Databases (LIX022B05)
SQL (2)

Instructor: Cagri Coltekin

c.coltekin@rug.nl

Information science/Informatiekunde

2012-10-01

http://www.let.rug.nl/coltekin
http://www.rug.nl/let/onderwijs/bachelor/informatiekunde/index

Previously in this course . ..

Database Design Process

- Physical De-
Requirements Conceptual Logical DB ysied
) . . sign & im-
collection DB de5|gn DeS|gn .
plementation

ideas high-level Chned P8 | [database |

design schema

E-R diagrams normalization SQL DDL
statements

C. Coltekin, Informatiekunde SQL (2) 1/28

http://www.let.rug.nl/coltekin

Previously in this course . ..

SQL basics: summary (1)

» SQL includes a data definition language (DDL) and data
manipulation language (DML) statements as well as being a
database query language.

» The DDL statements include create table, alter table and
drop table

» The DML statements include insert into, update and
delete from statements.

» The SQL query language is closely related to formal query
language relational algebra.

» Relational algebra operations include, selection (o), projection
(71), Cartesian product (), natural join (), other join
operations such as outer joins, and set operations union,
intersection, set difference.

C. Coltekin, Informatiekunde SQL (2) 2/28

http://www.let.rug.nl/coltekin

Previously in this course . ..

SQL basics: summary (2)

» Basic form of SQL queries is:
select attribute;, ---, attributey
from table_nameyq, - - -, table_namey,

where condition;

» from clause lists the tables used in the query.

» where statement picks the rows we are interested in using
predicates containing

» comparisons: =, <> >, <, >= and <=.
> sub-strings match operator like.
> logical operators and, or and not.

» select clause picks the columns we are interested in.

» select and where may include arithmetic operations, and
string operations, upper, lower, and concat

C. Coltekin, Informatiekunde SQL (2) 3/28

http://www.let.rug.nl/coltekin

Previously in this course . ..

SQL basics: summary (3)

SQL queries can include

» We can sort the output of an SQL query by adding an
order by clause at the end of our queries.

> A set of aggregate functions, count, sum, avg, max and min
can be used to gather statistics about certain column(s) of a
query.

» The results of aggregate functions can be grouped together by
group by clause.

» Set operations union, intersection and difference (expect),
can be used to combine the results of two queries.

» Sub-queries can be used in the from clause, or as an
argument to in.

C. Coltekin, Informatiekunde SQL (2) 4/28

http://www.let.rug.nl/coltekin

A few words on homeworks

Homework 1: common problems

The most common problem is confusing entity sets with tables
with eventual database tables.

E-R design is not the physical design of the database, you should
try to describe the world with an abstraction consisting of the
following components:

» Entity sets represent ‘things’, such as a person, or a book.
Entity sets are typically represented with rectangles. Entity
sets are not tables.

» Relationship sets represent relations between entities, such as
person reads books. Relationship sets are not unnecessary
details, only way two entities in an E-R model to be related is
through a relationship set.

> Attributes are features of entities we are interested in such as
name of a person. Relationship sets can also get attributes.

C. Coltekin, Informatiekunde SQL (2) 5/28

http://www.let.rug.nl/coltekin

E-R design: a better solution

title
{author}
{genre}
year
pages
publisher
binding
weight

in_stock

stock

condition

quantity
price

C. Coltekin, Informatiekunde

book_order

SQL (2)

A few words on homeworks

customer

email

name

address
street_addr
post_code
city
country

phone

cst_order

order

order_nr
order_date
send_date
status

6/28

http://www.let.rug.nl/coltekin

A few words on homeworks

Homework 2: common problems

» A primary key (a key in general) can be a combination of
multiple attributes (columns). For example, it is perfectly fine
to define a (primary) key like
(street, number, city, country).

C. Coltekin, Informatiekunde SQL (2) 7/28

http://www.let.rug.nl/coltekin

A few words on homeworks

Homework 2: common problems

» A primary key (a key in general) can be a combination of
multiple attributes (columns). For example, it is perfectly fine
to define a (primary) key like
(street, number, city, country).

» 1NF is only about the values a particular column can take.
Duplication of rows has nothing (directly) to do with 1INF.
Having first and last names in a single column violates 1NF,
but repeating these fields for each email address does not.

C. Coltekin, Informatiekunde SQL (2) 7/28

http://www.let.rug.nl/coltekin

A few words on homeworks

Homework 2: common problems

» A primary key (a key in general) can be a combination of
multiple attributes (columns). For example, it is perfectly fine
to define a (primary) key like
(street, number, city, country).

» 1NF is only about the values a particular column can take.
Duplication of rows has nothing (directly) to do with 1INF.
Having first and last names in a single column violates 1NF,
but repeating these fields for each email address does not.

» Functional dependencies are about the 'real world’ you are

modeling, they are not about a certain data set in a particular
table.

C. Coltekin, Informatiekunde SQL (2) 7/28

http://www.let.rug.nl/coltekin

A few words on homeworks

Homework 2: common problems

» A primary key (a key in general) can be a combination of
multiple attributes (columns). For example, it is perfectly fine
to define a (primary) key like
(street, number, city, country).

» 1NF is only about the values a particular column can take.
Duplication of rows has nothing (directly) to do with 1INF.
Having first and last names in a single column violates 1NF,
but repeating these fields for each email address does not.

» Functional dependencies are about the 'real world’ you are
modeling, they are not about a certain data set in a particular
table.

» To be a foreign key, a set of attributes first needs to be a key.
Defining a foreign key that references to non-key attributes on
another table is wrong. (Even if your DBMS system allows it).

C. Coltekin, Informatiekunde SQL (2) 7/28

http://www.let.rug.nl/coltekin

A few words on homeworks

Homework 2: common problems

» A primary key (a key in general) can be a combination of
multiple attributes (columns). For example, it is perfectly fine
to define a (primary) key like
(street, number, city, country).

» 1NF is only about the values a particular column can take.
Duplication of rows has nothing (directly) to do with 1INF.
Having first and last names in a single column violates 1NF,
but repeating these fields for each email address does not.

» Functional dependencies are about the 'real world’ you are
modeling, they are not about a certain data set in a particular
table.

» To be a foreign key, a set of attributes first needs to be a key.
Defining a foreign key that references to non-key attributes on
another table is wrong. (Even if your DBMS system allows it).

» A recommendation: try to write your SQL statements directly.
You will learn better.

C. Coltekin, Informatiekunde SQL (2) 7/28

http://www.let.rug.nl/coltekin

Today

Rest of today...

» Some more reminders with additions: set operations and
aggregate functions.

» More on joins.
» Null values.

» Indexes.

> Views.

» Access control.

C. Coltekin, Informatiekunde SQL (2) 8/28

http://www.let.rug.nl/coltekin

Distinct values and set comparisons in SQL
o . . genre

Distinct values in SQL queries title [genre
The Godfather | crime
The Godfather | drama
What is the result of the query Seven Samurai | drama

select genre from genre;?

- crime
crime or
drama
drama
drama

C. Coltekin, Informatiekunde SQL (2) 9/28

http://www.let.rug.nl/coltekin

Distinct values and set comparisons in SQL
o . . genre

Distinct values in SQL queries title [genre
The Godfather | crime
The Godfather | drama
What is the result of the query Seven Samurai | drama

select genre from genre;?

- crime
crime or
drama
drama
drama

> The left table (relation) is the theoretically correct answer,
but SQL’s answer is the right one.

» The reason is efficiency: reducing duplicates are an expensive
process.

» But we can get the left table by adding distinct keyword to
select clause. For example,
select distinct genre from genre;

C. Coltekin, Informatiekunde SQL (2) 9/28

http://www.let.rug.nl/coltekin

Distinct values and set comparisons in SQL

. movie genre
Set operations and title [year || title [genre
distinct Values The Godfather | 1972 || The Godfather | crime
Seven Samurai | 1954 || The Godfather | drama
Inception 2010 || Seven Samurai | drama

» Set operations (union, intersect, except) always eliminate
the duplicates.

> For example,

(select title from movie)
union
(select title as from genre);

will return:

| title |
The Godfather
Seven Samurai
Inception

C. Coltekin, Informatiekunde SQL (2) 10/28

http://www.let.rug.nl/coltekin

Distinct values and set comparisons in SQL

. movie genre
Set comparison operators e [year | | title [genre

The Godfather | 1972 The Godfather | crime
Seven Samurai | 1954 | | The Godfather | drama
Inception 2010 Seven Samurai | drama
» We have already seen that we can test for set membership by

in (or not in).

» For example, to find all movie titles without a genre
assignment,

select
from movie
where title not in (select title from genre);

» We can also use the following comparisons on sets:

» some: the condition is true for at least one of the members.
» all the condition true for all members.
» exists: true if the set is not empty.

The operators also work on non-set (non-distinct) sub-queries.

C. Coltekin, Informatiekunde SQL (2) 11/28

http://www.let.rug.nl/coltekin

Distinct values and set comparisons in SQL

. movie genre
Set comparison (examp|eS) ‘ title ‘ year | | title ‘ genre
The Godfather | 1972 The Godfather | crime
Seven Samurai | 1954 The Godfather | drama
Inception 2010 | | Seven Samurai | drama

select * from movie
where year >= all (select year from movie);

C. Coltekin, Informatiekunde SQL (2) 12/28

http://www.let.rug.nl/coltekin

Distinct values and set comparisons in SQL

. movie genre
Set comparison (examp|eS) ‘ title ‘ year | | title ‘ genre
The Godfather | 1972 The Godfather | crime
Seven Samurai | 1954 The Godfather | drama
Inception 2010 | | Seven Samurai | drama

select * from movie
where year >= all (select year from movie);

‘ Inception ‘ 2010 ‘

C. Coltekin, Informatiekunde SQL (2) 12/28

http://www.let.rug.nl/coltekin

Distinct values and set comparisons in SQL

. movie genre
Set comparison (examp|eS) ‘ title ‘ year | | title ‘ genre
The Godfather | 1972 The Godfather | crime
Seven Samurai | 1954 The Godfather | drama
Inception 2010 | | Seven Samurai | drama

select * from movie
where year >= all (select year from movie);

‘ Inception ‘ 2010 ‘

select « from movie
where year > some (select year from movie);

C. Coltekin, Informatiekunde SQL (2) 12/28

http://www.let.rug.nl/coltekin

Distinct values and set comparisons in SQL

Set comparison (examples) [T

select * from movie

where year >= all (select year from movie);

‘ Inception ‘ 2010 ‘

select * from movie

where year > some (select year from movie);

The Godfather | 1972
Inception 2010

C. Coltekin, Informatiekunde SQL (2)

movie genre
‘ year | | title ‘ genre
The Godfather | 1972 The Godfather | crime
Seven Samurai | 1954 The Godfather | drama
Inception 2010 | | Seven Samurai | drama
12/28

http://www.let.rug.nl/coltekin

Distinct values and set comparisons in SQL

. movie genre
Set comparison (examp|eS) ‘ title ‘ year | | title ‘ genre
The Godfather | 1972 The Godfather | crime
Seven Samurai | 1954 The Godfather | drama
Inception 2010 | | Seven Samurai | drama

select * from movie
where year >= all (select year from movie);

‘ Inception ‘ 2010 ‘

select « from movie
where year > some (select year from movie);

The Godfather | 1972
Inception 2010

select x from movie
where not exists (select « from genre where movie.title = genre.title)

C. Coltekin, Informatiekunde SQL (2) 12/28

http://www.let.rug.nl/coltekin

Distinct values and set comparisons in SQL

Set comparison (examples) [T

movie genre
‘ year | | title ‘ genre
The Godfather | 1972 The Godfather | crime
Seven Samurai | 1954 The Godfather | drama
Inception 2010 | | Seven Samurai | drama

select * from movie

where year >= all (select year from movie);

‘ Inception ‘ 2010 ‘

select * from movie

where year > some (select year from movie);

The Godfather | 1972
Inception 2010

select * from movie

where not exists (select « from genre where movie.title = genre.title)

C. Coltekin, Informatiekunde SQL (2)

12/28

http://www.let.rug.nl/coltekin

More on aggregate functions
genre

Aggregate functions and having clause title [genre
The Godfather | crime
The Godfather | drama

We use group by to group the output of the Seven Samurai | drama
aggregate functions(count, sum, avg, max, min).

For example

select genre, count(title) as count from genre group by genre;

C. Coltekin, Informatiekunde SQL (2) 13/28

http://www.let.rug.nl/coltekin

More on aggregate functions
genre

Aggregate functions and having clause title [genre
The Godfather | crime
The Godfather | drama

We use group by to group the output of the Seven Samurai | drama
aggregate functions(count, sum, avg, max, min).

For example

select genre, count(title) as count from genre group by genre;

drama | 2
crime | 1

C. Coltekin, Informatiekunde SQL (2) 13/28

http://www.let.rug.nl/coltekin

More on aggregate functions
genre

Aggregate functions and having clause title [genre
The Godfather | crime
The Godfather | drama

We use group by to group the output of the Seven Samurai | drama
aggregate functions(count, sum, avg, max, min).

For example

select genre, count(title) as count from genre group by genre;

drama | 2
crime | 1

Sometimes we want to restrict the groups, this can be done by
having clause.

select genre, count(title) as count from student group by year
having count(title) >=2;

C. Coltekin, Informatiekunde SQL (2) 13/28

http://www.let.rug.nl/coltekin

More on aggregate functions
genre

Aggregate functions and having clause title [genre
The Godfather | crime
The Godfather | drama

We use group by to group the output of the Seven Samurai | drama
aggregate functions(count, sum, avg, max, min).

For example

select genre, count(title) as count from genre group by genre;

drama | 2
crime | 1

Sometimes we want to restrict the groups, this can be done by
having clause.

select genre, count(title) as count from student group by year
having count(title) >=2;

C. Coltekin, Informatiekunde SQL (2) 13/28

http://www.let.rug.nl/coltekin

Null values

Reasoning with null values

Null values create a number of difficult cases in relational database
theory.

> Arithmetic expressions involving null are null
(1 + null = null).
» Any comparison (like 1 = null, 1 < null) involving nulls
results in a third truth value: unknown.
» This includes the comparison null = null, except for set
operations and for distinct.
» Expressions is null or is not null can be used to test if a
value is null or not.
> Logical operations with unknown values:
true and unknown =
false and unknown =
true or unknown =
false or unknown =
not unknown =

C. Coltekin, Informatiekunde SQL (2) 14/28

http://www.let.rug.nl/coltekin

Null values

Reasoning with null values

Null values create a number of difficult cases in relational database
theory.

> Arithmetic expressions involving null are null
(1 + null = null).
» Any comparison (like 1 = null, 1 < null) involving nulls
results in a third truth value: unknown.
» This includes the comparison null = null, except for set
operations and for distinct.
» Expressions is null or is not null can be used to test if a
value is null or not.
> Logical operations with unknown values:
true and unknown = unknown
false and unknown =
true or unknown =
false or unknown =
not unknown =

C. Coltekin, Informatiekunde SQL (2) 14/28

http://www.let.rug.nl/coltekin

Null values

Reasoning with null values

Null values create a number of difficult cases in relational database
theory.

> Arithmetic expressions involving null are null
(1 + null = null).
» Any comparison (like 1 = null, 1 < null) involving nulls
results in a third truth value: unknown.
» This includes the comparison null = null, except for set
operations and for distinct.
» Expressions is null or is not null can be used to test if a
value is null or not.
> Logical operations with unknown values:
true and unknown = unknown
false and unknown = false
true or unknown =
false or unknown =
not unknown =

C. Coltekin, Informatiekunde SQL (2) 14/28

http://www.let.rug.nl/coltekin

Null values

Reasoning with null values
Null values create a number of difficult cases in relational database
theory.

> Arithmetic expressions involving null are null
(1 + null = null).

» Any comparison (like 1 = null, 1 < null) involving nulls
results in a third truth value: unknown.

» This includes the comparison null = null, except for set
operations and for distinct.

» Expressions is null or is not null can be used to test if a
value is null or not.

> Logical operations with unknown values:

true and unknown = unknown
false and unknown = false
true or unknown = true

false or unknown =
not unknown =

C. Coltekin, Informatiekunde SQL (2) 14/28

http://www.let.rug.nl/coltekin

Null values

Reasoning with null values
Null values create a number of difficult cases in relational database
theory.
> Arithmetic expressions involving null are null
(1 + null = null).
» Any comparison (like 1 = null, 1 < null) involving nulls
results in a third truth value: unknown.
» This includes the comparison null = null, except for set
operations and for distinct.

» Expressions is null or is not null can be used to test if a
value is null or not.

> Logical operations with unknown values:

true and unknown = unknown
false and unknown = false
true or unknown = true
false or unknown = unknown

not unknown =

C. Coltekin, Informatiekunde SQL (2) 14/28

http://www.let.rug.nl/coltekin

Null values

Reasoning with null values
Null values create a number of difficult cases in relational database
theory.
> Arithmetic expressions involving null are null
(1 + null = null).
» Any comparison (like 1 = null, 1 < null) involving nulls
results in a third truth value: unknown.

» This includes the comparison null = null, except for set
operations and for distinct.

» Expressions is null or is not null can be used to test if a
value is null or not.

> Logical operations with unknown values:

true and unknown = unknown
false and unknown = false
true or unknown = true
false or unknown = unknown
not unknown = unknown

C. Coltekin, Informatiekunde SQL (2) 14/28

http://www.let.rug.nl/coltekin

Null values

movie
null values and aggregate functions title year
The Godfather | 1972
Seven Samurai | 1954
A i Inception 2010
All aggregate functions ignore The Hobbit

the null values (count(x) is an exception). Examples:

null

C. Coltekin, Informatiekunde SQL (2) 15/28

http://www.let.rug.nl/coltekin

Null values

movie
null values and aggregate functions title year
The Godfather | 1972
Seven Samurai | 1954
A i Inception 2010
All aggregate functions ignore The Hobbit

the null values (count(x) is an exception). Examples:

null

> count(x):
select count(x) movie; =

C. Coltekin, Informatiekunde SQL (2) 15/28

http://www.let.rug.nl/coltekin

Null values

movie
null values and aggregate functions title year
The Godfather | 1972
Seven Samurai | 1954
A i Inception 2010
All aggregate functions ignore The Hobbit

the null values (count(x) is an exception). Examples:

null

> count(x):
select count(x) movie; = 4

C. Coltekin, Informatiekunde SQL (2) 15/28

http://www.let.rug.nl/coltekin

Null values

movie
null values and aggregate functions [title year
The Godfather | 1972
Seven Samurai | 1954

A i Inception 2010
All aggregate functions ignore The Hobbit null

the null values (count(x) is an exception). Examples:

> count(x):
select count(x) movie; = 4

» count(): count
select count(year) from movie; =

C. Coltekin, Informatiekunde SQL (2) 15/28

http://www.let.rug.nl/coltekin

Null values

movie
null values and aggregate functions [title year
The Godfather | 1972
Seven Samurai | 1954

A i Inception 2010
All aggregate functions ignore The Hobbit null

the null values (count(x) is an exception). Examples:

> count(x):
select count(x) movie; = 4

» count(): count
select count(year) from movie; = 3

C. Coltekin, Informatiekunde SQL (2) 15/28

http://www.let.rug.nl/coltekin

Null values

movie
null values and aggregate functions [title year
The Godfather | 1972
Seven Samurai | 1954

A i Inception 2010
All aggregate functions ignore The Hobbit null

the null values (count(x) is an exception). Examples:

> count(x):
select count(x) movie; = 4

» count(): count
select count(year) from movie; = 3

> sum: total
select sum(year) from movie; =

C. Coltekin, Informatiekunde SQL (2) 15/28

http://www.let.rug.nl/coltekin

Null values

movie
null values and aggregate functions title year
The Godfather | 1972
Seven Samurai | 1954
. . Inception 2010
All aggregate functions ignore The Hobbit i

the null values (count(x) is an exception). Examples:
> count(x):
select count(x) movie; = 4

» count(): count
select count(year) from movie; = 3

> sum: total
select sum(year) from movie; = 5936

C. Coltekin, Informatiekunde SQL (2) 15/28

http://www.let.rug.nl/coltekin

Null values

movie
null values and aggregate functions title year
The Godfather | 1972
Seven Samurai | 1954
. . Inception 2010
All aggregate functions ignore The Hobbit i

the null values (count(x) is an exception). Examples:
> count(x):
select count(x) movie; = 4

» count(): count
select count(year) from movie; = 3

> sum: total
select sum(year) from movie; = 5936

» avg: average
select average(year) from movie; =

C. Coltekin, Informatiekunde SQL (2) 15/28

http://www.let.rug.nl/coltekin

null values and aggregate functions

All aggregate functions ignore

the null values (count(x) is an exception). Examples:

> count(x):

select count(x) movie; = 4

» count(): count

select count(year) from movie; = 3

» sum: total

select sum(year) from movie; = 5936

> avg: average

select average(year) from movie; = 1978.67

C. Coltekin, Informatiekunde

SQL (2)

Null values

movie
‘ title year
The Godfather | 1972
Seven Samurai | 1954
Inception 2010
The Hobbit null
15/28

http://www.let.rug.nl/coltekin

Null values

movie

null values and aggregate functions title year
The Godfather | 1972

Seven Samurai | 1954

A i Inception 2010

All aggregate functions ignore The Hobbit i

the null values (count(x) is an exception). Examples:
> count(x):
select count(x) movie; = 4

» count(): count
select count(year) from movie; = 3

> sum: total
select sum(year) from movie; = 5936

» avg: average
select average(year) from movie; = 1978.67

> min: minimum
select min(year) from movie; =

C. Coltekin, Informatiekunde SQL (2) 15/28

http://www.let.rug.nl/coltekin

Null values

movie

null values and aggregate functions title year
The Godfather | 1972

Seven Samurai | 1954

A i Inception 2010

All aggregate functions ignore The Hobbit i

the null values (count(x) is an exception). Examples:
> count(x):
select count(x) movie; = 4

» count(): count
select count(year) from movie; = 3

> sum: total
select sum(year) from movie; = 5936

» avg: average
select average(year) from movie; = 1978.67

> min: minimum
select min(year) from movie; = 1972

C. Coltekin, Informatiekunde SQL (2) 15/28

http://www.let.rug.nl/coltekin

null values and aggregate functions

All aggregate functions ignore
the null values (count(x) is an exception). Examples:
> count(x):
select count(x) movie; = 4

» count(): count
select count(year) from movie; = 3

> sum: total
select sum(year) from movie; = 5936

> avg: average
select average(year) from movie; = 1978.67
> min: minimum
select min(year) from movie; = 1972
> max: maximum
select max(year) from movie; =

C. Coltekin, Informatiekunde SQL (2)

Null values

movie
‘ title year
The Godfather | 1972
Seven Samurai | 1954
Inception 2010
The Hobbit null
15/28

http://www.let.rug.nl/coltekin

null values and aggregate functions

All aggregate functions ignore
the null values (count(x) is an exception). Examples:
> count(x):
select count(x) movie; = 4

» count(): count
select count(year) from movie; = 3

> sum: total
select sum(year) from movie; = 5936

> avg: average
select average(year) from movie; = 1978.67
> min: minimum
select min(year) from movie; = 1972
> max: maximum
select max(year) from movie; = 2010

C. Coltekin, Informatiekunde SQL (2)

Null values

movie
‘ title year
The Godfather | 1972
Seven Samurai | 1954
Inception 2010
The Hobbit null
15/28

http://www.let.rug.nl/coltekin

Natural join

Queries on multiple tables

select book.blD, book.year, orders.cID,
from book, orders
where book.bID = orders.blID;

C. Coltekin, Informatiekunde SQL (2)

book orders
bID | pages | year | | cID [bID [qty
1 130 1995 | [1 1 1
2 544 1995 | | 1 2 1
3 213 2005 | | 3 1 3
4 210 2012 | | 4 3 1
orders.qty

16/28

http://www.let.rug.nl/coltekin

Natural join

book orders
Queries on multiple tables bID [pages | year | | cID [biD [aty
1 130 1995 1 1 1
2 544 1995 1 2 1
3 213 2005 3 1 3
4 210 2012 4 3 1

select book.bID, book.year, orders.cID, orders.qty
from book, orders
where book.bID = orders.blID;

] biD \ year \ clD \ qty ‘

1 1995 1)1
2 1995 11
1 1995 313
3 2005 41

C. Coltekin, Informatiekunde SQL (2) 16/28

http://www.let.rug.nl/coltekin

Natural join

book orders
Queries on multiple tables bID [pages | year | | cID [biD [aty
1 130 1995 1 1 1
2 544 1995 1 2 1
3 213 2005 3 1 3
4 210 2012 4 3 1

select book.blD, book.year, orders.cID, orders.qty
from book, orders
where book.bID = orders.blID;

] biD \ year \ clD \ qty ‘

1 1995 1)1
2 1995 11
1 1995 313
3 2005 41

Note: if you do not specify a where clause, you get the Cartesian
product.

C. Coltekin, Informatiekunde SQL (2) 16/28

http://www.let.rug.nl/coltekin

Natural join

book orders
Natural join bID [pages | year | | cID [bID [qty
1 130 1995 | [1 1 1
2 544 1995 | |1 2 1
3 213 2005 | | 3 1 3
4 210 2012 | | 4 3 1

The previous example was doing a natural join implicitly, we can
get the same effect with natural join expression.

C. Coltekin, Informatiekunde SQL (2) 17/28

http://www.let.rug.nl/coltekin

Natural join

Natural join

The previous example was doing a natural join implicitly, we can
get the same effect with natural join expression.

select blD, year, cID, qty
from book natural join orders;

C. Coltekin, Informatiekunde SQL (2)

book orders
bID | pages | year cID [bID [qty
1 130 1995 1 1 1
2 544 1995 1 2 1
3 213 2005 | | 3 1 3
4 210 2012 | | 4 3 1
17/28

http://www.let.rug.nl/coltekin

Natural join

book orders
Natural join bID [pages | year | | cID [bID [qty
1 130 1995 | [1 1 1
2 544 1995 | |1 2 1
3 213 2005 | | 3 1 3
4 210 2012 | | 4 3 1

The previous example was doing a natural join implicitly, we can
get the same effect with natural join expression.

select blD, year, cID, qty
from book natural join orders;

Result is (again) the same

‘ bID ‘ year ‘ clD ‘ qty ‘

1 1995 1)1
2 1995 1|1
1 1995 313
3 2005 411

C. Coltekin, Informatiekunde SQL (2) 17/28

http://www.let.rug.nl/coltekin

Natural join

book orders
Natural join bID [pages | year | | cID [bID [qty
1 130 1995 | [1 1 1
2 544 1995 | |1 2 1
3 213 2005 | | 3 1 3
4 210 2012 | | 4 3 1

The previous example was doing a natural join implicitly, we can
get the same effect with natural join expression.

select blD, year, cID, qty
from book natural join orders;

Result is (again) the same

‘ bID ‘ year ‘ clD ‘ qty ‘

1 1995 1)1
2 1995 1|1
1 1995 313
3 2005 411

You can join more than two tables using the same syntax:
t; natural join t natural join t3

C. Coltekin, Informatiekunde SQL (2) 17/28

http://www.let.rug.nl/coltekin

Natural join

student advisor
Natural join: sID [dept | year | alD | | aID | dept | phone
. 1 IK 1 1 1 CIw 1111
accidental column match 2 [aw | 2| 2|2 |K | 22
3 IK 3 1 3 IK 3333
4 Clw 2 3 4 Clw 4444

C. Coltekin, Informatiekunde SQL (2) 18/28

http://www.let.rug.nl/coltekin

Natural join

student advisor
Natural join: sID [dept | year | alD | | aID | dept | phone
. 1 IK 1 1 1 CIw 1111
accidental column match 2 [aw | 2| 2|2 |K | 22
3 IK 3 1 3 IK 3333
4 Clw 2 3 4 Clw 4444

select sID, student.dept, alD, phone
from student natural join advisor;

| sID | student.dept | alD | phone

3 IK 11111
4 CIw 3] 3333

C. Coltekin, Informatiekunde SQL (2) 18/28

http://www.let.rug.nl/coltekin

Natural join

student advisor
Natural join: sID [dept | year | alD | | aID | dept | phone
. 1 IK 1 1 1 CIw 1111
accidental column match 2 [aw | 2| 2|2 |K | 22
3 IK 3 1 3 IK 3333
4 Clw 2 3 4 Clw 4444

select sID, student.dept, alD, phone
from student join advisor using (alD);

| sID | student.dept | alD | phone

1 IK 11111
2 Ciw 2| 2222
3 IK 11111
4 CIw 3 | 5555

C. Coltekin, Informatiekunde SQL (2) 18/28

http://www.let.rug.nl/coltekin

Natural join:

arbitrary column expressions

C. Coltekin, Informatiekunde

Natural join

student advisor
ID [s_dept | year [alD | | ID [a_dept | phone
1 IK 1 1 1 Ciw 1111
2 CIwW 2 2 2 IK 2222
3 IK 3 1 3 IK 3333
4 CIw 2 3 4 Clw 4444
SQL (2) 19/28

http://www.let.rug.nl/coltekin

Natural join

student advisor
Natural join: ID [s_dept | year [alD | | ID [a_dept | phone
. . 1 IK 1 1 1 Ciw 1111
arbitrary column expressions [2 |cw 2 2|2 [K %
3 IK 3 1 3 IK 3333
4 CIwW 2 3 4 CIw 4444

select student.ID, s_dept, advisor.ID, phone
from student natural join advisor;

‘ studetn.ID ‘ s_dept ‘ advisor.ID | phone

1 IK 1] 1111

2 CIwW 2| 2222

3 IK 33333

4 Cciw 4 | 4444
C. Coltekin, Informatiekunde SQL (2)

19/28

http://www.let.rug.nl/coltekin

Natural join

student advisor
Natural join: ID [s_dept | year [alD | | ID [a_dept | phone
. . 1 IK 1 1 1 Ciw 1111
arbitrary column expressions [2 |cw 2 2|2 [K %
3 IK 3 1 3 IK 3333
4 CIwW 2 3 4 CIw 4444

select student.ID, s_dept, advisor.ID, phone
from student join advisor on student.alD = advisor.ID;

‘ studetn.ID ‘ s_dept ‘ advisor.ID ‘ phone ‘

1 IK 1] 1111

2 CIwW 2| 2222

3 IK 1] 1111

4 Cciw 313333
C. Coltekin, Informatiekunde SQL (2)

19/28

http://www.let.rug.nl/coltekin

Natural join

student advisor
Natural join: ID [s_dept | year [alD | | ID [a_dept | phone
. . 1 IK 1 1 1 Ciw 1111
arbitrary column expressions [2 |cw 2 2|2 [K %
3 IK 3 1 3 IK 3333
4 CIwW 2 3 4 CIw 4444

select student.ID, s_dept, advisor.ID, phone
from student join advisor on student.alD = advisor.ID;

‘ studetn.ID ‘ s_dept ‘ advisor.ID ‘ phone ‘

1 IK 11111
2 Ciw 2| 2222
3 IK 11111
4 Clw 3| 3333

on clause can take any expression allowed in a where clause.

Join conditions with an equation are sometimes called equi-join
and join conditions with arbitrary comparisons are called 6-join
(theta-join).

C. Coltekin, Informatiekunde SQL (2) 19/28

http://www.let.rug.nl/coltekin

Natural join

Joins so far...

» The join expressions we saw so far are called inner joins (the
SQL join statements can also be optionally prepended by
inner to make this explicit).

» The usual (inner) joins do not include rows that do not meet
the join condition. For example, the advisor ID = 4, never
showed up in our join examples.

> In cases where this is not desirable, outer joins can be used.
(We will discuss outer joins in a few minutes).

C. Coltekin, Informatiekunde SQL (2) 20/28

http://www.let.rug.nl/coltekin

Outer joins

Outer join

student advisor
sID | s_dept | year | alD | | alD | a_dept | phone
1 IK 1 1 1 CIw 1111
2 CIW 2 2 2 IK 2222
3 IK 3 1 3 IK 3333
4 CIW 2 | null 4 CIW 4444

» The tuples without a matching join attribute are not included
in inner joins. For the (modified) example, the advisors with
ID 3 and 4, and the student with ID 4 will not show up in a

inner join.

» There are cases where we may want to list,

» all students (including the ones without an assigned advisor)
» all advisors (including the ones who do not advise a student at

the moment),
» both

in the joined result.

» Quter join operation allows preserving all tuples from one or
both sides by filling null values for the missing attributes.

C. Coltekin, Informatiekunde SQL (2)

21/28

http://www.let.rug.nl/coltekin

Outer joins

Quter join types

Outer joins in SQL are specified with prepending join keyword with
outer. The join expression becomes

>

t; left outer join t, preserves all tuples from the table
specified on the left (t1).

t; right outer join t, preserves all tuples from the table
specified on the right (t2).

t; full outer join t, preserves all tuples from the tables on
both sides (both t; and tp).

using the natural keyword before join condition joins using
the attributes with matching names on both tables.

as with inner joins, we can use using or on to specify the
attributes to use in the join operation.

C. Coltekin, Informatiekunde SQL (2) 22/28

http://www.let.rug.nl/coltekin

Left outer join

Outer joins

student advisor
sID | s_dept | year | alD | | alD | a_dept | phone
1 IK 1 1 1 CIw 1111
2 CIW 2 2 2 IK 2222
3 IK 3 1 3 IK 3333
4 CIW 2 | null 4 CIW 4444

select * from student natural join advisor;

] slD \ s_dept \ year \ alD \ a_dept \ phone ‘

C. Coltekin, Informatiekunde

1 IK 1 1 CIwW 1111

2 CIw 2 2 IK 2222

3 IK 3 1 CIw 1111
SQL (2)

23/28

http://www.let.rug.nl/coltekin

Left outer join

Outer joins

select * from student natural left outer join

] slD \ s_dept \ year \ alD \ a_dept \ phone ‘

C. Coltekin, Informatiekunde

1 IK 1 1 CIw 1111

2 CIw 2 2 IK 2222

3 IK 3 1 CIw 1111

4 CIw 2 null | null null
SQL (2)

student advisor
sID | s_dept | year | alD | | alD | a_dept | phone
1 IK 1 1 1 CIw 1111
2 CIW 2 2 2 IK 2222
3 IK 3 1 3 IK 3333
4 CIW 2 | null 4 CIW 4444
advisor;

23/28

http://www.let.rug.nl/coltekin

Right outer join

select * from student join advisor using (alD);

Outer joins

student advisor
sID | s_dept | year | alD | | alD | a_dept | phone
1 IK 1 1 1 CIw 1111
2 CIW 2 2 2 IK 2222
3 IK 3 1 3 IK 3333
4 CIW 2 | null 4 CIW 4444

‘ slD ‘ s_dept ‘ year ‘ alD ‘ a_dept ‘ phone ‘

C. Coltekin, Informatiekunde

1 IK 1 1 CIw 1111

2 CIw 2 2 IK 2222

3 IK 3 1 CIw 1111
SQL (2)

24/28

http://www.let.rug.nl/coltekin

Right outer join

Outer joins

student

advisor

sID | s_dept | year | alD

alD | a_dept | phone

1 IK 1 1 1 CIw 1111
2 CIw 2 21]2 IK 2222
3 IK 3 1(]3 IK 3333
4 Ciw 2| null || 4 CIw 4444

select * from student right outer join advisor using (alD);

‘ slD ‘ s_dept ‘ year ‘ alD ‘ a_dept ‘ phone ‘

C. Coltekin, Informatiekunde

1 IK 1 1 CIw 1111

2 Ciw 2 2 IK 2222

3 IK 3 1 CIW 1111

null | null null | 3 IK 3333

null | null null | 4 CIw 4444
SQL (2)

24/28

http://www.let.rug.nl/coltekin

Full outer join

select * from student join advisor

C. Coltekin, Informatiekunde

Outer joins

student advisor
sID | s_dept | year | alD | | alD | a_dept | phone
1 IK 1 1 1 CIw 1111
2 CIW 2 2 2 IK 2222
3 IK 3 1 3 IK 3333
4 CIW 2 | null 4 CIW 4444

‘ sID ‘ s_dept ‘ year ‘ alD ‘ a_dept ‘ phone ‘

1 IK 1 1 Clw 1111

2 CIW 2 2 IK 2222

3 IK 3 1 Clw 1111
SQL (2)

on student.alD = advisor.alD;

25/28

http://www.let.rug.nl/coltekin

Outer joins

student advisor
FU” outer jOin sID | s_dept | year | alD | | alD | a_dept | phone
1 IK 1 1 1 CIw 1111
2 CIW 2 2 2 IK 2222
3 IK 3 1 3 IK 3333
4 CIW 2 | null 4 CIW 4444

select * from student full outer join advisor on student.alD = advisor.alD;

‘ sID ‘ s_dept ‘ year ‘ alD ‘ a_dept ‘ phone ‘

1 IK 1 1 Cciw 1111
2 Ciw 2 2 IK 2222
3 IK 3 1 Ciw 1111
4 CIw 2 null | null null

null | null null | 3 IK 3333
null | null null | 4 CIw 4444

MySQL note: MySQL does not support full outer join. Typical trick is
to take the union of left and right outer joins. For example:

(select * from student natural left outer join advisor)

union

(select * from student natural right outer join advisor);

C. Coltekin, Informatiekunde SQL (2) 25/28

http://www.let.rug.nl/coltekin

Joins: summary

Joins: summary

» A join is a combination of rows from multiple tables according
to one or more related columns on each table.

» In SQL a join can either be specified implicitly in where
clause, or explicitly in from clause.

> Inner joins are join operations which select only the tuples
that meet the join condition.

» Quter joins allow tuples that do not meet the join condition to
be included from one or both tables being joined.

» A natural join uses matching attribute names from each table.

» Joins can be restricted to certain columns with a using clause,
or full join conditions can be specified using on.

C. Coltekin, Informatiekunde SQL (2) 26/28

http://www.let.rug.nl/coltekin

Summary

Summary

Today we have discussed:

> A bit of database design, using homework 1 as a case study.
» More on set operations and aggregation.
» Null values and the problems associated with them.

» Joining tables: inner/outer joins.

C. Coltekin, Informatiekunde SQL (2) 27/28

http://www.let.rug.nl/coltekin

Next...

What is next?

» Now: discussion of homework 2.
» Access control.

> Indexes.

» Triggers.

» Stored functions/procedures.

» Reading for next week: Intermediate SQL (Chapter 4, if you
haven't) and Sections 5.2 and 5.3 (on stored procedures and
triggers).

» Lab/Homework: more SQL exercises, will be posted today,
due next week Thursday, 2012-10-11 13:00.

C. Coltekin, Informatiekunde SQL (2) 28/28

http://www.let.rug.nl/coltekin

	Week 5: More SQL
	Previously in this course …
	Database Design Process
	SQL basics: summary (1)
	SQL basics: summary (2)
	SQL basics: summary (3)

	A few words on homeworks
	Homework 1: common problems
	E-R design: a better solution
	Homework 2: common problems

	Today
	Rest of today...

	Distinct values and set comparisons in SQL
	Distinct values in SQL queries
	Set operations anddistinct values
	Set comparison operators
	Set comparison (examples)

	More on aggregate functions
	Aggregate functions and +having+ clause

	Null values
	Reasoning with +null+ values
	+null+ values and aggregate functions

	Natural join
	Queries on multiple tables
	Natural join
	Natural join:accidental column match
	Natural join:arbitrary column expressions
	Joins so far...

	Outer joins
	Outer join
	Outer join types
	Left outer join
	Right outer join
	Full outer join

	Joins: summary
	Joins: summary

	Summary
	Summary

	Next...
	What is next?

