.

Answer of 2.9.

> plot(words.m, words.f)
abline(lm(words.f ~ words.m))

Answer of 2.10.

> se.words <- sd(words)/sqrt(length(words))
> se.words
[1] 1620.478

Answer of 2.11.

> mean(words) - 2 * se.words
[1] 10007.14
> mean(words) + 2 * se.words
[1] 16489.06

or a more practical notation:

> mean(words) - c(-2, 2) * se.words
[1] 16489.06 10007.14

The second calculation may be difficult to grasp at this point.
However, it shows clearly how R treats the vectors.

Answer of 2.12.

> mean(words) + qnorm(0.025) * se.words
[1] 10072.02
> mean(words) + qnorm(0.975) * se.words
[1] 16424.18

Or simplifying it similar to the above, both for normal and
t distributions:

> mean(words) + gnorm(c(0.025,0.975)) * se.words

[1] 10072.02 16424.18

> mean(words) + qt(c(0.025,0.975), df=19) =*
se.words

[1] 9856.401 16639.799

The confidence interval calculated using the t distribution is
larger (less certain, or more conservative if testing for hypothe-
ses). As expected, ‘multiply by +2’ approximation yields a
slightly larger interval than the intervals calculated using the
normal distribution.

Answer of 2.13. The confidence intervals calculated in Exer-
cise 2.12 includes 16000. As a result, we cannot reject the null
hypothesis (that there is no statistically significant difference).

Answer of 2.14.

> t.test (words, mu=16000)
One Sample t-test

data: words

t = -1.6982, df = 19, p-value = 0.1058

alternative hypothesis: true mean is not equal to
16000

95 percent confidence interval:
9856.401 16639.799

sample estimates:

mean of x
13248.1

Not surprisingly, the difference is not significant at 0.05 signif-
icance level (p-value = 0.1058). Also note that the confidence
interval reported by t.test () is the same as the confidence
interval you calculated using the t distribution above.

Answer of 2.15. Again, we simply do a single-sample t test.

> t.test(words.f, mu=20000)
One Sample t-test

data: words.f

t = -4.2857, df = 9, p-value = 0.002033

alternative hypothesis: true mean is not equal to
20000

95 percent confidence interval:
9590.798 16783.202
sample estimates:
mean of x
13187

This time we have a small p-value. So we can reject the hy-
pothesis that population mean is 20000.

Answer of 2.16. We can already tell by looking at the mean
values (in our sample, mean value for men is larger than that
of women). However, we do the test nevertheless:

> t.test(words.f, words.m, alternative='greater')
Welch Two Sample t-test
data: words.f and words.m
t = -0.0367, df = 13.889, p-value = 0.5144
alternative hypothesis: true difference in means
is greater than O
95 percent confidence interval:
-5990.058 Inf
sample estimates:
mean of x mean of y
13187.0 13309.2

The above tests whether we can reject the null hypothesis, |1y —
Um < 0 in the population. Since p-value is (much) greater
than 0.05, we can not reject the null hypothesis and can not
conclude that ‘women talk more’.

Two notes on the above output: First, the confidence interval
reported is for the difference of means (as expected it includes
0). Second, R reports that this is a “Welch Two Sample t-
test’ instead of calling the test simply ‘independent samples
t-test’. This is due to the fact that t.test () function by de-
fault applies a correction for unequal variances. You can force
t.test () to assume equal variances (see help(t.test)).



A.3 Linear regression: a first introduction

Answer of 3.1.

> plot(mot~chi, data=mlu)

or, alternatively

> plot(mlu$chi, mlu$mot)

Answer of 3.2. No answer yet.

Answer of 3.3. Assuming you have decided the best line is
with intercept 5.5 and slope 0.25,

> abline(5.5, 0.25, col="red", lwd=2)
Answer of 3.4. You should get an intercept of 5.7133 and a
slope of 0.1503 from the 1m() output. You can either draw it

using these numbers,

> abline(5.7133, 0.1503, col="blue")

or let abline () extract a and b from the 1m() output:

> abline(lm(mot ~ chi, data = mlu), col="blue")

Answer of 3.5.

> cor(mlu$chi, mlu$mot) "2
[1] 0.1272399

Not surprisingly this is the R? value reported by 1m().
Answer of 3.6. Histogram can be produced by:

> hist(resid(1lm(mot~chi, data=mlu)))

and Q-Q plot, including the theoretical line:

> ggnorm(resid(lm(mot~chi, data=mlu)))
> qqline(resid (1lm(mot~chi, data=mlu)))

Interpreting these diagnostic plots require some experience. In
summary: we see some deviances from the normality, but in
general it is normal to see this in small data sets.

Answer of 3.7. First the summary of the linear regression
analysis:

> summary (lm(age~chi, data=mlu))

Call: 1lm(formula = age ~ chi, data = mlu)
Residuals:
Min 1Q Median 3Q Max
-3.2881 -0.8938 -0.0091 0.8140 2.9785
Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 13.2892 1.1795 11.27 1.32e-10
chi 8.7177 0.4254 20.49 8.00e-16
Residual standard error: 1.613 on 22 degrees of
freedom
Multiple R-squared: 0.9502, Adjusted R-squared:
0.948
F-statistic: 420 on 1 and 22 DF, p-value:
7.999e-16

1. Since we take age as unquestionable measure of the lin-
guistic competence, and want to predict it using on m1lu.
Our response variable is age and the predictor is chi.

Intercept is 13.2892, and the slope is 8.7177. The inter-
cept corresponds to the age (remember, in months) of a
child who has 0 MLU. Although you should approach
cautiously, it does not seem to be a very bad estimate.
The slope means that each unit increase in MLU is asso-
ciated with 8.7 months.
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The commands plot(age~chi, data=mlu) and
abline(lm(age~chi, data=mlu)) should do the
trick.

The p-value presented on line 9 in the listing above is
very small, and it is definitely statistically significant.

The plot (not given here, you should really produce it)
does not indicate any outliers.

As before you should use resid() to extract the out-
liers, and check using qgqnorm(), and possibly with
shappiro.test (). If we are looking at the same pic-
tures, the graph and the test should not indicate non-
normality.

A.4  Linear models with categorical predictors

Answer of 4.1.

> talk data.frame (age=age, words=words)

Answer of 4.2.

> str(mlu.ses)

'data.frame': 60 obs. of 4 variables:

$ subject: int 1 2 3 456 7 8 9 10

$ ses Factor w/ 3 levels "low","medium",..:
111 .

$ gender Factor w/ 2 levels "female","male": 2
2 2

$ mlu : num 1.81 1.91 1.35 2.84 2.54 2.92 1.2

The output looks fine, except, as we will see in the next Ex-
ercise, the subject variable is identified as an int (integer),
although it is a categorical variable and should have been a
factor variable.

Answer of 4.3.

> mlu.ses$subject factor(mlu.ses$subject)

We convert the integer values in mlu$subject to factor,
and store the result again in mlu$subject.

Answer of 4.4. Here are a few ways to do it:

> mlu.ses[mlu.ses$gender == 'male', 4]

> mlu.ses[mlu.ses$gender == 'male', 'mlu']
> mlu.ses$mlulmlu.ses$gender == 'male']
Answer of 4.5.

> hist(talk$words [talk$gender == 'F'])

> hist(talk$words [talk$gender == 'M'])
Answer of 4.6.

> qqnorm(talk$words [talk$gender == 'F'])
> qqline(talk$words[talk$gender == 'F'])
> qqnorm(talk$words [talk$gender == 'M'])
> qqline(talk$words [talk$gender == 'M'])

Answer of 4.7. Here is the result only for men:

> shapiro.test(talk$words[talk$gender == 'M'])
Shapiro-Wilk normality test
data: talk$words[talk$gender == "M"]

W = 0.929, p-value 0.438

which indicates that we have no evidence for non-normality
(remember that the null hypothesis is ‘the distribution is nor-
mal’). The same should hold for women.

Answer of 4.8.



> t.test(words~gender, data=talk, var.equal=T,
+ alternative='greater')
Two Sample t-test
data: words by gender
t = -0.0367, df = 18, p-value = 0.5144
alternative hypothesis: true difference in means is
greater than 0O
95 percent confidence interval:
-5896.008 Inf
sample estimates:
mean in group F mean in group M
13187.0 13309.2

The p-value is the same up to four decimal points. So, the
correction for unequal variances does not seem to affect the
test results.

The degrees of freedom above is as expected, we have 20 sub-
jects, we calculate two mean values from it, leaving us with
18 degrees of freedom. The interesting bit is the DF with the
Welch correction, which was 13.889. Knowing that a t distri-
bution with smaller degrees of freedom will have heavier tails,
the correction seems to reduce the DF to force a more conser-
vative test (although it does not make much difference in our
case).

Answer of 4.9.

> boxplot(words ~ gender, data=talk)

You should see rather a large difference (variation for men is
larger).

Answer of 4.10. We could use a command like

var.test (talk$words[talk$gender == 'F'],
talk$words [talk$gender == 'M']),

but var.test () accepts the formula notation which is neater:

> var.test(words ~ gender, data=talk)
F test to compare two variances

data: words by gender
F = 0.2953, num df = 9, denom df = 9,
p-value = 0.08358

alternative hypothesis: true ratio of variances is
not equal to 1
95 percent confidence interval:
0.07333846 1.18871596
sample estimates:
ratio of variances

0.2952602

Despite the fact that variance form men is about three times
larger than the variance for women, we get a p value of
0.08358, we cannot rule out the possibility that the variances
differ by chance at conventional significance () levels.

Answer of 4.11.

> wilcox.test(words ~ gender, data=talk,
alternative='greater')
Wilcoxon rank sum test
data: words by gender
W = 53, p-value = 0.4267
alternative hypothesis:
greater than O

true location shift is

Nothing surprising here. Similar to the t tests, we cannot reject
the null hypothesis.

Answer of 4.12. Here is how to generate the box plot:

> boxplot(mlu ~ ses, data=mlu.ses)

1. Compared to the other two between high SES seems to
have a high variation, but it does not look extremely dif-
ferent. (You may want to verify this witha var.test())
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2. All box plots show some skew, but again, this may not
necessarily indicate non-normality.

3. From the box plots the high and medium groups seems
similar, but different from low. Box plots cannot an-
swer significance questions reliably, but it seems there
is a large difference between 1ow and the others, and de-
pending on sample size, it is likely to be statistically sig-

nificant.
Answer of 4.13. You can run three separate commands,
namely
> shapiro.test(mlu.ses$mlul[mlu.ses$ses == 'low'])
> shapiro.test(mlu.ses$mlul[mlu.ses$ses ==
'medium'])
> shapiro.test(mlu.ses$mlul[mlu.ses$ses == 'high'])

However, R provides mechanisms to ease the repetitions like
this one. Here is an example:

> by(mlu.ses$mlu, mlu.ses$ses,
mlu.ses$ses: low

shapiro.test)

Shapiro-Wilk normality test
data: dd[x, ]
W = 0.9242, p-value = 0.1192
mlu.ses$ses: medium

Shapiro-Wilk normality test
data: ddl[x, ]
W = 0.942, p-value = 0.2614
mlu.ses$ses: high

Shapiro-Wilk normality test
data: ddl[x, ]
W = 0.9721, p-value = 0.798

by () partitions its first argument (m1u here) set based on the
levels of its second argument (ses here), and applies the func-
tion given in the last argument to each group. None of the
above tests suggests a significant divergence from normality.

Answer of 4.14. Here is ANOVA results on this data

> summary.aov(lm(words ~ gender, data=talk))
Df Sum Sq Mean Sq F value Pr(>F)
gender 1 74664 74664 0.001 0.971

Residuals 18 997785410 55432523

And t tests repeated here for ease of comparison

> t.test(words ~ gender, data=talk, var.equal=T)
Two Sample t-test

data: words by gender

t = -0.0367, df = 18, p-value =

alternative hypothesis:

is not equal to O
95 percent confidence interval:
-7117.515 6873.115

sample estimates:

mean in group F mean in group M
13187.0 13309.2

0.9711
true difference in means

No surprises, the p-value found by both tests are the same.
And, No, directional tests is not possible in the main ANOVA
(one can do some directional post-hoc comparison).

Answer of 4.15. Here are multiple comparisons using both
methods:

> pairwise.t.test(mlu.ses$mlu, mlu.ses$ses)
Pairwise comparisons using t tests with

pooled SD
data: mlu.ses$mlu and mlu.ses$ses
low medium

medium 1.2e-06 -
high 1.8e-06 0.83
P value adjustment method: holm



> pairwise.t.test(mlu.ses$mlu, mlu.ses$ses,
p.adjust.method="'bonf ')
Pairwise comparisons using t tests with

pooled SD
data: mlu.ses$mlu and mlu.ses$ses
low medium
medium 1.2e-06 -
high 2.7e-06 1

P value adjustment method: bonferroni

Notice that all p-values except the largest difference are larger
with the Bonferroni correction (which indicates that it is more
conservative).

Answer of 4.16.

> summary.aov(lm(mlu ~ ses + gender, data=mlu.ses))
Df Sum Sq Mean Sq F value Pr (>F)

ses 2 20.714 10.357 22.159 8.14e-08

gender 1 1.852 1.852 3.961 0.0514

Residuals 56 26.173 0.467

Answer of 4.17.

> summary.aov(lm(mlu ~ ses * gender, data=mlu.ses))
Df Sum Sq Mean Sq F value Pr(>F)

ses 2 20.714 10.357 23.047 5.8e-08 x**x

gender 1 1.852 1.852 4.120 0.0473 *

ses:gender 2 1.907 0.954 2.122 0.1297

Residuals 54 24.266 0.449

Answer of 4.18.

> interaction.plot(mlu.ses$gender, mlu.ses$ses,
mlu.ses$mlu)

We see some interaction patterns. The lines for high and
medium cross, and girls perform better within these two
groups, boys perform better in the low-SES group. However,
the interaction term ses : gender above is not statistically sig-
nificant. We do not have enough evidence in support of any
of the interaction patterns we observe.

Answer of 4.19.

> kruskal.test(mlu~ses, data=mlu.ses)
Kruskal-Wallis rank sum test

data: mlu by ses
Kruskal-Wallis chi-squared =
df = 2, p-value =

24.3514,
5.154e¢-06

We again find a statistically significant effect of ses on m1lu.
As expected, the p-value found here is larger than the one
found using ANOVA. Which indicates that the non-parametric
test is likely to be more conservative.

Answer of 4.20.

> t.test(words ~ gender, data=talk, var.equal=T)
Two Sample t-test

data: words by gender

t = -0.0367, df = 18, p-value = 0.9711

alternative hypothesis: true difference in means
is not equal to O

95 percent confidence interval:

-7117.515 6873.115
sample estimates:
mean in group F mean in group M

13187.0 13309.2
Answer of 4.21.
> summary (lm(words ~ gender, data=talk))
Call: 1lm(formula = words ~ gender, data = talk)
Residuals:
Min 1Q Median 3Q Max
-11167.2 -7184.8 374.4 4084.7 18645.8

Coefficients:
Estimate Std. Error t value Pr(>|tl)
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(Intercept) 13187.0 2354 .4 5.601 2.58e-05

genderM 122.2 3329.6 0.037 0.971

Residual standard error: 7445 on 18 degrees of
freedom

Multiple R-squared: 7.482e-05, Adjusted
R-squared: -0.05548

F-statistic:
0.9711

0.001347 on 1 and 18 DF, p-value:

Note that the p-value for the slope is the p-value we found in
the t test.

A.5 Repeated measures

Answer of 5.1.

> bilingual <- read.delim('http://coltekin.net/
cagri/R/data/bilingual.txt')

Answer of 5.2. You should realize that the variable subj is
of type integer rather than a factor. To covert it:

> bilingual$subj = factor(bilingual$subj)

Another useful but not strictly necessary conversion is from

factor to factor, such that the levels are ordered in a meaningful
way:

> bilingual$age <- factor(bilingual$age,
levels=c('preschool','firstgrade','secondgrade'))

R orders the levels alphabetically by default. The ordering
here makes sure that the data levels show up in a reasonable
while displaying in graphics or as text.

Answer of 5.3. Here is the full listing of the test.

> t.test(rate ~ language, data=newborn)
Welch Two Sample t-test
data: rate by language
t = -1.7074, df = 57.994, p-value = 0.0931
alternative hypothesis: true difference in means
is not equal to O
95 percent confidence interval:
-9.8271059 0.7797726
sample estimates:
mean in group foreign
31.84367

mean in group native
36.36733

Two normal Q-Q plots, one for each language, and
var.test () testing for equivalence of variances would be
ways to test for normality and homogeneity of variance as-
sumptions. A boxplot() is also useful for visualizing the
distributions of both groups. However, as in this case, it may
be very difficult or impossible to see the effects of assumption
of independence.

Answer of 5.4.

> t.test(rate ~ language, data=newborn, paired=T)
Paired t-test
data: rate by language
t = -5.3138, df = 29, p-value = 1.06e-05
alternative hypothesis: true difference in means
is not equal to O
95 percent confidence interval:
-6.264775 -2.782559
sample estimates:
mean of the differences
-4.523667

Nothing surprising, the paired test is a lot more sensitive, re-
sulting in a smaller p-value.

Answer of 5.5.



> qqnorm(newborn$rate [newborn$language ==
'native'] -
newborn$rate [newborn$languag
'foreign'])

The point to remember is that the paired test compares the
‘mean of the differences’ to 0, not differences of the means
as in the independent samples test.

Answer of 5.6.

> boxplot(rate ~ language, data=newborn)

You should see some difference, it is rather small, and the dis-
tributions largely overlap. What we see includes the individual

variation which clouds the real paired differences. To demon-
strate we can plot,

> boxplot (newborn$rate[newborn$language =
'native']
- newborn$rate[newborn$language
'foreign'])

Note that here, we are interested whether the mean of the dis-
tribution visualized by the single box plot is O or not.

Answer of 5.7.

> summary (aov(rate ~ language, data=newborn))

Answer of 5.8.
> summary (aov(rate ~ language +

Error (participant/language), data=newborn))
Answer of 5.9.

> summary (aov(mlu ~ language*age +
Error (subj/(language*age)),
data=bilingual))

Answer of 5.10.

> interaction.plot(bilingual$age,
bilingual$language,
bilingual$mlu)

Answer of 5.11.

> summary (aov(mlu ~ language*age*gender +
Error (subj/(language*age)), data=bilingual))

Note that the only difference from the purely within-subjects
syntax is that the between-subjects variable does not go into
the Error () term.

A.6  Graphics

Answer of 6.1. There is nothing special with loading this

CSV file:

> read.csv('http://coltekin.net/cagri/R/data/seg.
csv')

The data types you see (e.g., when you check with str())
should be in general sensible, but two of them are question-
able. Depending on your analysis utterance may be integer
(numeric), or categorical (factor). Similarly, having phoneme
as a factor variable is fine, in some cases you may want to con-
vert it to to a character string. For the rest of the exercises
here, there is no need to convert these data types, but for the
sake of exercise here is how we convert them.

> seg$utterance <- factor(seg$utterance)
> seg$phoneme <- as.character(seg$phoneme)

42

Answer of 6.2.

> plot(seg$h[seg$utterance == '1'])
Answer of 6.3.
> plot(h ~ pmi, data=seg, col='red')

> abline(lm(h ~ pmi, data=seg), col='blue')

Answer of 6.4.
> plot(segl,4:7]1)

or more clear notation with the expense of some typing:

> plot(segl,c('pmi', 'h', 'rh', 'sv'))1)

Answer of 6.5.

> hist(seg$pmi)

> hist(seg$h)

Answer of 6.6.

> qqnorm(seg$pmi) ;qqline (seg$pmi)

> qqnorm(seg$h) ;qqline (seg$h)

The PMI values should look approximately normal, while the
H values should show a serious divergence from normality.

Note that you can run two or more commands at once by sep-
arating each command by a semicolon ;’ on the same line.

Answer of 6.7.

> boxplot(pmi ~ boundary, data=seg)

Answer of 6.8. Assuming we the variable x from the above
listing is in your R environment,

> plot(x, dt(x, df=5), type='l', col='green',
1wd=3)
Answer of 6.9.

> x <- seq(-4,4,by=0.1)
> plot(x, dnorm(x), type='l', col='blue')
> lines(x, dt(x, df=5), col='green')

Answer of 6.10.

> plot(x, dnorm(x), type='1l"')

> lines(x, dt(x, df=1), col=2, 1lty=2)
> lines(x, dt(x, df=5), col=3, 1lty=3)
> lines(x, dt(x, df=20), col=4, lty=4)

Answer of 6.11.

> plot(seg$h[seg$utteranc

'1'], pch=19)

Answer of 6.12. It may take a bit of experimenting, but here
is an example:

> plot(x, dnorm(x), type='l', col='blue')

> lines(x, dt(x, df=5), col='green')

> grid()

> text (0, 0.4, 'standard normal', pos=3,
col='blue', offset=-0.05)

> text (0, 0.35, 't(5)', col='green')

Note that the grid() function plots a grid, which is helpful
for deciding the coordinates of the points on the graph.

Answer of 6.13.

> y <- seg$h[seg$utterance == '1']
> x <- 1:length(y)
> plot(x, y, type='l', lty='dotted')
> text(x, y ,
labels=seg$phoneme [seg$utterance == '1'],
pos=3,
col=c('blue', 'red')[1 +
seg$boundary [seg$utterance == '1']])



Answer of 6.14.

> legend('topright',
c('normal"',
lty=1:4,
col=1:4)

't(1)', 't(d)', 't(200"),

Answer of 6.15. Only listing the first plot () command, the
other are not affected:
> plot(x, dnorm(x), type='l",
main='normal and t distributions',
ylab="'density',
xlab="")

Answer of 6.16.
> plot(h ~ pmi, data=seg, xlim=c(0,max(pmi)))
should do. However, if you want to be certain without peeking

into the data:

> plot(h ~ pmi, data=seg,
xlim=c(min(c(0, pmi)), max(c(0, pmi))),
ylim=c(min(c (0, h)), max(c(0, h))))

Answer of 6.17. Again, only listing the first plot () com-
mand, the other are not affected:

> plot(pmi ~ h, data=seg, subset =(boundary == T),
pch='+', col='red',
main='PMI vs. H',
xlab='PMI',
ylab="'H')
> points(pmi ~ h, data=seg, subset =(boundary ==
F),
pch='-', col='blue')

> legend('bottomleft', c('boundary', 'word
internal'),

pCh=C('+', |_|)’

col=c('red', 'blue'))
Answer of 6.18.
> par (mfrow=c(2,2))
> boxplot(pmi ~ boundary, main='PMI', data=seg)
> boxplot(h ~ boundary, main='H', data=seg)
> boxplot(rh ~ boundary, main='RH', data=seg)
> boxplot(sv ~ boundary, main='SV', data=seg)

Answer of 6.19.

> pdf (file='noramlity-check.pdf', width=6.27,
height=3)

> par (mfrow=c(1,2))

> hist(seg$pmi, main='Histogram of PMI',
xlab="'PMI')

> gqqnorm(seg$pmi, pch=24, col='blue', bg='blue')

> gqline(seg$pmi)

> dev.off ()

Answer of 6.20.

Here is only the sequences of commands to produce the PNG
with resolution 1024x512.

> par (mfrow=c(1,2))

> png('mlu-ttr-1024x512.png', width=1024,
height=512)

boxplot(chi.mlu, mot.mlu, names=c('child',
'mother'), main='Mean length of utterance')

boxplot(chi.ttr, mot.ttr, names=c('child',
'mother'), main='Type/token ratio')

> dev.off ()

Vv

v

If you use bitmap graphics a lot, you’ll realize that they scale
poorly on higher resolution medium, particularly on paper. If
you create bigger images, and scale them when necessary, the
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text on the graphs will typically become poorly readable, or
even unreadable. To optimize for the intended medium, you
also need to specify the resolution (res). By default bitmap
graphics are screen optimized (not for new fancy Retina Dis-
plays, for good old 72dpi screens). You should change this
to match the printer when you need to use them on paper (for
printing, you should really use vector graphics, unless there is
a good reason for using bitmap).

Answer of 6.21.

> x <= ¢(0,1,2,4)
>y <- ¢(0,1,3,4)
> plot(x, y, type='1l"')

Answer of 6.22.

> pie(c(36,35,8,71),

labels=c('A', 'B', 'C', 'D'))

Answer of 6.23.

> barplot(c(36,35,8,71),

names.arg=c('A', 'B', 'C', 'D"))

Answer of 6.24.

> x <- seq(-pi, pi, by=0.1)
> plot(x, sin(x), type='l', col='blue')
> lines(x, cos(x), col='red')

Answer of 6.25. First, a not-so-correct attempt:

> abline(a=0,b=0)
> abline(a=0,b=10"50)

The horizontal line drawn first is straightforward, intercept and
slope are both 0. However, the way we drew the vertical line is
abit of cheating. The slope of a vertical line is undefined (well,
if infinity is easier to deal with for you, we can also agree on
positive infinity). As a result, we just put a very big number
with the hope that approximation is fine enough. However,
for horizontal and vertical lines, abline () provides a simpler
and neater alternative,

> abline (h=0)
> abline (v=0)

Answer of 6.26. Although the actual code that generates Fig-
ure 1 is slightly different, the following produces a very similar
figure.

> par(mfrow=c(1,2), mar=c(1,1,3,1))

> plot (0,
type='n',
x1im=c(0,2), ylim=c(0,2),
xaxt='n', yaxt='n',
xlab='"', ylab='",

main='(a) par(mfrow=c(2,2))"',
col.main="'blue')

> abline(h=1)

abline (v=1)

> text(c(0.5,1.5,0.5,1.5),c(1.5,1.5,0.5,0.5),

v

c('1', '2','3', '4'),cex=9)
> plot (0,
type='n"',
x1im=c(0,2), ylim=c(0,2),
xaxt='n', yaxt='n',
xlab='"', ylab='",

main="'(b) par(mfcol=c(2,2))"',
col.main="'blue')
> abline(h=1)
abline (v=1)
> text(c(0.5,0.5,1.5,1.5),c(1.5,0.5,1.5,0.5),
c('1', '2','3', '4'),cex=9)

v



Two things that is worth noticing above are: (1) the mar graph-
ical option that adjusts (shrinks compared to the defaults in this
case) the graphics margins, and (2) the cex options that adjusts
the font size.

A.7 Regression again

Answer of 7.1.

> print (load(

url('http://coltekin.net/cagri/R/data/ling-geo.rda"')

))

Answer of 7.2.

> cor(seg$pmi, seg$h)
> cor(seg$pmi, seg$h, method='kendall')
> cor(seg$pmi, seg$h, method='spearman')

Nothing surprising here: all indicate that the measures are neg-
atively correlated (pmi is a measure of cooccurrence, while h is
ameasure of surprise), and non-parametric tests indicate lower
correlation. To check we can reliable use Pearson’s v, we need
to check its assumptions which we will leave to the regression
analysis.

Answer of 7.3. Again, nothing special.

> cor.test(seg$pmi, seg$h)
> cor.test(seg$pmi, seg$h, method='kendall')
> cor.test(seg$pmi, seg$h, method='spearman')

Note, however, the non-parametric tests gives you approxi-
mate p-values because of ties (the data points with the pmi or
h values resulting in the same rank).

Answer of 7.4.

> cor(segl,-c(1,2)]1)

Answer of 7.5. It is easy to obtain the summary, although it
may take a while since our data set is rather large:

> summary (lm(ling ~ geo, data=1lg))

1. The slope is highly significant indicating, although it is
very small in the original scale, the effect very unlikely
to be due to chance effects.

2. The intercept is the expected linguistic difference in the
same location (when geographic distance is Okm).

3. The r? indicates about 37% of the variance in the lin-
guistic differences to be due to geographic distance.

Note, however, these conclusions are not viable unless we
check the assumptions of the model.

Answer of 7.6. The first one is easy:

> m <- Im(mot ~ chi, data=mlu, subset=-20)

For the second one, you can calculate mean () or median()
of mlu$chi, and find find the row index of the closest value
in the data frame. The following solution does is in a slightly
subtle way, that you should try to understand:

> m <- lm(mot ~ chi, data=mlu,

subset=(chi sort (chi) [sort(chi) >
median(chi)] [1]))

When the outlier is removed, the model coefficients show a
visible change. In our example you should see an intercept
estimate of 5.54 and a slope estimate of 0.23, as opposed to
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5.71 and 0.15 respectively in the full model. When we re-
move the non-influential (middle) data point, we get almost the
same results as the complete model. Furthermore, the model
fit (r?) becomes much better when you remove an influential
data point.

Answer of 7.7.

> par (mfrow=c(2,2))

> plot(1lm(ling ~ geo, data=1lg), pch='."',
col='gray')

1. The ‘residuals vs. fitted” graph should indicate a clear
sign of non-linearity.

2. You should also be observing in ‘residuals vs. fitted’
graph that variance is reduced as fitted values increase.

3. The normal Q-Q plot of the residuals also show a clear
pattern of divergence on tails. For a smaller data set this
might not be a clear indication, but for large data sets,
like the one we use here, this is clearly a concern.

4. Not really, the ‘residuals vs. leverage’ plot does not even
include the 0.5 Cook’s distance contour line we observed
earlier. Although there are points with higher leverage
and large residuals, for large data sets, an individual ob-
servation can seldom be very influential.

Answer of 7.8.

> png(file='diagnostics.png', width=1024,
height=768)

> par (mfrow=c(2,2))

> plot(lm(ling ~ geo, data=1lg), pch='."',
col='gray')

> dev.off ()

Answer of 7.9.

> lg$log.geo <- log(lg$geo)

Answer of 7.10. The commands to use are the same as before.
You should find an intercept of about —0.03, and a slope of
0.06, again with highly significant estimates.

1. The conclusions do not change drastically. However,
you should observe an increase in the T2 which is an in-
dication of a better model fit.

2. Inall graphs you should see some improvements. Partic-
ularly, no clear sign non-linearity, and variance should
look more constant across the range of the predicted val-
ues.

Answer of 7.11.

plot (mot ~ chi, data=mlu)

m <- Im(mot ~ chi, data=mlu)

abline(m, col='red')

seq(min(mlu$chi), max(mlu$chi), length.out=20)
-> X

> y <- predict(m, newdata=data.frame(chi=x),

interval='conf"')
> lines(x, y[,'lwr'], col='red', 1lty='dashed')
> lines(x, y[,'upr']l, col='red', lty='dashed')

vV V V VvV

Answer of 7.12.

> plot(ling ~ geo, data=lg, col='gray', pch='."',
xlab='Geographic distance (km)',
ylab='Linguistic difference')

m <- 1lm(ling ~ geo, data=lg)

mlog <- 1m(ling ~ log.geo, data=lg)

lines(lg$geo, predict(m), col='red')

lines(lg$geo, predict(mlog), col='blue'
lty='dashed"')

vV V Vv Vv



> legend('bottomright',
c('no transformation',
col=c('red', 'blue'),
lty=c('solid', 'dashed'))

'log transformed'),

Note that the line and the curve plotted by 1ines () commands
above works fine since the 1g$geo values in this data set is
sorted. Otherwise, we would either need to order x and y val-
ues, or alternatively, we could get predictions for new data
points along the x axis.

Answer of 7.13. The answer is left as an exercise, noting that
this exercises is almost the same as Exercise 7.11, except you
need to be careful not to use the same x values for prediction
and plotting.

What you should observe is a very tight confidence interval all
around the prediction curve that it is not possible to see three
separate lines.

A.8 Multiple Regression

Answer of 8.1.

> load(
url('http://coltekin.net/cagri/R/data/tv.rda'),
verbose=T

)

Answer of 8.2. Only the commands (without the output) is
given below.

Im(cdi ~ tv.hours, data=tv) -> ml

summary (m1)

par (mfrow=c(2,2))

plot (m1)

par (mfrow=c(1,1))

plot(cdi ~ tv.hours, data=tv)

abline (m1)

x <- min(tv$tv.hours) :max(tv$tv.hours)

y <- predict(ml, newdata=data.frame(tv.hours=x),

interval='conf')

lines(x, y[,'lwr'], lty='dashed', col='blue')

lines(x, y[,'upr'], lty='dashed', col='blue')

> y <- predict(ml, newdata=data.frame(tv.hours=x),
interval='pred')

> lines(x, yl[,'upr']l, lty='dotted',

> lines(x, y[,'lwr']l, lty='dotted',

VvV V V V V VYV VYV

Vv Vv

col='green')
col='green')

Answer of 8.4.

> m3 <- 1m(cdi ~ tv.hours + mot.education, data =

tv)

The slope estimates of the multiple regression model is differ-
ent than the corresponding single predictor models. we also
see that the estimates are slightly less certain in the multiple
regression model (smaller t-, larger p-values). Furthermore,
12, the variation explained by the multiple regression model is
less than (about 10%) the sum of the variations explained by
the individual predictors.

The explanation for all comes from collinearity. The predic-
tors are correlated, hence, they share the part of the variation
explained by each other (so, 12’s do not sum up). This also
means that the regression estimation cannot assign the credit
(or blame) for some the explained variation (so, variability and
lower confidence in the parameter estimates).

Answer of 8.5.

par (mfrow=c(1,2))
plot(cdi ~ tv.hours, data=tv)
abline (m1)

abline (a=coef (m3) [1],

vV V Vv V

b=coef (m3) [2], col='red')
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> plot(cdi ~ mot.education, data=tv)
> abline (m2)
> abline(a=coef (m3) [1],

b=coef (m3) [3], col='red"')

Answer of 8.6.

> x <- seq(min(tv$tv.hours) ,max(tv$tv.hours),
length.out=20)
<_
seq(min(tv$mot.education) ,max (tvmot.education),
length.out=20)
> plot (0, type='n',
xlim=range(x), xlab="TV time",
ylim=range(y), ylab="Mother's education")
> new.data=data.frame(tv.hours=rep(x,20),
mot.education=rep(y,
each=20))
> z <- predict(m3, newdata=new.data)
gray.levels <- 1 - ((z-min(z)) / (max(z)-min(z)))
> points(new.data$tv.hours,
new.data$mot .education,
pch=22, bg=gray(gray.levels), cex=3)

>y

\

Answer of 8.7.

> cor(tv$tv.hours, tv$mot.education)

[1] -0.2920446

This is not an alarmingly large correlation. In fact, there is no
clear threshold after which you should get alerted. In general,
the larger the correlation, the higher the expected effect of the
collinearity. Furthermore, with more predictors, correlation is
not an adequate tool for detecting multicollinearity, since the
predictor of interest may correlate with a linear combination
of more than one of the other predictors. We will later discuss
other ways of detecting multicollinearity.

It is not a complete coincidence that if you square the above
correlation coefficient will be closer to the difference between
the sum of the r? from m1 and m2 and the multiple regression
model m3.

Answer of 8.8.

tv.hours + mot.education +
data=tv))

> summary (lm(cdi ~
I(tv.hours + mot.education),

In the output, you should see that the coefficient for the predic-
tor I(tv.hours + mot.education) cannot be estimated,
and indicated by NA, which is a special value used for miss-
ing data.

Answer of 8.9.

> vif (m3)
tv.hours mot.education
1.093243 1.093243

Note that since we have only two predictors, both have the
same VIF value. This is simply because 12 is the square of the
correlation coefficient, and correlation is symmetric.

For two-predictor case, we could alternatively calculate it with

> 1/(1-cor(tv$tv.hours,
[1] 1.093243

tv$mot .education) ~2)

Answer of 8.10.

> tv$rnd.1 <- runif (80, 0, 1)

> tv$rnd.2 <- runif (80, 0, 1)

> summary (lm(cdi ~ tv.hours + mot.education
+ rnd.1 + rnd.2, data=tv))

[...]

Coefficients:

t value Pr(>|tl)
120.976 < 2e-16
-3.831 0.000264

Estimate Std. Error
99.29090 0.82075
-0.11671 0.03047

(Intercept)
tv.hours



mot.education 0.13000 0.03475 3.741 0.000357
rnd.1 -0.32504 0.39126 -0.831 0.408758
rnd.2 0.37200 0.44865 0.829 0.409645

Residual standard error: 1.057 on 75 degrees of

freedom

Multiple R-squared: 0.3557, Adjusted R-squared:
0.3213

F-statistic: 10.35 on 4 and 75 DF, p-value:
9.951e-07

As expected, the effects of the new variables are non-
significant. The values you get will be different since our pre-
dictors are randomly generated.

Remember that the model without rnd. 1 and rnd .2 had r? =
0.3444 and 7> = 0.3274.

Answer of 8.11. The update command is:

> update(m3, . ~ + daycare.hours) -> mé

The model fit is slightly better. The increase in 12 is expected

since it will increase with any additional predictor. However
since 72 is also (slightly) higher, the increase in 12 is probably
not just a chance effect.

The summary (not presented above) should tell you that the
effect of the new predictor is not statistically significant in this
model (given other predictors).

Answer of 8.12.

> m0 <- 1Im(cdi ~ 1, data=tv)

The single coefficient estimated (intercept) should be the same
as (mean (tv$cdi)).

The standard error of the intercept that you can see from the
summary of the model is the standard error of the mean. (You
are encouraged to calculate this manually and compare).

Answer of 8.13.

> anova(mO, ml)
Analysis of Variance Table

Model 1: cdi ~ 1
Model 2: cdi ~ tv.hours
Res .Df RSS Df Sum of Sq F Pr (>F)
1 79 129.99
2 78 100.33 1 29.662 23.061 7.438e-06 x**x*

The addition of the predictor causes a statistically significant
reduction in the mean residual sums of squares. The F-test
reported in summary of a linear regression model is effectively
the same test.

Answer of 8.14.
> anova(ml, m3)
Analysis of Variance Table
Model 1: cdi ~ tv.hours
Model 2: cdi ~ tv.hours + mot.education
Res.Df RSS Df Sum of Sq F Pr (>F)
1 78 100.325
2 77 85.222 1 15.104 13.647 0.0004106 *x*x*
> anova(m3, m4)

Analysis of Variance Table

Model 1: cdi ~ tv.hours + mot.education

Model 2: cdi ~ tv.hours + mot.education +
daycare.hours

Res .Df RSS Df Sum of Sq F Pr(>F)
1 77 85.222
2 76 83.971 1 1.2503 1.1316 0.2908

The first ANOVA indicates that the amount of reduction in
residual sum of squares (15.104) is unlikely to be by chance.
F-test yields a very low p-value. The second one, on the other
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hand, indicates that the small reduction in the residual sums of
squares due to the new variable daycare.hours is not statis-
tically significant.

Answer of 8.15.

> anova(m4)

You should check which F-values match with the F-values
from the earlier exercises.

Answer of 8.16.

> AIC(ml1,m3,m4)

df AIC
ml 3 251.1416
m3 4 240.0884
m4 5 240.9060

We observe a decreased in AIC by adding mot . education to
m1 (m3 is better). However, adding daycare.hours increases
the AIC value. The best model among the ones we compared
according to AIC is m3.

Answer of 8.17. step(m4) will present you the steps taken,
and the choice made at the end. Note that the direction of ser-
ach (backward, forward or both) may change the result.

A.9 Probability distributions

Answer of 10.1.

> pnorm (3000, mean=3500,
[1] 0.006209665
> 1 - pnorm(4000, mean=3500, sd=200)
[1] 0.006209665
> pnorm (4000, mean=3500,

sd=200)

sd=200) - pnorm (3000,

mean=3500, sd=200)

[1] 0.9875807

> dnorm (3400, mean=3500, sd=200)

[1] 0.001760327

> gqnorm(0.01, mean=3500, sd=200)

[1] 3034.73

> gqnorm (0.005, mean=3500, sd=200); qnorm(1-0.005,
mean=3500, sd=200)

[1] 2984.834
[1] 4015.166

Answer of 10.2.

> x <- seq(-4, 4, by=0.1)

> plot(x, pnorm(x), type='l', ylab='CDF(x)"')

> lines(x, pt(x, df=3), col='red')

> lines(x, pt(x, df=10), col='blue')

> lines(x, pt(x, df=30), col='orange')

> legend('bottomright',
c('normal', 't(2)', 't(10)', 't(30)'),
col=c('black', 'red', 'blue', 'orange'),
lty="'solid")

Answer of 10.3.

sample <- rbinom (200,
hist (sample, probability=T,

> size=100, p=0.55)
>
+ x1im=c(0,100), ylim=c(0,0.1))
>
+

curve (dbinom(x, size=100, p=0.55),
add=T, x1lim=c(0,100))

A few points to note here:

+ If you repeat the exercise, you will get a (slightly) dif-
ferent histogram. Like other ‘r’ functions, rbinom()
produces random numbers (although they are distributed
according to binomial distribution).

* The parameter probability=T tells hist () to plot a
‘density’ histogram instead of counts (or frequencies).



* x1im=c(0,100) tells that the x-axis should be in range
0 to 100 (all possible values for a binomial distribution
with n=100). Likewise, ylim=c(0,0.1) sets the range
of the y-axis to make sure that the distribution function
we plot next fits into the graph regardless off the differ-
ences in the sampling (although, you should work a bit
harder if you want to make sure that everything fits into
the graph for all possible samples).

* Last, the curve () function is an alternative way of plot-
ting smooth curves. Previously we generated x-range
manually and use plot() or lines() to plot corre-
sponding values of a function. For example:

> 1lines (0:100, dbinom(0:100, size=100,
p=0.55))

Answer of 10.4. You should be drawing histograms with

> hist(rbinom(N,size=20, p=0.5))

for increasing N. Your results will differ even for the same
value of N, since rbinom() will produce random samples.
But you should clearly observe that as you increase N, the his-
togram resembles more and more like the bell curve.

Answer of 10.5. Compared to Exercise 10.4, you should find
it more difficult to convince yourself that the distribution looks
normal. Binomial distributions with extreme p parameters
will be more skewed, and more difficult to be approximated
by the normal distribution.

Nevertheless, here is an example with sample size 100000:

> x <- rbinom(100000,size=20, p=0.9)

> hist(x, probability=T)

> lines (min(x) :max(x), dnorm(min(x):max(x),
mean=mean(x), sd=sd(x)))

Answer of 10.6.

> plot(1:50, dpois(1:50, lambda=3), type='l")
> lines(1:50, dpois(1:50, lambda=10), type='1l"')
> lines(1:50, dpois(1:50, lambda=30), type='1l"')

Answer of 10.7.

> N=10000

> sample.n <- rnorm(N)

> sample.t <- rt(N, df=3)

> sample.f <- rf(N, df1=3, df2=10)

> sample.l <- rlnorm(N)

> sample.p <- rpois(N, lambda=3)

> sample.b <- rbinom(N, size=10, p=0.1)

> gqnorm(sample.n, main='normal');qqline(sample.n)
> qqnorm(sample.t, main='t');qqline(sample.t)
> qqnorm(sample.f, main='F');qqline(sample.f)
> qqnorm(sample.l, main='log

normal ') ;qqline (sample.l)
qqnorm(sample.p, main='Poisson');qqline(sample.p)
> qqnorm(sample.b,
main='binomial') ;qqline (sample.b)

A\

A.10 Logistic Regression

Answer of 11.1.

> seg <-

read.csv('http://coltekin.net/cagri/R/data/seg-large.csv')

> seg$utterance <- factor(seg$utterance)
> seg$phoneme <- factor (seg$phoneme)

The last line is most probably not necessary.
Answer of 11.2.

> or <-

read.csv('http://coltekin.net/cagri/R/data/past-tense-or

> or$correct <- 1 - (or$n.or / or$n.past)

Answer of 11.3. The diagnostic plots you get with

> plot(lm(correct ~ age, data=or))

should indicate that the data points 68 is the most influential
observation.

The command

> or.ols <- 1lm(correct ~ age, data=or, subset=-68)

fits the model without the outlier.

If you plot the diagnostics again, you should still observe that
the variance is not constant. The Q-Q plot indicates some non-
normality, and we can also observe some slight non-linearity
in the ‘Scale-location’ graph.

Answer of 11.4.

> predict(or.ols,
newdata=data.frame (age=c(1.5%12, 8%12)))
1 2
0.8072069 1.0024616

Answer of 11.5.

> p <- seq(0,1, 0.01)
> plot(p, log(p/(1-p)), type='l"')

Answer of 11.6.

> or$log.odds <- log(or$correct/(1 - or$correct))

> or.logit <- 1lm(log.odds ~ age, data=or,
subset=-68)

> summary (or.logit)

> plot(or.logit)

The coefficients now reflect the linear equation predicting log
odds. If we want to predict the probabilities, we need to calcu-
late the log odds for the given age, take the exponent of it (to
cancel the log), the expected probability or correct responses
for the given age can be calculated with p = ]i‘;gz s (itisa
simple arithmetic exercise to get this equation from the defi-

nition of the odds) .

In this model the relation between the probability and the age
is non-linear.

The transformation seem to improve the model diagnostics.
In particular, the variance seems more constant now (although
you should see clear differences between the residuals below
0 and above 0). We still see the effects of non-linearity and
non-normality in the graphs.

Answer of 11.7. We do it piece-by-piece for demonstration:

> logit <- predict(or.logit,

newdata=data.frame (age=12%(1:10)))
> odds <- exp(logit)
> odds / (1 + odds)

The first line gets the predictions for each age, second line
takes the exponent (undoes the log), and the last line converts
the odds to probabilities.

Answer of 11.8. Command is almost the same.

> summary (glm(cbind(n.past-n.or, n.or) ~ age,
family='binomial', data=or, subset-68))

In the summary, you should realize that an estimated ‘disper-
sion’ parameter is used instead of 1. This affects our model
marginally since we do not have real overdispersion here.
Since the estimated dispersion parameter is less than one, the



standard error for the coefficients are slightly tighter. In most
cases (when there is overdispersion), quasibinomial will re-
sult in less certain coefficient estimates.

Answer of 11.9.

The command

> 1 - predict(or.glm, type='response',
newdata=data.frame (age=12*(1:10)))

should give you the result as a vector.

Answer of 11.10.

> plot(correct ~ age, data = or)

> x <- min(or$age) :max (or$age)

> y <- predict(or.glm, type='response',
newdata=data.frame (age=x))

> lines(x, y)

Note that the curve you see is only the part of the logistic curve.
Although it is not useful in this case, you are encouraged to try
the plot using a larger age range, e.g., —200:200, to see the
complete curve.

Answer of 11.11.

> seg.pmi <- glm(boundary~pmi, data=seg,
family=binomial)

> plot(boundary ~ pmi, data = seg)

> x <- seq(min(seg$pmi), max(seg$pmi), by=0.2)

> y <- predict(seg.pmi, type='response',
newdata=data.frame (pmi=x))

> lines(x, y)

Again, the difference between the residual deviance and the
degrees of freedom is not large (we even have a bit of under-
dispersion). However, in general, overdispersion does not oc-
cur with binary response variables.

Answer of 11.12. Here are three ways to get the accuracy (all
results the same value):

> success <- seg$boundary == (predict(seg.pmi,
type='response') > 0.5)
> length(success[success == TRUE])/length(success)

[1] 0.772229
> length(success[success])/length(success)
> sum(success)/length(success)

The first one (line 2) is more descriptive, but understanding
the tricks used in more compact notations are worth the effort.

Answer of 11.13.

> length(seg$boundary[seg$boundary
length(seg$boundary)
[1] 0.6394641

F1) /

and the trick to compact it:

> sum(!seg$boundary)/length(seg$boundary)

result is again the same. Indeed, our model performs better
than the baseline (we will soon test our confidence in this).

Answer of 11.14.

> seg.full <- glm(boundary~ .,
family=binomial)
> summary (seg.full)

data=seg,

First thing to note here is that we get a warning about estimated
probability values exceeding O or 1. By itself, this is not nec-
essarily alarming. In this case, it only means that the some of
the estimated probabilities are equal to O or 1 with the available
numeric precision. Here we will not worry about this, but if
you get such warnings from R, you should understand what is
going on. We will shortly see an example where the warning
is important.
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The GLM summary, otherwise, is too crowded to try to inter-
pret. We will first simplify the model.

Answer of 11.15.

> anova(seg.pmi, seg.full, test='Chisq')

Answer of 11.16.
> step(model.full)

should present you the stepwise elimination beginning from
the full model. The result indicates that utterance and h
were dropped. The first one is a clear choice, as the utter-
ance number has nothing to do with the word boundaries. The
second one is due to high multicollinearity (mainly high cor-
relation between h and sv, you are encouraged to check this
with cor () and/or vif () from the car package).

Answer of 11.17.

> success.model <- seg$boundary
(predict (seg.model,
type='response') > 0.5)
> sum(success.model)/length(success.model)
[1] 0.9123021
> success.pmi <- seg$boundary ==
(predict(seg.pmi, type='response')
> 0.5)
> fisher.test(success.model, success.pmi,
alternative='greater')

Fisher’s test indicates that the difference between these two
models are very unlikely to be due to chance.

Note that you should not interpret this as an indication that
the larger model is better outside this data set. It just means
that correct/incorrect decisions made by the two models on this
data set are unlikely to be the same.

Answer of 11.18.

> seg.half <- glm(boundary ~ pmi + h + rh,
family = binomial,
data=seg, subset=(utterance < 50))
> success.training <- seg$boundary[seg$utterance <
50] ==
(predict (seg.half, type='response')
> 0.5)
> sum(success.training)/length(success.training)
[1] 0.8495146
> success.test <- seg$boundary[seg$utterance >=
50]
(predict(seg.half,
newdata=seg[seg$utterance >= 50,],
type='response') > 0.5)
> sum(success.test)/length(success.test)
[1] 0.799511

As expected, the accuracy is better on training data (the data
we used for fitting the model) compared to the novel data. This
is a sign of overfitting. The model do not only model the sys-
tematic relationship, but also some of the noise in the data.

Variations of this procedure is common in statistical machine
learning literature to protect against overfitting.

Answer of 11.19. The R commands do not change much, so
they are not included here.

The accuracy values you find should be surprisingly close (the
accuracy on the test data is even higher). This means that the
model did not overfit at all (thanks to small number of predic-
tors).

A.11  Multilevel / mixed-effect models

Answer of 12.1.



> load(url('http://coltekin.net/cagri/R/data/par.
rda'), verbose=T)

Answer of 12.2.

> par <- merge(merge(par.subj, par.item), par.data)

Answer of 12.3. There is nothing special about the syntax,
we have done this many times:

> summary(nb.lm <- lm(rate ~ language,
data=newborn))

We also know the relation between the t-test and the ordi-
nary linear regression, e.g., from Exercise 9.2. The inter-
cept in linear regression will be the mean of the one of the
groups, the slope will indicate the difference between them,
and the p-values will be the same (to make sure that the analy-
ses are equivalent, you should disable the “Welch correction’
in t.test() by var.equal=T).

Noting the residual variance (or standard deviation) reported
in the 1m() output is important for comparing this exercise to
the ones that follow.

Answer of 12.4.

> plot(rate ~ jitter(c(0,1) [language],
amount=0.05) ,
data=newborn)
> abline(nb.1lm)

Answer of 12.5. You will find that the sum of the participant
and residual variances in nb. lmer1 is exactly the same as the
residual variance of the model nb.1m (remember variance is
the squared standard deviation).

Answer of 12.6.

> library(lattice)

> dotplot(ranef (nb.lmerl, condVar=T))

Answer of 12.7.

> fixef (nb.lmerl) [1] +
ranef (nb.lmerl) $participant[1,]
22.7941

Returns the estimated intercept for the participant number 1,
which should correspond to the estimated sucking rate of this
baby while listening to the foreign language input. We add
fixed slope to this value to obtain the rate for the native lan-
guage input.

> fixef (nb.lmer1) [1] + fixef(nb.lmeri) [2] +

ranef (nb.lmerl) $participant[1,]
27.31777

Repeating it for participant 3 in a somewhat compact notation,
we get:

> c(fixef(nb.1lmer1)[1], sum(fixef(nb.lmer1))) +
ranef (nb.1lmerl) $participant [3,]
49.07146 53.59512

To compare it with the observed values, one way to get the
information we need is:

> newborn[newborn$participant %in% c(1,3),]

participant language rate
1 1 native 29.01
2 1 foreign 20.06
5 3 native 50.92
6 3 foreign 53.73

The values are definitely not the same. The differences in
native (the slope) are expected since we estimate a single
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slope for all babies. The difference between the intercept
estimates and the observed values are more interesting here.
The important thing to notice here is that participant 1 has a
rather small observed intercept (20.06), while participant 3
has a rather large one (53.73). The estimated values, 22.79
and 49.07, are not too far from the observed values. However,
they are pulled towards the common mean.

Answer of 12.8.

> plot(rate ~ jitter(c(0,1) [language],
amount=0.05) ,
xaxt="n", xlab='language', data=newborn)
> axis (1, at=c(0,1), labels=c('foreign', 'native'))
abline(nb.1lm)
> abline(a=fixef (nb.
ranef (nb.
b=fixef (nb.
> abline(a=fixef (nb.
ranef (nb.
b=fixef (nb.
x <= ¢(0,1,0,1)
y <- with(newborn,

v

lmeril) [1] +

lmerl) $participant[1,],
Imeri1) [2], col='red')
lmerl) [1] +

lmerl) $participant[3,],
lmer1) [2], col='blue')

VvV Vv

c(rate[participant == '1' & language ==
'foreign'],
rate[participant == '1' & language ==
'native'],
rate[participant == '3' & language ==
'foreign'],
rate[participant == '3' & language ==

'native']))
> points(x, y, pch=21,

bg=c('red','red', 'blue','blue'))

(the last part, plotting the colored points, can be done with a
more compact syntax)

Answer of 12.9.

> nb.1lm2 <- 1lm(rate ~ language + participant,
data=newborn)
> summary (nb.1lm2)

The slope should be the same as nb . 1m, and almost the same as
nb.1lmerl. The intercept now is the ‘foreign’ rate for the first
participant. The new (slope) coefficients for participant
are the differences of the respective participant and the inter-
cept term.

Adding the subject variable reduces the variation. Actually, it
is now the same as the residual variance in nb. lmer1.

The slope estimate of language is not differnt for different
subjects as in other models. The intercept is now associated
with the first subject, and to find the ‘intercept’ of the third
subject we need to add these coefficients.

> coef(nb.1m2) [1];coef(nb.1m2) [1] +
coef (nb.1m2) ['participant3']

Answer of 12.10.

> abline(a=coef(nb.1m2),
b=coef (nb.1m2) ['languagenative'],
col='red', lty='dotted')

> abline(a=coef (nb.1m2) [1]1+coef(nb.1m2) [3],
b=coef (nb.1m2) ['languagenative'],
col='blue', lty='dotted')

You should notice that the lines for mixed-effect model is
closer to the Im () estimate ignoring the subject variation com-
pared to the model that includes participants as fixed effects.

Answer of 12.11.

> bl.1lmer2 <- lmer(mlu ~ language +
(language |subj), data=bilingual, REML=F)
> bl.lmer3 <- lmer(mlu ~ language + (1|subj),
data=bilingual, REML=F)



Summaries of the models fits, or if you run
AIC(bl.lmer3, bl.lmer2), should indicate that bl.lmer3
has a smaller AIC value (remember that we prefer models
with smaller AIC values).

Answer of 12.12.

> anova(bl.lmer3, bl.lmer2)

Remember that convention is to specify the smaller model
first, but it does not change the results. The test above returns a
p-value of 0.6604, indicating that there isn’t enough evidence
in the data in support of more complex model.

Answer of 12.13. > dotplot(ranef(bl.lmer2, condVar=T))
Answer of 12.14.

> nb.lmer2 <- lmer(rate ~ 1 + (1|participant),
data=newborn)
> anova(nb.lmer2, nb.lmerl)

You should see that the p-value reported is really small
(6.293 x 10°), indicating that the predictor has a statistically
significant effect.

Answer of 12.15.

> confint (profile(nb.lmerl))

> confint(profile(nb.lmerl), level=0.99)

In both cases you should observe that the confidence interval
for languagenative does not include 0. Hence, you can re-
ject the null hypothesis (that the babies react to both stimuli
the same way) at level p < .01 (and of course at p < .05). It
is not surprising that you get this value given the p-value found
in Exercise 12.14.

The coefficient of the random effect, participant, is reported
as .sig01. You should observe that the intervals calculated
does not include O for the random effect either.

Answer of 12.16. First we fit a series of models:

> bl.la <- lmer(mlu ~ languagex*age +
(language+age|subj), data=bilingual, REML=F)

> bl.1l <- lmer(mlu ~ language*age +
(language|subj), data=bilingual, REML=F)

> bl.a <- lmer(mlu ~ language*age + (agelsubj),
data=bilingual, REML=F)

> bl.i <- lmer(mlu ~ language*age + (1]|subj),
data=bilingual, REML=F)

First line fits random intercepts and slopes for both language
and age, the second line fits only random slopes for
language, the third line fits only random slopes for age, and
the last line fits a random-intercepts-only model. Random in-
tercepts are implicitly specified in first three models.

Checking AIC values

> AIC(bl.i, bl.a, bl.1l, bl.la)
daf AIC

bl.i 8 370.7229

bl.a 13 375.8502

bl.1 10 373.0892

bl.la 17 375.9423

indicate that there is no point in using the larger models. The
simplest random-intercepts-only model is the best.

For the hypothesis testing part,

> confint (profile(bl.i))

Indicate ~ that  confidence  intervals  of  inter-
cept, agesecondgrade and interaction  term
languageschool:agesecondgrade do not include O,
hence statistically significant at the given level.
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We will skip the full interpretation here, but you should try to
interpret the result.

Answer of 12.17.

> bl.i2 <- update(bl.i, . ~
> confint(profile(bl.i2))

. + gender)

The confidence interval for genderM contains 0. Hence we
decide that the gender is not significant.

Answer of 12.18.

> par.ml <- lmer(rate ~ context +
(context|subject) + (context|item), data=par)
> summary (par.ml)

Random effects:

Groups Name Variance Std.Dev. Corr
subject (Intercept) 1.34353 1.1591
contextpp 0.01033 0.1017 0.76
contextip 0.01895 0.1377 0.63 0.98
item (Intercept) 6.91181 2.6290
contextpp 0.01416 0.1190 -0.41
contextip 0.05385 0.2321 -0.19 0.97
Residual 0.97588 0.9879
Number of obs: 900, groups: subject, 30; item, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) 4.26505 0.85978 4.961
contextpp 0.79375 0.09092 8.730
contextip -1.00695 0.11190 -8.998

In the above listing only part of the output is included. Note
that we have random intercepts and two random slopes be-
cause of both random effects. The correlation between the
random effects are also modeled.

In the fixed effects listing, (Intercept) indicates the aver-
age speech rate for an average speaker (subject) and average
phrase (item) in our base level context, in this case a paren-
thetical (par). The slopes of pp and ip indicate the differences
from the base level. Again, the slope estimates here are the av-
erage estimates for speakers and phrases.

Answer of 12.19.

par.ml <- lmer(rate ~ context + (context]|subject)
+ (context|item), data=par, REML=F)

par.m2 <- lmer(rate ~ context + (context|subject)
+ (1]litem), data=par, REML=F)

par.m3 <- lmer(rate ~ context + (1|subject) +
(context|item), data=par, REML=F)

par.m4 <- lmer(rate ~ context + (1|subject) +
(1litem), data=par, REML=F)

par.mb5 <- 1lmer(rate ~ context + (1|subject) ,
data=par, REML=F)

par.m6 <- lmer(rate ~ context + (1|item),
data=par, REML=F)

AIC(par.ml, par.m2, par.m3, par.m4, par.mb, par.m6)

The best model suggested by the lowest AIC value is par . m4.

Answer of 12.20. Fitting the model is simple

> par.mé4a <- lmer(rate ~ context + length +
(1|subject) + (1l|item), data=par, REML=F)

or

> par.mé4a <- update(par.m4, . ~ . + length)

Now we have new fixed effect for length which indicates a
higher speech rate for longer phrases. However, the intercept
estimate is also changed drastically. Since the intercept now
correspond to a parenthetical with O length. Furthermore, in-
tercept estimate becomes less certain.

Answer of 12.21.



> par.mé4a <- update(par.m4, . ~ . + scale(length))

Intercept now corresponds to a parenthetical phrase with av-
erage length. You should observe that the standard error for
the intercept (in comparison to the model par.m4) is smaller
now, indicating that our estimate of intercept has improved.

Answer of 12.22.

> par.m4b <- lmer(rate ~ context + scale(age) +
sex + scale(length) + (1|subject) + (1litem),
data=par, REML=F)

The intercept now corresponds to the speech rate of a average-
length parenthetical phrase for an average-aged female sub-
ject. The intercept estimate should be more certain than the
earlier models. And now the subject variation (the standard
deviation of random intercept due to subject) should also be
smaller than before.

Answer of 12.23.

> dotplot (ranef (par.m4, which="subject",
condVar=T))

> dotplot (ranef (par.m4b, which="subject",
condVar=T))

If you pay attention to the x-axis, you will see that the overall
variation is reduced considerably by the predictors age and
gender.

Answer of 12.24.

> profile.m4b <- profile(par.méb)
> confint(profile.m4b, level=0.99)

You should observe that none of the confidence intervals in-
clude 0. Hence, all effects are significant at «-level 0.01.

51



B Model formulas

Various commands in R accept a notation called model for-
mula, or simply formula. The simplest form of the formula
is,

y ~ X

where x and y are two variables. You can read this as ‘y is ex-
plained by x’. The dependent or response variable goes to the
left of the tilde ‘~* and the explanatory or independent vari-
ables goes to the right. This formula roughly corresponds to
the linear equation,

y=a+bx

The interpretation is slightly different if the variables are cat-
egorical. Note that the intercept, a, is implicit in the model
formula. If you like, you can be explicit by using the notation
+ 1. Or if you want to exclude it, e.g., force a regression line
passing through the origin, you can exclude it by - 1. In case
you have multiple explanatory variables, it is easy to include
them using the same notation. For example if you had two
explanatory variables x1 and x2, you can specify it like this:

y ~ x1 + x2

The linear equation that correspond to this notation would be
y=a+bix; + baxy.

As you may have figured out already, the arithmetic operators
such as + and - have different meanings in a formula. So, if
the variable you are interested is a combination of R variables,
then you need a special notation. For example, you might be
interested in fitting a linear model where y is explained by the
sum of x1 and x2. That is, the equation you want to describe is
Yy = a+b x (x7 +x2). In such cases you need to use a special
function, I(), to protect the arithmetic operation from being
interpreted as part of the formula. In the case of our example,
the correct formula notation is

y ~ I(x1l + x2)

If your explanatory variables are categorical, as in ANOVA,
you may fit a model where interaction of the variables is im-
portant. Interaction of variables in a formula is expressed with
a term where variable names are concatenated with column(s)
between the variables. For example, the formula

y ~ x1 + x2 + x1:x2

expresses a model where interaction of x1 and x2 are also in-
cluded in the model fitting. For two variables, we have only
one possible interaction. If you have many variables, and want
to include all interaction terms, it may be a hassle to type all
the interaction terms separately. For example, all interactions
of three variables x1, x2 and x3 consist of the two-way inter-
actions x1:x2, x1:x3, x2:x3 and the three way interaction
x1:x2:x3. To include all interactions, you can use “*’ in-
stead of ‘+’. For example, to include three variables and all
interactions in a model formula, we simply type y ~ x1 *
x2 * x3.

The formula notation is quite flexible and can express many
other forms of ‘models’. The above explanation should be
enough to get you started. R documentation you can find on
CRAN is the main reference, and you can find further infor-
mation in the many books and documents on R.
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