Database Management Systems (LIX022B05)

Instructor: Çağrı Çöltekin c.coltekin@rug.nl

Information science/Informatiekunde

September 9, 2013

Why bother?

Why should you care about learning databases?

- ► Databases are everywhere, as an I(C)T professional you will have to deal with them.
- There are specific jobs in the industry where databases are the central piece: they may become your (professional) life.

Databases (or database management systems) are good for

- ▶ isolating data from applications
- enforcing data integrity
- sharing data between multiple users/applications
- efficient data access manipulation (for most cases)

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summar

Databases

▶ and also, access control, backup/recovery ...

Ç. Çöltekin / Informatiekunde

September 9, 2013 2 / 44

September 9, 2013 4 / 44

September 9, 2013 6 / 44

Previously in this course

Some concepts

- Database architectures are typically classified as,
 - standalone (or serverless)
 - client-server
 - multi-tier (or three-tier)
- Relational data model and relational database management systems are the most common way of organizing data and running databases.
- ▶ A relational database is organized in the form of multiple tables (or relations).
- SQL is the standard language to create, manipulate and query databases.

Ç.	Çöltekin	1	Informatiekunde

September 9, 2013 3 / 44

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summar

Database Design: what to avoid

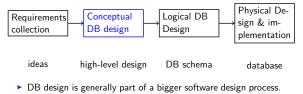
- ▶ The obvious: incomplete design. The database design should handle all transactions required by the application/enterprise.
- ► The bad: Replication of the same information. Causes inconsistency, wastes space.
- ► The ugly: unnecessary/redundant information. No need to store things that are not necessary.

Ç. Çöltekin / Informatiekunde September 9, 2013 5 / 44 Databases

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summary

The entity-relationship data model

The entity-relationship (E-R) model is commonly used for specifying high-level database design.


Databases

- Two important concepts: entity sets and relation sets.
- An E-R model specifies real-world entities (objects, things) and their relations.
- It has a diagrammatic representation. That particularly comes handy in communicating your design with non-specialists.

book writes author

Database Design Process

- ► These steps reflect the idealized case. Typically, you may need to re-iterate over some of the steps multiple times.
- This week, we are interested in the second step (and a bit of third step).

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summar

What not to do (example)

Ç. Çöltekin / Informatiekunde

Is anything wrong with this table?

title	author	genre
I, Robot	Isaac Asimov	sci-fi
A Wizard of Earthsea	Ursula K. LeGuin	fantasy

How to represent if ...

Ç. Çöltekin / Informatiekunde

- ▶ an author writes multiple books
- a book is written by multiple authors
- we want a list of authors sorted by last name.
- there is a book we do not know who the author is
- there are books or authors with the same name
- multiple editions of the same book

Introduction E-R data model E-R diagrams ER Design choices E-R to sc The entity sets and attributes street An entity is a real world (abstract) object. ▶ In DB design, we are interested in entity sets. Entities are defined by their attributes. The attributes can be

Databases

- simple.
- composite,
- multi-valued,
- derived.
- The set of allowed values for an attribute is called its domain.

Databases

An attribute may be allowed to have null value or not.

Weak entity sets

A weak entity set represents entities that cannot be identified without help of one or more other entities.

- Weak entity sets do not have a primary key.
- The set of attributes that identify a weak entity from others is called the discriminator.
- The existence of a weak entity set depends on other (strong) entity set(s) which are said to identify or own the weak entity set.
- The relationship set between a weak entity and its identifying entity set(s) are called identifying relationship(s).

Ç. Çöltekin / Informatiekunde	Databases	September 9, 2013 9 / 44	Ç. Çöltekin / Informatiekunde	Databases	September 9, 2013
Introduction E-R data model E Mapping cardinalities	E-R diagrams ER Design choices E-R :	to schema Summary	Introduction E-R data model Keys of entity sets	E-R diagrams ER Design choices E-R to sc	nema S customer address street
 mapping cardinalities. A relationship can be, one to one: an at can be written by one to many (fro only one author, many to one (fro can writea single one book. 	int on relationship sets uthor can write only on y only one author. m author to book): a b but an author can write m author to book): mo book, but an author is book can be written b	book e book, and a book book can be written by e many books. ore than one author allowed to write only	 uniquely identifies an At worst case, th of an entity form A candidate key There may be m primary key is a 	e values of all attributes is the primary key. is one with no redundant a ore than one candidate key database design decision. rimary key is 'invented': 15	attributes. /s. Choice of
author and an au C. Cöltekin / Informatiekunde	thor can write multiple Databases	books. September 9, 2013 11 / 44	Ç. Çöltekin / Informatiekunde	Databases	September 9, 2013
Introduction E-R data model E	E-R diagrams ER Design choices E-R	to schema Summary	Introduction E-R data model	E-R diagrams ER Design choices E-R to sc	nema Summary

Keys of relationship sets

Primary keys of relationship sets are formed by primary keys of participating entity sets.

- many-to-many, the primary key of the relationship set is the union of the primary keys of the participating entities.
- one-to-many, the primary key of the entity set on the 'one' side is the primary key of the relationship set.
- one-to-many, primary keys of either set can serve as the primary key of the relationship set.

	\wedge	
author		publisher
name	works with	name

Ç. Çöltekin / Informatiekunde

book

ISBN

writes

. . .

E-R diagrams: a simple example

Ç. Çöltekin / Informatiekunde September 9, 2013 13 / 44 Database

tion E-R data model E-R diagrams ER Design choices E-R to schema Summary

The entity sets (the textbook notation)

- Entity sets are represented with split rectangles.
- The top part is name of the entity set, bottom part lists the attributes.
- Attributes that form the primary key are underlined.
- Composite attributes are listed by indenting the part items.
- Multi-valued attributes are listed in curly braces.
- Derived attributes are suffixed with '()'.

Databases

customer

<u>birth_date</u>

address

city

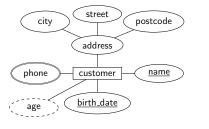
{phone}

age()

street

postcode

<u>name</u>


Databa

tion E-R data model E-R diagrams ER Design choices E-R to schema Summary

buys

pay. method

The entity sets (more common notation)

age()

September 9, 2013 14 / 44

- However, n-ary relationships may be more appropriate in certain cases.
- ▶ If all entities in a participating entity set has to participate in a relationship, then the participation is said to be total. Otherwise it is partial.
- \blacktriangleright A relationship set can be to and from the same entity set, in which case it is called a recursive relationship set.

September 9, 2013 10 / 44

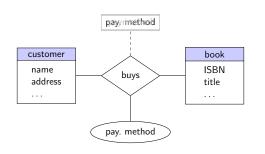
September 9, 2013 12 / 44

customer

name

Relationships may have descriptive attributes.

Introduction E-R data model E-R diagrams ER Design choices E-R to schema

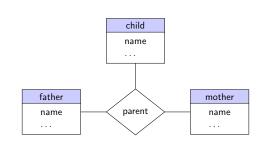

A relationship set states an interaction between

The relationship sets

two or more entity sets.

Relationship sets

Ç. Çöltekin / Informatiekunde



Database

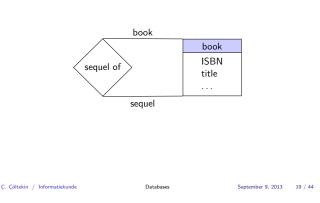
September 9, 2013 17 / 44

N-ary relations		

ction E-R data model E-R diagrams ER Design choices E-R to schema

Database

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summar


Ç. Çöltekin / Informatiekunde

Mapping cardinalities

September 9, 2013 18 / 44

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summar

Recursive relationship sets/roles

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summary

Participation constraints

Database

	many to many		
author	writes	book	
	one to many		
author	writes	book	
author	one to one writes	book	
Çöltekin / Informatiekunde	Databases	September 9, 2013	20 / 44

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summary

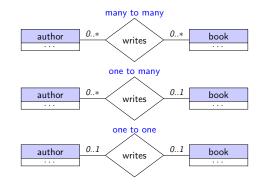
Weak entities

Ç.

Ç. Çöltekin / Informatiekunde	Databases	September 9, 2013	22 / 44

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summar

Alternative notation for constraints



- Lower limit of 1 means that the participation is total.
- Upper limit of 1 on both sides means a one-to-one relationship set.
- Upper limit of 1 only one side means a one-to-many relationship set.

Databases

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summ

Mapping cardinalities (example)

Database

Ç. Çöltekin / Informatiekunde

September 9, 2013 21 / 44

Choices in E-R model

Usually, the modeling decisions in an E-R model are intuitive.

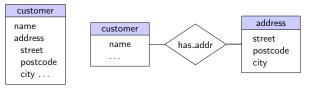
However,

Ç. Çöltekin / Informatiekunde

- the same real-world situation can be modeled in more than one way,
- the decisions change depending on what is being modeled,

 DB design is more of an art than science, but there are some useful guidelines.

Database


September 9, 2013

25 / 44

Introduction	E-R data model	E-R diagrams	ER Design choices	E-R to schema	Summary

Entity set or attribute

Often it is not clear whether we should use an entity or attribute.

Questions to ask:

Ç. Çöltekin / Informatiekunde

mother

Binary or n-ary relationships

number of binary relationships.

parents

child

Can one customer have multiple addresses?

father

N-ary relationship may reflect the real-world better.
 Binary decomposition may increase complexity.

Some constraints may be difficult/impossible to express in

Databa

ction E-R data model E-R diagrams ER Design choices E-R to schema Summar

Do other entities also have relationships with 'address' entity?
 Does 'address' entity set require additional information that

September 9, 2013 26 / 44

father

father_of

mber 9, 2013

28 / 44

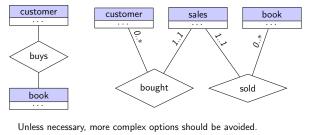
'customer' entity set does not need?

Database

ction E-R data model E-R diagrams ER Design choices E-R to schema Summar

Every n-ary relationships can (mechanically) be decomposed into a

mother


mother_of

child

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summary

Entity set or relationship

Often it is not clear whether we should use an entity or attribute.

Question to ask:

> Do 'sales' records participate in other relationship sets?

C. Cöltekin / Informatiekunde Databases September 9, 2013 27 / 44

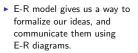
roduction E-R data model E-R diagrams ER Design choices E-R to schema Summary

Weak entities

Unless necessary, avoid weak entities.

Use a weak entity set

- if the entity set does not have a primary key.
- if the entity participates in relationships other than the owning relations.


Ç. Çöltekin / Informatiekunde Database	Ç	Çöltekin	/	Informatiekunde	Databases
--	---	----------	---	-----------------	-----------

September 9, 2013 29 / 44

Databa

From E-R data model to relational DB schema

- In relational databases everything should be stored in relations (tables).
- Good E-R modeling does not guarantee good DB design: there is more work to be done.

book(ISBN, title, year)

We have:

customer(name, phone, street)
author(name,...)

Rules of thumb

C. Cöltekin /

binary form.

Conceptual database design is an art as much as it is a science. Generally, there is no single correct solution.

- Do try to represent the real-world as faithful as possible.
- Don't model same thing twice: avoid redundancy.
- Don't model things that are not needed: look for simpler solutions.

Ç. Çöltekin / Informatiekunde Databases September 9, 2013 30 / 44

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summary

Database schema

A database schema is a set of textual table descriptions.

customer(<u>ID</u>, name, phone, street, postcode, ...)

In a database schema,

- we specify name of the tables,
- attributes (column names) of the table as they would appear on the database
- the primary key choice for the tables by underlining the attributes that form the primary key

Database

ction E-R data model E-R diagrams ER Design choices E-R to schema Summar

E-R entity to relation schema

Simple attributes are mapped directly to attributes of the table

- Each component attribute of a composite attribute is mapped to standalone attributes of the table. The top level composite attribute is not used.
- Derived attributes are not modeled.
- Multi-valued attributes treated specially.
- Primary key of an entity becomes the primary key of the corresponding table.

E-R data model E-R diagrams ER Design choices E-R to schema Summar

E-R multi-valued attribute to relation schema

- Multi-valued attributes get separate tables.
- The table includes all component attributes (if multi valued) of the attribute, and the primary key of the owning entity set.
- Primary key of a table created for a multi-valued attribute is the primary key of the owning entity set and discriminating set of attributes of the multi-valued attribute.
- A foreign key constraint is added to the table generated from multi-valued attribute that references to the owning entity set's primary key.

Ç. Çöltekin / Informatiekunde	Databases	September 9, 2013 33 / 44	Ç. Çöltekin / Informatiekunde	Databases	September 9, 2013 34 / 44	
	R diagrams ER Design choices E-R	to schema Summary		diagrams ER Design choices E-R t	o schema Summary	
E-R weak entity to re Weak entities are simila			E-R relationship to re Each relationship set is primary keys of particip of the relationship set. attribute names.	mapped to a table sc ating entities, and the	e descriptive attributes	
 The table includes primary key of the Primary key of a t key of the owning entity set. A foreign key cons 	all attributes weak er owning entity set.	ntity set, and the k entity is the primary riminator of the weak table generated for	 For one-to-many reprimary key of the For one-to-one rela participating entity For every attribute of the formation of the second se	nship set: relationship sets the ry keys of the particip elationship sets the pri 'many' side. tionship sets, primary sets can be chosen. ne resulting relation so	primary key is the ating entity sets. imary key is the keys of the either chema which is	
Ç. Çöltekin / Informatiekunde	Databases	September 9, 2013 35 / 44	derived from the primar foreign key constraint is C. Cöltekin / Informatiekunde		ting entity sets, a September 9, 2013 36 / 44	

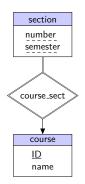
ion E-R data model E-R diagrams ER Design choices E-R to schema Summary

E-R entity to relation schema (example)

customer	customer(<u>ID</u> , first_name,	
ID	last_name, birth_date)	
name first_name last_name birth_date	$ \Rightarrow \mbox{create table customer (ID int,} \\ fname varchar(20), \\ Iname varchar(20), \\ \end{tabular} $	
age()	birth_date date , primary key (<u>ID</u>));	

Ç. Çöltekin / Informatiekunde

September 9, 2013 37 / 44


Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summary

Database

Database

course(ID, name)

section(<u>c_ID</u> , <u>num</u> , <u>semester</u>)
create table
course (<u>ID</u> int,
name varchar (50),
\Rightarrow primary key (<u>ID</u>);
create table
<pre>section (c_ID intint,</pre>
<u>num</u> int, <u>semester</u> int,
primary key (<u>c_id</u> , <u>num</u> , smester)
foreign key(c_id)
references course(ID);

ction E-R data model E-R diagrams ER Design choices E-R to schema Summary E-R relationship to relation schema (example)

Database

ction E-R data model E-R diagrams ER Design choices E-R to schema Summa

E-R multi-valued attribute to relation schema (example)

phone(cust_id, phone_nr)

customer (ID int,

create table

create table

 \Rightarrow

customer(<u>ID</u>, name, street, pcode, city)

name varchar(50),

postcode char(6),

primary key (\underline{ID}) ;

primary key(cust_id, phone_nr), foreign key (cust_id)

references customer(<u>ID</u>));

September 9, 2013 38 / 44

phone (cust_id int, phone_nr int,

street varchar(20),

costumer

<u>ID</u>

name

address

street

 $\{phone\}$

Ç. Çöltekin / Informatiekunde

postcode city

> customer(name, birth_date) book(ISBN, title) sales(c_name, c_bdate, ISBN);

	create table customer (name varchar(50),
	<u>birth_date</u> date,
	<pre>primary key (name, birth_date));</pre>
	create table book (ISBN char(13),
Þ	title varchar (50),
	primary key(<u>ISBN</u>));
	create table
	sales(<u>c_name</u> varchar (50),
	<u>c_bdate</u> date ,
	I <u>SBN</u> char(13),
	<pre>primary key(c_name, c_bdate, ISBN),</pre>
	foreign key (<u>c_name</u> , <u>c_bdate</u>) references
	<pre>customer(name, birth_date),</pre>
	foreign key (<u>ISBN</u>) references book);
	Databases September 9, 2013 40 / 44

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summary

E-R relationship to relation schema (example 2)

book(ISBN, title) customer customer(ID, name) buys(cID, ISBN, method) ID name create table customer (ID int,name varchar(50), primary key (ID)); method buys create table book ($\underline{\text{ISBN}}$ int, title varchar(50), create table buys (clD int, ISBN int, book **ISBN** method char(10), primary $key(\underline{cID})$ title foreign key (<u>clD</u>), references customer(<u>lD</u>), foreign key (<u>lSBN</u>) references book(<u>lSBN</u>)); Ç. Çöltekin / Informatiekunde Databases September 9, 2013 41 / 44

An overall summary

Ç. Çöltekin / Informatiekunde September 9, 2013 42 / 44 Databases

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summary

- ▶ A conceptual design using E-R data model allows us to think about the DB requirements systematically and formalize
 - the ideas from the requirement analysis, communicate the overall design of the database using a graphical representation.
- E-R notation is varied and non-standard, one can alternatively use another representation like UML.
- E-R constructs can be reduced to a database schema.
- Conceptual modeling is helpful, however, it does not guarantee correct relational database design.

Database

Ç. Çöltekin / Informatiekunde

September 9, 2013 43 / 44

Ç. Çöltekin / Informatiekunde

September 9, 2013 44 / 44

We are not done yet...

The conceptual design is just the beginning.

Usage requirements: typical/frequent queries, performance concerns..

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summary

- Authorization requirements.
- Even a good E-R modeling does not guarantee a good relational database design. Logical database design process aims to eliminate potential problems (next week).

Introduction E-R data model E-R diagrams ER Design choices E-R to schema Summary

What is next?

- ▶ Reading for next week: Relational database design (Chapter 8).
- Assignment: posted today, due next week Friday (Sept 20, 23:59).
- Step-by-step practical exercises for warming up with MySQL (optional, but strongly recommended).
- No lab session on Friday, feel free to email me with your questions
- ► You should already have access to the MySQL server.