Database Management Systems (LIX022B05)

Instructor: Çağrı Çöltekin c.coltekin@rug.nl

Information science/Informatiekunde

Fall 2012

Labs Office hours

Who, where, when

Course

Email

Lectures

Instructor

Mon 13:00-15:00, A weg 30, room 103 Wed 15:00-17:00, 1312.0107 MB Wed 13:00-15:00, H1311.0426

Databases (LIX022B05) 2012/13

Course page http://www.let.rug.nl/coltekin/db2012/

Çağrı Çöltekin

c.coltekin@rug.nl

Literature

Textbook

Database System Concepts by A. Silberschatz, H. F. Korth and S. Sudarshan. McGraw-Hill (2010), ISBN 978-007-128959-7 (6th international ed.)

More References:

- ▶ Database Management Systems by Ramakrishnan & Gehrke
- ► A First Course in Database Systems by Ullman & Widom
- ▶ Fundamentals of Database Systems by Elmasri & Navathe
- ▶ Database Systems: The Complete Book by Garcia-Molina, Ullman & Widom
- Database Systems: A Practical Approach to Design, Implementation, and Management by Connolly & Begg

Lab Sessions

Homework assignments:

▶ You need an account on siegfried.let.rug.nl. If you do not have an account apply to

A. da Costa Room: 1313.336

Mo-Thu, 10:30-12:00 and 14:00-15:30

- ▶ You also need a MySQL user account and a database for the
- No programming, mostly exercises with SQL.

After this course ...

You should be able to

- develop a conceptual data model that reflects an organization's database requirements
- ▶ convert the conceptual data model into a relational database
- apply normalization techniques
- identify data integrity and security requirements
- ▶ be able to construct complex SQL queries
- ▶ be familiar with fundamentals of database administration, performance and optimization
- ▶ gain hands-on experience with a database management system (MySQL)

Evaluation

Grading:

Homeworks & labs 30% Final exam (Tentamination) 70%

Homework assignments:

- ▶ Six homeworks: a homework each week (except this week)
- ▶ Homeworks will be combination of theoretical questions with some practical (mostly SQL) exercises.
- ▶ Practical part of the homeworks will be related to the lab
- You have a week for each homework: no extensions!
- ▶ Evaluation will be based on best five homework scores.

About this course

This is an introductory course on database management systems. The particular focus will be on relational database management

- ▶ No initial knowledge of databases required.
- ▶ There is no programming in this course.
- ▶ We will have a practical focus, but the theories behind the relational database design practices and queries are also introduced.

Time plan

Week	Lecture (Mon)	Lab (Wed)
1	Introduction	No Lab this week.
2	Conceptual DB design,	DB Design with E-R
	E-R diagrams	diagrams
3	Logical DB design,	Implement a DB in
	normalization	MySQL
4	SQL 1: simple queries	Query exercises
5	SQL 2: more complex	More query exercises
	queries	
6	SQL 3:views, indexes,	Query optimization,
	access control	Indexes, DBA tasks
7	Summary & introduction	Q&A
	to SQL and programming	

Ç. Çöltekin, Informatiekunde

Next...

Next half-semester course 'Database-driven web technology', will cover:

- A more practical approach to the subjects in this course.
- ▶ Some programming for web applications (PHP).
- ▶ Using relational databases from web applications.
- ► More/practical topics including
 - ► transaction processing
 - security
 - performance

C. Cöltekin, Informatiekun

Database

8/32

Introduction

What is a database?

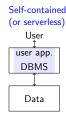
A database is a collection of related data.

- ▶ A company database: employees, departments, salaries, . . .
- A bank database: customers, accounts, loans, credits, ...
- ▶ Airline flight reservation database: flights, seats, tickets, . . .
- ▶ A library catalog: books, authors, . . .
- ▶ University student database: students, instructors, grades, . . .
- A database of DNS records: domain names, IP addresses, ...
- ► The collection of documents in Wikipedia: documents, authors, revisions, . . .
- ► The phone book on your mobile phone: contacts, phone numbers, email addresses, . . .
- **>** . . .

C. Çöltekin, Informatiekun

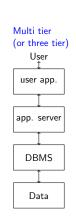
Databas

Introductio


Why use a DBMS

- ► Insulation between program and data
- ▶ Multiple views of the same data
- ▶ Sharing data in multi-user environments
- ► Controlling redundancy
- ► Enforcing data integrity
- Access control
- Efficient query processing
- ► Backup and recovery
- Multiple user interfaces

Ç. Çöltekin, Informatiekunde


Datahases

DBMS architectures

Ç. Çöltekin, Informatiekunde

User user app. DBMS Data

Today

- ► What is a database? and database management system (DBMS)?
- ▶ Why use a DBMS?
- ▶ Why not use a DBMS?
- Ways of organizing data
- ► Common DB architectures
- A quick introduction to RDBMSs: tables, keys, queries.

Ç. Çöltekin, Informatiekund

Dataha

atabases

What is a database management system?

A database management system (DBMS) is a general purpose software system for creating, maintaining and sharing data.

A DBMS,

- ▶ allows creating a database
- ▶ allows populating the database and manipulating the data
- enables queries on the data stored in the database
- enforces data integrity
- ▶ provides data access control

Ç. Çöltekin, Informatiekund

Databases

Why not use a DBMS?

- ► The overhead of DBMS
- Specialized data access
- ► Cost of DBMS
- ► Simple and well-defined read-only data
- ► Real-time systems
- ► Single-user environments.

Ç. Çöltekin, İnformatiekund

Database

Typical roles in a DBMS environment

- User
- ► Application programmer
- Database designer
- ► Database administrator

Databases 14/32

Ç. Çöltekin, Informatiekunde

15

Relational DBMSs

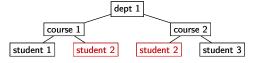
In this course we will focus on *relational* database management systems (RDBMS), where data and the relations between the data is organized in the form of *tables* (or, relations).

Book			
ISBN	title	year	pages
0330258648	The Hitchhiker's Guide to the Galaxy	1979	180
055338256X	I, Robot	1950	272
0553383043	A Wizard of Earthsea	1968	192

Author		
name	ISBN	
Douglas Adams	0330258648	
Isaac Asimov	055338256X	
Ursula K. LeGuin	0553383043	

Genre		
genre	author	
comedy	0330258648	
sci-fi	0330258648	
fantasy	0553383043	

C Cöltekin Informatiekund


Database.

16/32

Introduction

Hierarchical databases

Initial DBMSs followed a *hierarchical* data organization. All records in a hierarchical database is organized according to a hierarchy.

Main problem: data replication.

Although this is a serious problem for typical database applications. The hierarchical databases are preferable, and still popular, for certain applications (e.g. DNS, LDAP).

C. Çöltekin, Informatiekunde

Databas

18/3

Introductio

Object-based databases

With the popularity of object-oriented programming languages, object oriented database management systems are suggested.

Object relational: extension of relational database systems to support object-oriented notions like user-defined data types, inheritance, encapsulation etc.

Object oriented: supports objects from an object-oriented programming language to be stored in a database.

The object-based databases are still not standardized, and relational databases are still the dominant approach to standard database applications.

C Cöltekin Informatiekund

Databases

20/32

A quick introduction to RDBMS

Structure of a relational database

- A relational database consists of multiple relations, or tables.
- Information is broken into multiple tables.
- The relevant information is accessed through references between tables.
- A bad database design results in problems such as data replication, or inconsistency.

Types of DBMSs

Relational data model and RDBMSs are the dominant method of modeling and managing databases. However, it is not the *only* way. Historical precursors:

- Hierarchical
- Network

Somewhat new:

- ▶ Object-oriented or object-relational
- .. and becoming popular:
 - So-called NoSQL databases covering a wide range of methods of organizing data.

C Cöltekin Informatiekunde

Database.

Network databases

To overcome the replication problem with the hierarchical databases, network databases allow arbitrary links (representing relations) between the data records.

Main problem: complexity.

Ç. Çöltekin, Informatiekunde

Databases

NoSQL databases

A large range of database management system that are collectively called *NoSQL* databases has (re)gained popularity in recent years. Examples include:

- Key-value stores (Berkeley DB)
- ► Document stores (Apache CouchDB)
- ► Graph (FlockDB)
- ► Tabular (Google BigTable)
- ► Tuple store (Apache River)

Ç. Çöltekin, Informatiekund

Databases

Anatomy of a table (or relation)

Columns (attributes, fields) Column names ISBN title year pages Rows (records, 0330258648 The Hitchhiker's 1979 180 tuples) 055338256X I, Robot 1950 272 0553383043 A Wizard of 1968 192

▶ Domain of an attribute is the set of allowed values the

Ç. Çöltekin, Informatiekunde Databases 22/32

Ç. Çöltekin, Informatiekunde

23/3

More on relations

ISBN	title	year	pages
0330258648	The Hitchhiker's Guide to the Galaxy	1979	180
055338256X	I, Robot	1950	272
0553383043	A Wizard of Earthsea	1968	null

- ▶ No two rows are identical.
- Order of rows and columns are not important. (NB. order may be important in some SQL statements)
- ► A domain is said to be *atomic* if the elements of the domain are considered indivisible.
- A special value 'null' is allowed for unknown or inapplicable values.

C. Cöltekin, Informatiekunde Data

24/3

A quick introduction to RDBMS

Foreign Key

Book			
ISBN	title	year	pages
03302586480330258648	The Hitchhiker's Guide to the Galaxy	1979	180
055338256X <mark>055338256</mark> X	I, Robot	1950	272
0553383043 <mark>0553383043</mark>	A Wizard of Earthsea	1968	192

Author		
name	ISBN	
Douglas Adams	03302586480330258648	
Isaac Asimov	055338256X <mark>055338256X</mark>	
Ursula K. LeGuin	05533830430553383043	

Genre		
genre	ISBN	
comedy	0330258648 <mark>0330258648</mark>	
sci-fi	0330258648 <mark>0330258648</mark>	
sci-fi	0553383043 <mark>0553383043</mark>	

A foreign key is used for cross-referencing in a RDBMS. The set of attributes that form the foreign key in a (referencing) table is the

primary key of another (referenced) table.

A quick introduction to RDBMS

SQL: create/drop table

```
To create a table:
```

 $(constraint_1), \dots (constraint_m);$

Example:

To drop (remove) a table:

drop table table_name;

Example:

drop table book;

A quick introduction to RDBM

SQL: update records

```
update table_name
set attribute<sub>1</sub>=value<sub>1</sub>, ..., attribute<sub>N</sub>=value<sub>N</sub>
where condition;
```

Example:

```
update book set title='I, _Robot'
where ISBN='055338256X';
```

Primary Key

ISBN	title	year	pages
0330258648	The Hitchhiker's Guide to the Galaxy	1979	180
055338256X	I, Robot	1950	272
0553383043	A Wizard of Earthsea	1968	192

A primary key, formed by one or more attributes, uniquely identifies a row in a table.

- In worst case, the values of all attributes in a row has to be unique.
- ▶ A candidate key is one with no redundant attributes.
- ► There may be more than one candidate keys. Choice of primary key is a database design decision.

C. Cöltekin, Informatiekunde Databases 25/32

A quick introduction to RDBMSs

Languages for creating, changing, querying

- Data Definition Language (DDL) allows creating relations that form a database.
- Data Manipulation Language (DML) allows changing the data in the database.
- A query language allows finding specific information in the database

The *the* standard language for all above purposes (and more) is called *SQL*. Others exist (e.g. QBE), but SQL is the language supported by all main RDBMSs.

Ç. Çöltekin, Informatiekunde Databases 27/32

A quick introduction to RDBMS.

SQL: insert/delete records

To insert a new record:

```
insert into table_name(attribute_1, ... attribute_N)values(value_1, ... value_N);
```

Example:

To remove record(s):

delete from table_name where condition;

Example:

```
delete from book where ISBN = '055338256X';
```

Ç. Çöltekin, Informatiekunde Databases 29/3

A quick introduction to RDBMS

SQL: queries

```
select attribute<sub>1</sub>, ..., attribute<sub>N</sub>
from table<sub>1</sub>, ..., table<sub>M</sub>
where condition;
Examples:
select ISBN, title from book
    where year > 1960;
select * from instructor
    where ISBN='055338256X';
```

C. Çöltekin, Informatiekunde Databases 30/32 C. Çöltekin, Informatiekunde Databases

Summary / Next week

Today:

- ► A general introduction to databases and database management systems, relational databases and SQL.
- ► We will return to (almost) all subjects introduced today in later weeks.

Wednesday:

- ▶ No lab this week.
- ► Obtain a database account on siegfried, or check if you already have one.

Next Week:

- ► Conceptual databse design.
- ► Read Chapter 7. (We will not study Section 7.8 about extended E-R features).

C Cöltekin Informatiekunde

Databases

-- /--