Previously in this course

Summary of last week

Database Management Systems

(LIX022B05)

Instructor: Çağrı Çöltekin c.coltekin@rug.nl

Information science/Informatiekunde

September 23, 2013

- ► A conceptual design using E-R data model allows us to think about the DB requirements systematically and formalize
 - the ideas from the requirement analysis,
 - communicate the overall design of the database using a graphical representation.
- E-R constructs can be reduced to a database schema.
- Conceptual modeling is helpful, however, it does not

Previously in this course

Conceptual

DB design

high-level design

DB design is generally part of a bigger software design process.

> These steps reflect the idealized case. Typically, you may need

to re-iterate over some of the steps multiple times.

In some cases 'conceptual design' step is skipped.

This week, we are interested in the third step.

guarantee correct relational database design.

Ç. Çöltekin / Informatiekunde

Database Design Process

Requirements

ideas

collection

C. Cöltekin / Informatiekunde

September 23, 2013 2 / 39

Logical DB

DB schema

Design

Physical De-

plementation

database

September 23, 2013

4 / 39

sign & im-

Previously in this course.

Conceptual (E-R) design: things to remember

- Entity / entity set
- Relationship / relationship set
- Attribute
 - Simple
 - Composite
 - Multi-valued
- Weak entity
- one-to-one, one-to-many, many-to-many relationships
- total or partial participation
- binary or n-ary relationship sets
- recursive relationship sets
- Primary keys, foreign keys
- Converting E-R diagrams to table schemas and SQL statements
- C. Cöltekin / Informatiekunde

Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce rmal form (BCNE) Third i

Motivation Eirst normal form (1NE) Euro What can go wrong (1)

Is anything wrong with this table?

title	author	genre
I, Robot & Foundation	Isaac Asimov	sci-fi
A Wizard of Earthsea	Ursula K. LeGuin	fantasy
title	author	genre
I, Robot & Foundation	Isaac Asimov	sci-fi
A Wizard of Earthsea	Ursula K. LeGuin	fantasy

tional dependencies Keys: a reminder

Problem: The title column is not atomic.

- Try to write a query that finds the books in a certain genre.
- ▶ What if an author writes in multiple genres? (or worse, a book is in multiple genres)
- What happens if a typo in an application replaces the separator '&' with another character?
- Solution is to use atomic domains.

C. Cöltekin / Informatiekunde Databases September 23, 2013 5 / 39

ncies Keys: a reminder Boyce-Codd normal form (BCNF) Third normal (3NF) Normal form

September 23, 2013 3 / 39

Boyce-Codd normal form (BCNF) Third normal (3NF) Normal forms

Motivation First normal form (1NF) Functional depende What do we want to avoid?

Inconsistent database.

- Redundant repeated storage of information.
- Update anomalies, where we update the same information in one place but not the other.
- Deletion anomalies, where we have to delete unwanted data together with the data we want to delete.
- Insertion anomalies, where it is not possible to store a certain information without inserting additional unnecessary/unrelated data.

Databases

What can go wrong (2)

How about this one?

title	author	author_phone	genre
I, Robot	Isaac Asimov	1234	sci-fi
Foundation	Isaac Asimov	1234	sci-fi
A Wizard of Earthsea	Ursula K. LeGuin	2345	fantasy

- ▶ Some fields are repeated unnecessary: waste of storage.
- If one updates phone number of an author on one row but not on the other(s).
- > What happens to information about all books of an author is deleted from the system?
- Can someone insert a new book for an author whose phone number (s)he does not know?

Solution is ... to split the table into smaller tables (decomposition) Databases Ç. Çöltekin / Informatiekunde September 23, 2013 6 / 30

Do we really have to?

A good E-R design should prevent most of these anomalies. However,

Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce

- E-R design includes many subjective choices, and does not guarantee a database without anomalies.
- Even if you have a good E-R design, there are cases where anomalies can occur.
- You do not always start database design from conceptual level. Sometimes you need to start with already existing tables.

More problems:

The solution First normal form The solution is to make sure that your tables meet certain formal First Normal Form (1NF): Domains of all attributes should be criteria: normal forms atomic. ► The normal forms are achieved by decomposing (splitting) the tables that do not conform into multiple tables such that the title author genre new tables are in the desired normal form. sci-fi I. Robot & Foundation Isaac Asimov Being in a certain normal form is not enough, you need to Ursula K. LeGuin fantasy A Wizard of Earthsea make sure that you keep the same information and same 1 constrains using the new tables. title author genre There still are some loose ends: for example, which normal I, Robot Isaac Asimov sci-fi form to pick, and whether violate some of the requirements Foundation Isaac Asimov sci-fi intentionally. A Wizard of Earthsea Ursula K. LeGuin fantasv What comes next is a rather 'light' introduction to a highly theoretical subject. Ç. Çöltekin / Informatiekunde Ç. Çöltekin / Informatiekunde Database September 23, 2013 9 / 39 Database September 23, 2013 10 / 39

-Codd normal form (BCNF) Third normal (3NF) Normal form

Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce-Codd normal form (BCNF) Third normal (3NF) Normal form

First normal form (2)

Ç. Çöltekin / Informatiekunde

Ç. Çöltekin / Informatiekunde

title	author	genre	
I, Robot	Isaac Asimov	sci-fi	
Foundation	Isaac Asimov	sci-fi	
A Wizard of Earthsea	Ursula K. LeGuin	fantasy	

- 1NF does not guarantee a good design, it is just a beginning.
- 1NF is typically assumed by any database design process.
- The definition of 'atomic', and as a result 1NF, is somewhat unclear and application dependent:

 - Is 'author' field above atomic? (probably not)
 - How about an 'email' field? (maybe not)
 How about a field such as ISBN? (certainly atomic?)

otember 23, 2013 11 / 39

Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce-Codd normal form (BCNF) Third

Functional dependencies: formal definition

A set of attributes $B = \beta_1 \cdots \beta_M$ is functionally dependent on another set of attributes $A=\alpha_1\cdots\alpha_N$ if for all possible tuples in the relation, value of A on a certain tuple determine the value of B in the same tuple.

We note this functional dependency as

 $\alpha_1 \ \alpha_2 \ \cdots \ \alpha_N \rightarrow \ \beta_1 \ \beta_2 \ \cdots \ \beta_M$

and if this is a valid for a particular relation (table), we say that the functional dependency holds for that particular relation.

In other words: the functional dependency $A \rightarrow B$ means that 'if two tuples (rows) have identical value(s) for A then they have to have identical value(s) for B'.

September 23, 2013

12 / 39

tion First normal form (1NF) Functional dependencies Keys: a Boyce-Codd normal form (BCNF) Third normal (3NF) Normal form

Functional dependencies by example

title	author	author_phone	genre	pages
I, Robot	Isaac Asimov	1234	sci-fi	256
Foundation	Isaac Asimov	1234	sci-fi	272
A Wizard of Earthsea	Ursula K. LeGuin	2345	fantasy	320

Do following functional dependencies hold?

 author → phone author → pages author title → pages 	×	 ▶ genre → author ▶ pages → title ▶ author title → pages phone 	× × ✓
▶ title \rightarrow pages ▶ author \rightarrow genre	×	 ▶ title → title ▶ title author → title 	-

Database

ation First normal form (1NF) Functional dependencies Keys: a reminder Boyce-Codd normal form (BCNF) Third normal (3NF) N

Trivial functional dependency

Motivation First normal form (1NF) Functional dependencies Keys: a re-

A functional dependency is called a trivial functional dependency if all attributes on the right side also appear on the left side.

- \blacktriangleright title \rightarrow title
- ▶ title pages → title
- ▶ title pages → title pages

Trivial functional dependencies hold regardless of the choice of attributes.

More rules for inferring FDs from others

on First normal form (1NF) Functional dependencies Keys: a re-

More rules (can be derived from Armstrong's axioms):

- $\blacktriangleright~$ If A $~\rightarrow~$ B and A $~\rightarrow~$ C hold, then A $~\rightarrow~$ B C also holds. Example: If author \rightarrow genre and author \rightarrow phone, then author \rightarrow phone genre.
- ▶ If A \rightarrow B C then, A \rightarrow B and A \rightarrow C also hold. Example: If author \rightarrow genre phone, then author \rightarrow genre and author \rightarrow phone.
- ▶ If A \rightarrow B and B C \rightarrow D hold, then A C \rightarrow D also holds. Example: If author $\ \rightarrow \ genre \ and \ genre \ title \ \rightarrow \ pages, \ then$ author title \rightarrow pages.

Database

September 23, 2013 13 / 39

September 23, 2013 14 / 39

Ç. Çöltekin / Informatiekunde

Inferring FDs from others

For normalization, we typically need to consider all possible functional dependencies. Some rules help us reduce the FDs that we need to consider.

Armstrong's axioms: for sets of attributes A, B, and C

- 1. If $B \subseteq A$, then $A \rightarrow B$ holds (consider trivial FDs). Example: Course ECTS \rightarrow ECTS holds.
- 2. If A $\ \rightarrow$ B holds, A C $\ \rightarrow$ B C holds. Example: If title \rightarrow pages,
- then title genre \rightarrow pages genre
- Example: If title \rightarrow pages and pages \rightarrow weight, then title

Databases

Examples:

Ç. Çöltekin / Informatiekunde

hy should you care?	Keys (again)	Superkey is a set of attributes, that uniquely identify a record for a given relation. Candidate key (or simply 'key') is a minimal set of attributes, that uniquely identify a record for a given relation. A key			
 Certain normal forms (that prevent anomalies) depend on functional dependencies. 					
 The conditions for normal forms typically require you to consider all functional dependencies. All functional dependencies for a relation is an exponentially 					
growing set of FDs.	unnecessary attributes removed.				
 Knowing rules to infer one FD from others helps us by 	Primary key is a key which is chosen by the DB designer.				
reducing the number of dependencies that we need to	For the schema addres(street_addr , postcode, city):				
consider. For example, if we are looking for functional dependencies	▶ Is $\{street_addr, postcode, city\}$ a superkey(✓)/key(×))			
that does not hold, we can easily eliminate all trivial FDs (<i>title</i>	► Is {street_addr, postcode} a superkey(\checkmark)/key(\checkmark))			
pages $ ightarrow$ titel), or if we know author $ ightarrow$ phone genre, we do	► Is {street_addr, city} a superkey(\checkmark)/key(\checkmark)	/key(🖌)			
not need to consider author \rightarrow phone and author \rightarrow genre.	► Is { <i>postcode</i> } a superkey(×)/key(×))			
tekin / Informatiekunde Databases September 23, 2013 17 / 39	Ç. Çöltekin / Informatiekunde Databases September 23, 2013	18 / 39			
Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce-Codd normal form (BCNF) Third normal (3NF) No nctional dependencies and keys	rmal forms: Motivation First normal form (INF) Functional dependencies Keys: a reminder Boyce-Codd normal form (BCN Boyce-Codd normal form (BCNF)	NF) Third nor			
Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce-Codd normal form (BCNF) Third normal (3NF) No nctional dependencies and keys Where do the keys come from?	Boyce-Codd normal form (BCNF) A relation is in Boyce-Codd normal form if for any non-trivial	NF) Third nor			
nctional dependencies and keys Where do the keys come from? A set of attributes K is a key, if for all attributes A , functional dependency $K \rightarrow A$ holds, and K is a minimal set of attributes	Boyce-Codd normal form (BCNF)	NF) Third no			
Inctional dependencies and keys Where do the keys come from? A set of attributes K is a key, if for all attributes A , functional dependency $K \rightarrow A$ holds, and K is a minimal set of attributes with this property.	Boyce-Codd normal form (BCNF) A relation is in Boyce-Codd normal form if for any non-trivial functional dependency $A \rightarrow B$, A is a superkey. In other words, the BCNF says that all functional	NF) Third no			
The functional dependencies and keys Where do the keys come from? A set of attributes K is a key, if for all attributes A , functional dependency $K \rightarrow A$ holds, and K is a minimal set of attributes with this property. Where do the functional dependencies come from?	 Boyce-Codd normal form (BCNF) A relation is in Boyce-Codd normal form if for any non-trivial functional dependency A → B, A is a superkey. In other words, the BCNF says that all functional dependencies should involve keys. If you have functional dependencies that violate BCNF, then there is a sub-structure in the relation. It does not solve all problems of DB design, but the BCNF 	NF) Third no			
Inctional dependencies and keys Where do the keys come from? A set of attributes K is a key, if for all attributes A , functional dependency $K \rightarrow A$ holds, and K is a minimal set of attributes with this property.	 Boyce-Codd normal form (BCNF) A relation is in Boyce-Codd normal form if for any non-trivial functional dependency A → B, A is a superkey. In other words, the BCNF says that all functional dependencies should involve keys. If you have functional dependencies that violate BCNF, then there is a sub-structure in the relation. 	NF) Third no			
nctional dependencies and keys Where do the keys come from? A set of attributes K is a key, if for all attributes A , functional dependency $K \rightarrow A$ holds, and K is a minimal set of attributes with this property. Where do the functional dependencies come from? We assert them based on our knowledge about	 Boyce-Codd normal form (BCNF) A relation is in Boyce-Codd normal form if for any non-trivial functional dependency A → B, A is a superkey. In other words, the BCNF says that all functional dependencies should involve keys. If you have functional dependencies that violate BCNF, then there is a sub-structure in the relation. It does not solve all problems of DB design, but the BCNF eliminates most sources of redundancy. The BCNF is one of the most common normal forms DB 				

Is this table in BCNF?

title	author	author_phone	genre	pages
I, Robot	Isaac Asimov	1234	sci-fi	256
Foundation	Isaac Asimov	1234	sci-fi	272
A Wizard of Earthsea	Ursula K. LeGuin	2345	fantasy	320

Let's consider a few functional dependencies.

- \blacktriangleright author genre title pages genre $\ \rightarrow$ genre \ldots holds, but says nothing: left side is a superkey.
- \blacktriangleright author title genre $\ \rightarrow$ phone \ldots holds, but says nothing: left side is a superkey.
- \blacktriangleright author $~\rightarrow$ phone \ldots holds, and proves that table is not in BCNF: left side is not a superkey.

Databases

Ç. Çöltekin / Informatiekunde

September 23, 2013 21 / 39

Motivation First normal form (1NF) Fun -Codd normal form (BCNF) Third n

BCNF: a trivia

Any relation (table) with two attributes (columns) is in ${\sf BCNF}.$

Consider a relation r(A,B), all possible non-trivial functional dependencies of concern are: $A \rightarrow B$, $B \rightarrow A$ (why?)

		K	ey	
	AB	A	В	A & B
$A \rightarrow B$	cannot hold	has to hold	cannot hold	has to hold
$B \rightarrow A$	cannot hold	cannot hold	has to holds	has to hold

Databa

BCNF: decomposition

Is this decomposition good?

author	author_phone		title		pages
Isaac Asimov	1234	f (I, Robot	sci-fi	256
Ursula K. LeGuin	2345	- [Foundation	sci-fi	272
orsula IV. Leouin	2343	_ [A Wizard of Earthse	a fantasy	320
author is a (su ► phone → auth hold.	 author → phone holds, author is a (super)key. phone → author doesn't hold. → relation is in BCNF. 		 <i>title</i> → genre ho is a (super)key. genre → pages hold, but {genre (super)key. → relation is in BCN 		not
Ç. Çöltekin / Informatiekunde		Databases	5	ieptember 23, 2	2013 22 /

ion First normal form (1NF) Rules for decomposition

Why not decomposing everything to two-row tables?

Aside form not upsetting people who use the database, we want our decomposition to,

encies Keys: a reminder Boyce-Codd

- produce tables that are in the desired normal form, for example, BCNF.
- ▶ allow lossless join: we should be able to recover the original table by joining the new tables.
- be dependency preserving: the functional dependencies that exist in the original table should be present in the resulting tables.

ormal (3NF) N

Motivation First normal form (1NF) Functiona	I dependencies Keys: a reminder	Boyce-Codd normal form (BCNF) Third	normal (3NF) Normal forms:	Motivation First normal form (1N	F) Functional dependencies Keys: a rem	inder Boyce-Codd normal form (BC	NF) Third normal (3NF
n example decompositio	n (bad)		ŀ	nother example de	ecomposition		
title author	author_pho			Is this table in BCNF			
Foundation Isaac A		sci-fi 256 sci-fi 272 fantasy 320		address(We identify the follo <i>street_addr city</i> →		•	
	↓			Let's decompose:	· ·	s not a superkey	
	or_phone			addr1(street_add	dr, postcode) & addr	2(postcode, city)	
Isaac Asimov1234Ursula K. LeGuin2345	A Wiz	lation sci-fi 272 zard of Earthsea fantasy 320		This is (trivially) in E street_addr city $ ightarrow$ μ	BCNF, but what happen postcode ?	ed to FD:	
Both tables are in BCNF, w	nat is wrong with th	is decomposition?					
öltekin / Informatiekunde	Databases	September 23, 2013 25 / 39	ç.	Çöltekin / Informatiekunde	Databases	September 23, 2013	26 / 39
Motivation First normal form (1NF) Functiona	I dependencies Keys: a reminder	Boyce-Codd normal form (BCNF) Third			F) Functional dependencies Keys: a rem	inder Boyce-Codd normal form (BC	NF) Third normal (3NF
CNF decomposition			L	SCNF: a summary			
It is possible to decompose that the resulting tables are					The formal definition:		
An algorithm: 1. Find an FD $A \rightarrow \beta$ that attributes and β is a sir		here A is a set of			$\begin{array}{l} \text{ce-Codd normal form if f} \\ \text{icy } A \rightarrow B, A \text{ is a super} \end{array}$		
 Decompose the relation the all attributes except 	into $A\beta$ and C , where	ere C consists of		A more intuitive	e definition (due to Bill k	Kent/Chris Date):	
3. Test the resulting tables the new tables that are		the above steps for		Each attribute must key, and nothing but	represent a fact about t t the key.	he key, the complete	
Note that there is no guaran preserving.	ntee that the result v	will be dependency		 BCNF eliminate redundancy/inco 	es most (but not all!) ca onsistency.	uses of	
Dependency preservation is poverlapping keys.	problematic if there	are multiple			split into multiple tables is no guarantee of depen		
itekin / Informatiekunde	Databases	September 23, 2013 27 / 39	Ç.	Çöltekin / Informatiekunde	Databases	September 23, 2013	28 / 39
Motivation First normal form (1NF) Functiona		Boyce-Codd normal torm (BCNF) Inira		····· · · · · · · · · · · · · · · · ·	F) Functional dependencies Keys: a rem	inder Boyce-Codd normal torm (BC	NF) Third normal (31
nird normal form: one s	tep back		3	NF example			
A relation is in third normal $A \rightarrow B$ one of the following		ny non-trivial FD					
1. A is a superkey.	5			Is this table in BCNF	=/3NF?		
2. B-A (attributes in B bu	t not in A) is part o	f a key.		address	(street_addr, postco	de, city)	

The intuitive definition of BCNF3NF:

Each non-key attribute must represent a fact about the key, the complete key, and nothing but the key.

- ► 3NF is less strict than BCNF.
- It may be desirable in cases where BCNF decomposition is not dependency preserving.

Databases

Ç. Çöltekin / Informatiekunde

September 23, 2013 29 / 39

nder Boyce-Codd normal form (BCNF) Third normal (3NF) Normal forms: Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce-Codd no

Ç. Çöltekin / Informatiekunde

Databases

September 23, 2013 30 / 39

BCNF 3NF

not OK OK

OK

OK

Motivation First normal form (1NF) Functional dependencies Keys: a r Normal forms: an interim summary

- ▶ We studied three normal forms, 1NF, BCNF and 3NF, that set rules about good database design.
- INF: domains of attributes should be atomic.
- ▶ 3NF: Each non-key attribute must represent a fact about the key, the complete key, and nothing but the key.
- BCNF: Each attribute must represent a fact about the key, the complete key, and nothing but the key.
- ▶ What happened to 2NF? It is a relaxed form of 3NF, it is mostly considered to be a historical artifact.
- ► Are we done? No, even BCNF does not prevent all forms of redundancy/inconsistencies.

Databases

Do we need more than BCNF?

Is there anything wrong with this table?

Note that $\{\texttt{street_addr, postcode}\}$ and

 $\textit{street_addr city} \ \rightarrow \textit{postcode}$

{street_addr, city} are keys. FD

 $\textit{postcode} \rightarrow \textit{city}$

author	phone	publisher
Isaac Asimov	1234	Spectra
Isaac Asimov	3456	Spectra
Ursula K. LeGuin	2345	НМН
Ursula K. LeGuin	3456	НМН

- ► This table is in BCNF? (why?)
- It clearly replicates data, we solve the problem by decomposing it into author1(name, publisher) and author2(name, phone).
- But we do not have a principled way of detecting the anomaly.
- ► Fourth normal form (4NF) is the principled solution we are looking for.

Databases

September 23, 2013 31 / 39

Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce-Codd normal form (BCNF) Third normal (3NF) Normal forms:	nal forms: Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce-Codd normal form (BCNF) Third normal (3N			
Multivalued dependencies	Fourth normal form (4NF)			
For set of attributes that X, Y, and Z that form a relation, A multivalued dependency (MVD) $% \left(\left(MVD\right) \right) =0$	A relation is in fourth r multivalued dependence			
X Y	Back to			
means that given a set of values for X , Y can have multiple values, but the values of Y are independent of values of Z . (see the textbook for the formal definition) Given the relation	author(name, publisher, phone)			
author(name, publisher, phone)	We know that it isIs it in 4NF?	in BCNF.		
▶ name \rightarrow publisher \checkmark ▶ name \rightarrow publisher \checkmark	 name — phone but name is not 			
▶ name \rightarrow phone \checkmark ▶ name \rightarrow phone \checkmark	\Rightarrow the relation is n			
▶ publisher \rightarrow author ▶ publisher \rightarrow author	NL			
Note: every FD is an MVD, but not every MVD is an FD.	Note: every relation that reverse is (obviously) no		BCNF, but the	
C. Cöltekin / Informatiekunde Databases September 23, 2013 33 / 39	Ç. Çöltekin / Informatiekunde	Databases	September 23, 2013 34 / 39	
Ç. Çürekin / mormatiekunde Datadases September 23, 2013 - 53 / 59	ç, çotekin / informatiekunde	Databases	September 23, 2013 34 / 39	
Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce-Codd normal form (BCNF) Third normal (3NF) Normal forms:	Motivation First normal form (1NF) F	unctional dependencies Keys: a rei	ninder Boyce-Codd normal form (BCNF) Third normal (3NF	
Normal forms: the list so far	Normal forms: a sum	mary		
INF domains of attributes should be atomic.	that it is guarded a	against certain forms		
 3NF Each non-key attribute must represent a fact about the key, the complete key, and nothing but the key. 	 Once we detect a violation of a normal form, we decompose tables into smaller tables until all conform to the normal form. 			
 BCNF Each attribute must represent a fact about the key, the complete key, and nothing but the key. 	 While splitting the tables, we seek lossless and dependency preserving decomposition. 			
 4NF is a further restriction over the BCNF which eliminates more cases of redundancy/inconsistency. 	 Trying to achieve 3 			
Are we done with the normal forms? We are, but there are higher (more strict) normal forms that we	 Sometimes normal forms are intentionally violated for reasons of performance, which is called denormalization. (We will return to this in our discussion of SQL.) 			
will not study.	 Higher forms exist, cases and complication 	but they cover rathe ted to understand ar		
C. Cöltekin / Informatiekunde Databases September 23, 2013 35 / 39	Ç. Çöltekin / Informatiekunde	Databases	September 23, 2013 36 / 39	
Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce-Codd normal form (BCNF) Third normal (3NF) Normal forms:	Motivation First normal form (1NF) F	unctional dependencies Keys: a rer	ninder Boyce-Codd normal form (BCNF) Third normal (3Nf	
Why do we need normal forms?	Normal forms: what c	lo you need to k	now	
 A good conceptual (E-R) design eliminates most problems of redundancy/inconsistency, but not all. There are many subjective decision in E-R design that can go wrong. Checking result of E-R design for normal forms may discover poor E-R choices. Even a good E-R design may result in a poor DB schema. Things to watch out: many-to-many relationship sets and multivalued attributes. Sometimes you need to start from the data, a design process from the start is not available. 	that exist in a table Identify whether a	e schema. table is in 1NF, 3NF le decompositions to	ultivalued dependencies , BCNF or 4NF. meet the requirements	
C. Cöltekin / Informatiekunde Databases September 23, 2013 37 / 39 Motivation First normal form (1NF) Functional dependencies Keys: a reminder Boyce-Codd normal form (BCNF) Third normal (3NF) Normal forms:	Ç. Çöltekin / Informatiekunde summary Fourth normal (4NF) Normal forms: su	Databases immary Next week	September 23, 2013 38 / 39	
What is next?				

- Reading for next week: Introduction to SQL (Chapter 3).
- Assignment 2: will be posted today, due before September 27.