
A hands-on tutorial on using git
Ç. Çöltekin, University of Groningen

Introduction

The aim of the exercises below is to get you started with using, git a powerful and popular version control
system (VCS). The exercises walks you through creating a simple web-based application using PHP &
MySQL. The application is used as a case study, the aim of this tutorial is not to teach you PHP and/or
MySQL. PHP/MySQL tutorials are abundant on the Internet, and there are too many books to list here.
Pick the one that suits your preferences best.

This tutorial only aims to get your hands dirty, and start using git. You will probably need other sources
as you go along. There are quite a few good books or online tutorials on git as well. To name a few,

• http://www.ralfebert.de/tutorials/git/

• http://www.vogella.de/articles/Git/article.html

• and pointers to more: http://sixrevisions.com/resources/git-tutorials-beginners/

• and a reminder: all git commands accept the option --help to display detailed usage information.

For the sake of exercises below, we will work through a simple web-based application: a birthday calendar.
All exercises are presented using UNIX command line and assuming you are using a text editor on the system
where the PHP-based web page is served. The exercises should work without modification on the server
siegfried. In fact, they should work (with minor modifications) on any UNIX-like operating system with
git/PHP/MySQL. If you are on a different operating system, for example Windows, you will need to figure
out how to use the replacement path names or the commands to do common tasks.

You can use various other methods to achieve the same effect. The official git gui or some other GUI
for git may be used. Or, you can even use an integrated development environment, such as Eclipse, in
combination with git, to develop PHP applications. However, these are not covered in this exercise set.

Exercises

We start with initializing our repository. This is done with the command git init. But we first need to
create a directory for our repository. So, here is the list of commands we run:

$ cd public_html # this is normally where your home directory is

$ mkdir bdcal # we call the project BDcal

$ cd bdcal

$ git init

Initialized empty Git repository in /home/cagri/public_html/bdcal /.git/

NOTE: A bar on the left or right margin marks the actual exercises: a set of commands you need to type or a
question you need to answer.

git init creates an empty repository in the subdirectory .git in the project directory for storing all
repository related information. You will typically not need to deal with any of the files there (we will see a
few exceptions below).

NOTE: To mark the difference between the commands and the output of the commands in the listings, the commands
you need to type on the command line is prefixed with a $ sign. Commands should be typed without $.

Before starting real work, we’ll digress a little bit, and tell git who we are. To do that, type

$ git config --global user.name "My name"

$ git config --global user.email "my@email"

You should, of course, replace My name with your name, and my@email with your email address. Git will
use these to identify every change you make in the repository. If you do not supply them it will try to do its

RuG/Informatiekunde DB-enabled web technology (LIX021B05) 2011-11-21

http://www.let.rug.nl/coltekin
http://www.rug.nl
http://www.ralfebert.de/tutorials/git/
http://www.vogella.de/articles/Git/article.html
http://sixrevisions.com/resources/git-tutorials-beginners/
http://www.rug.nl/
http://www.rug.nl/let/informatiekunde
http://www.let.rug.nl/coltekin/dbweb2011/

best to guess. But most of the time you will like to set these to some identity that you are happy to share
with your audience.

git config updates various configuration options for git. The --global option here tells that this is a
global setting. Global settings are kept in $HOME/.gitconfig on UNIX-like systems. There is another file
.git/config in the project directory where configuration options local to a project are stored. If the same
configuration option is specified as both global and local options, the local one will take precedence.

We will use two fake identities for the sake of demonstration of two people working on the same project.
Since the exercises are prepared for a single person, we will make use of the local configuration to see this
difference. The names we will use for the exercises are ‘Linus’ and ‘Richard’. The exerceses that you need to
do as Linus will have a bar on the left margin, and the exercises you need to do as Richard will have a bar
on the right margin. We will first start as Linus and type the following commands in our project directory.

$ git config user.name "Linus"

$ git config user.email "linus@example.net"

Note that we do not usethe --global option here.
Now, we are ready to do some work, and record it in the git repository. Being a good programmer, we

first start documenting our design.
Create a file design-doc.txt with the following content using your favorite text editor:

BDCal -- a personal birthday calendar application

This application keeps track of birthdays of friends & family. It has

two screens.

- First , a web -page to add or modify a birthday for a person.

- Second , another web page to list the birthdays.

Database desgin is simple: a sigle table with two columns "name" and

"birthdate ".

Now that we have some work done, we’d like to record that work in the our repository. But let’s check
the status of our project first. To do that we use the command git status.

$ git status

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file >..." to include in what will be committed)

#

design -doc.txt

nothing added to commit but untracked files present (use "git add" to track)

If you use git from the command line, you will use this command often. git reports that we have an
untracked file, and actually suggests us to user git add to start tracking it.

$ git add design -doc.txt

$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file >..." to unstage)

#

Page 2

new file: design -doc.txt

#

This time git reports that it knows about the file. However, the change (new file) is still not recorded in
the repository. git has a two-stage mechanism for committing changes, first you need to add the change,
and you can then commit them. This may be confusing at first, but in the long run you will find that it is
actually a useful feature.

Now, lets do the real commit:

$ git commit -m "added the design document"

Created initial commit f5d62dd: added the design document

1 files changed , 9 insertions (+), 0 deletions (-)

create mode 100644 design -doc.txt

git tels us what it did: this is an initial commit with one file, and 9 lines in total. The option -m allows
us to give a comment on the command line. If you do not, git will start a text editor for you to type the
comment.

Check if you have any untracked or not-committed changes.
NOTE: A black bar on one of the margins indicate an exercise for which you need to figure out the answer yourself.

Now that we have an initial design, we’d like to create our database on the MySQL server running on
the ‘localhost’. Assuming a database called ‘bdcal’ was already created, use MySQL command-line utility
to connect to the database, and create the table.

$ mysql -s -p bdcal

Enter password:

mysql > create table birthdays(name varchar (50) not null ,

day int not null ,

month int not null ,

year int);

A common practice useful for application that use a database is to record the steps to recreate the
database. So, we’d like to store this information in our project.

Using your favorite text editor, create a file db-init.sql which includes the above create table state-
ment.

Next time we need to create the database from start, we could just type mysql -p bdcal < db-init.sql,
to create the necessary table(s). You could also use mysqldump command to get a complete backup of the
database which would include the SQL statements necessary to create the database and insert the data in
it.

Here, we decided to use separate day, month and year fields, so that we can record the birthday even if
we do not know the year of birth. However, since our initial design assumed a single birthday column, this
creates a discrepancy between the implementation and our documentation. Before progressing further, we’d
like to fix this.

Using a text editor, change the following lines in design-doc.txt,

Database desgin is simple: a sigle table with two columns "name" and

"birthdate ".

to

Database desgin is simple: a sigle table with columns "name",

"day", "month" and "year", where "year" can be null.

Now run git status again. git will report that there is an untracked file db-init.sql and a modified
file design-doc.txt, but none of them are scheduled for commit yet.

Use git add to add the new file, and git commit -a to commit the changes. Use a descriptive message
for the commit. Remember that -a option of commit adds the changes on tracked files automatically, but
you have to add a new file using git add.

Page 3

Now that our database is ready, we can start writing our web-based application. First, we will start with
displaying the birthdays in the database. However, since it would be nice to have a few birthdays already in
the database to test. We’d like to add a few example birthdays.

Connect to your database using mysql command line client (or phpMyAdmin) and add birthdays for at
least two friends.

Now we are ready to start coding.
Create a file display.php in the project directory with the following content

1 <html >

2 <head ></head >

3 <body >

4 <?php

5 mysql connect(’localhost ’, ’dbuser ’, ’dbpass ’);

6 mysql select db(’bdcal ’);

7 $res = mysql query(’select *, (year(now()) - year) as age

8 from birthdays

9 order by (12 - month(now()) + month) % 12’);

10
11 while ($row = mysql fetch assoc ($res)) {

12 echo "${row[’name ’]} ";

13 echo "${row[’month ’]}-${row[’day ’]} ";

14 i f ($row[’age’])

15 echo "(${row[’age ’]})";

16 e l se
17 echo "(??)";

18 echo "
";

19 }

20
21 mysql_close ();

22
23 ?>

24 </body >

25 </html >

Of course, you need to replace dbuser with your database user name, dbpass with your database pass-
word, and if necessary bdcal with the name of your database. We will skip the description of this code
segment. However, you are encouraged to study the code and understand it.

What does order by statement on line 9 of the above PHP code do?
Test the application using a web browser. If you followed the previous steps the web page should simply

names and birthdays of people you entered in the MySQL database.
Add the new file, and commit it with a descriptive log message.
Until this point, all hands-on work has been done by Linus, even though Richard was helping along the

way, now they want to work in parallel on different tasks. For that, Richard wants to get his own working
copy. In git a working copy comes with the complete repository. This allows all developers to have a
complete history of the project, with the expense of some additional storage space (which generally is not
much).

To a get a copy of a repository we use the command git clone. For these exercises you will use another
project directory in your own $HOME/public_html. Opening another terminal window, and marking each
with the respective fake identities (e.g., changing the terminal title bar or shell prompt may help you
distinguish which commands to type on which window) may be helpful.

The following lists the commands for creating a clone of the current state of the repository.

$ cd public_html

$ git clone bdcal bdcar

Page 4

$ cd bdcar

NOTE: Remember that a bar on the right margin means we type these commands as Richard. Starting with the
above commands we will switch hats rather frequently, so watch out.

These commands create a clone of the repository under the directory bdcal as bdcar (note the change in
the last character of the directory name). Note that, typically, you will this operation is done over network,
using a protocol like http, ssh or gits own protocol.

Set our new fake identity with name Richard and email richard@example.org in the newly cloned
repository bdcar. Make sure not to use --global option. We only want to use this identity for these
exercises.

Richard plans to work on the database update page. Nevertheless, he wants to know what was done so
far. Of course, he could read the source files and understand it, but git logs provide a more concise option.
You can look at the history of the changes with the command git log.

$ git log

commit 7159818 aad74e062baebcf83bd9a567cadb81fe4

Author: Linus <linus@example.net >

Date: Sun Nov 20 00:58:57 2011 +0100

added PHP code for displaying birthdays

commit 29 e27c07151599d44c8c079eef664a793cb3ee0c

Author: Linus <linus@example.net >

Date: Sat Nov 19 22:19:34 2011 +0100

added db -init.sql & updated docs for minor DB design change

commit f5d62ddeb71d36b816146a4046f53d3320d00204

Author: Linus <linus@example.net >

Date: Sat Nov 19 03:01:49 2011 +0100

added the design document

We see three changes in the logs. Each change is listed with the commit message, the date/time of
the commit, the identity of the person who did the commit, and an arbitrary commit ID in the form of a
hexadecimal number.

We realize that we do not know what the design change was about, and want to see what was done with
the second commit with id 29e27c07151599d44c8c079eef664a793cb3ee0c is about. There are a couple of
ways to check these changes, but the most convenient in this case is probably using the git show command.
If you type git show with the commit ID as parameter, you should get something similar to the following:

1 $ git show 29e27c0

2 commit 29 e27c07151599d44c8c079eef664a793cb3ee0c

3 Author: Linus <linus@example.net >

4 Date: Sat Nov 19 22:19:34 2011 +0100

5
6 added db -init.sql & updated docs for minor DB design change

7
8 diff --git a/db -init.sql b/db -init.sql

9 new file mode 100644

10 index 0000000..3274659

11 --- /dev/null

12 +++ b/db -init.sql

13 @@ -0,0 +1,4 @@

14 +create table birthdays(name varchar (50) not null ,

Page 5

15 + day int not null ,

16 + month int not null ,

17 + year int);

18 diff --git a/design -doc.txt b/design -doc.txt

19 index 3e37386 ..5 e3be5f 100644

20 --- a/design -doc.txt

21 +++ b/design -doc.txt

22 @@ -5,5 +5,5 @@ two screens.

23 - First , a web -page to add or modify a birthday for a person.

24 - Second , another web page to list the birthdays.

25
26 -Database desgin is simple: a sigle table with two columns "name" and

27 -"birthdate ".

28 +Database desgin is simple: a sigle table with columns "name",

29 +"day", "month" and "year", where "year" can be null.

git show gives you the commit message followed by the changes to all files listed in diff format The
lines added by the commit starts with a + and lines removed by the commit starts with a - in the very
first column of the diff output. All changes are listed together with the surrounding context (of three lines
above). Also note that we did not use the complete commit ID. For any git command that uses commit IDs
only the first few digits are enough (as long as they are distinctive).

Study the output of git show above. Are the lines 24 and 25 added, removed or context lines?
Knowing what our project partner has been working hard, now, time to work on our part.
Here is a simple PHP code for adding new birthdays. Type it in using a text editor, and save as add.php.

1 <?php

2
3 i f (i s s e t ($_POST[’submit ’])) {

4 mysql connect(’localhost ’, ’dbuser ’, ’dbpass ’);

5 mysql select db(’bdcal ’);

6
7 mysql query("insert into birthdays values(’${_POST[’name ’]}’,

8 ${_POST[’day ’]},

9 ${_POST[’month ’]},

10 ${_POST[’year ’]})");

11 echo "Birthday added.
";

12 mysql_close ();

13 }

14 ?>

15 <form action="add.php", method="post">

16 Name: <input type="text" name="name"/>

17 Birthdate (YYYY -MM-DD): <input type="text" name="year"/>-

18 <input type="text" name="month"/>-

19 <input type="text" name="day"/>

20 <input type="submit" name="submit" value="submit"/>

21 </form >

WARNING! For the sake of brevity, the above code does many things you should never do. For example, not checking
whether the update completed successfully or not, and even worse, using user input in a query without
validating it, which may cause serious security problems.

Check whether the code works as expected, add and commit to the repository.
While Richard is busy with he above code, Linus wants to improve the display page. He thinks that

instead of putting data on separate lines with spaces in between, a table may look better, and header lines,
such as name, birthday and age, indicating what the column is about would also be useful.

Page 6

Modify display.php such that the result is displayed in an HTML table. Test the result, and commit

your changes.
NOTE: Pay attention to change of identity.

Now, the two copies of the project have diverged. Each project member has one commit that is only
available on their own tree. You can see that by running git log on both copies of the project.

Richard wants to do a few more changes. However, he expects that his hard-working project partner
have some additions at this point, so he wants to incorporate these additions to his repository first. The
command git pull takes updates from another repository.

Run the following command

$ git pull

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 2), reused 0 (delta 0)

Unpacking objects: 100% (3/3) , done.

From /home/cagri/public_html/bdcal/

7159818..6 dadefa master -> origin/master

Merge made by recursive.

display.php | 12 +++++++-----

1 files changed , 7 insertions (+), 5 deletions (-)

git pull fetches the changes from the original repository, and merges to your repository. Now, Richard
has all the changes Linus had, and his own changes up to this point. However, Linus’ copy of the project
does not have the changes Richard made. Since in our particular setup Richard has read-write access to
Linus’ repository (since we are using the same UNIX user), he can push his changes as well.

Now, run the following command to push changes

$ git push

Counting objects: 7, done.

Compressing objects: 100% (5/5), done.

Writing objects: 100% (5/5), 915 bytes , done.

Total 5 (delta 2), reused 0 (delta 0)

Unpacking objects: 100% (5/5) , done.

To /home/cagri/public_html/bdcal/.git

6dadefa .. a80f93e master -> master

At this point, both repositories should be identical.
For a distributed VCS like git there is no ‘original’ repository. Each repository copy is independent,

except sharing the history. Nevertheless, when you clone a repository, git marks the source repository
as origin, and pull push use this repository as the default repository to interact with. You can use any
repository you have access to for fetching changes you do not have, and there are other possibilities of
updating a repository with other. We will not go into details of many ways two or more repositories may
interact. However, we note that it is a common practice to have a dedicated repository writable by all project
members. This a similar method to client-server VCSes. However, benefits of distributed system remains.
Each individual developer can commit their changes without access to the VCS server and share the changes
when they are ready.

Now, happy that the changes merged nicely without trouble, Richard decides to work on a problem he
has realized earlier. Both PHP scripts use the following two lines for connecting to the database:

mysql_connect(’localhost ’, ’dbuser ’, ’dbpass ’);

mysql_select_db(’bdcal ’);

First problem her is that the code is repeated unnecessarily. If, for example, we change the password,
we have to do the same change in multiple locations (currently two). Like repeated data in the databases,
repeated code in programming is a bad practice, and easy to avoid.

Page 7

There is another problem: putting passwords inside the code is a bad idea. Anybody who has access
to the code will see the password. Being open source software enthusiasts, both our programmers like to
share their code, but certainly not their passwords. Furthermore, all the values, host name, user name,
password and database name, seem to be configurable values. Ideally, we should separate the code from the
configuration. The solution Richard comes up with is to place these variables into a file dbconfig.php and
use the variables (instead of the values) in each script.

Since the change requires editing multiple files, and possibly introducing new bugs, Richard does not
want to do it on the working system. VCSes provide a nice mechanism for these cases: you can create
multiple branches without taking complete copies of the whole project. Furthermore, branches in git are
cheap and fast. So, we want to crate a temporary branch called exp, and do the changes in this branch.

Type the following two commands to crate the new branch, and switch to it.

$ git branch exp

$ git checkout exp

git branch command, if a branch name is given, creates a new branch. git checkout switches to the
new branch. The initial branch git crates when you do git init is called master, which you have already
seen many times in the output of git status. If you check the status now, it should tell you that you are
on branch exp. Another way to check the branch you are on is to run git branch without any arguments,
which will list all branches, and mark the current branch with an asterisk ‘*’. You are encouraged to try
both commands and see the output.

Now, we are ready to make our changes on our new experimental branch.
Create a new file, dbconfig.php with the following content.

<?php

$dbhost = ’localhost ’;

$dbuser = ’dbuser ’;

$dbpass = ’dbpass ’;

$dbname = ’bdcal’;

?>

Modify both display.php and add.php, replacing the lines,

mysql_connect(’localhost ’, ’dbuser ’, ’dbpass ’);

mysql_select_db(’bdcal ’);

with

include_once(’dbconfig.php ’);

mysql_connect($dbhost , $dbuser , $dbpass);

mysql_select_db($dbname);

After testing both display and add functionality, we would like to commit this change. Note that we do
not want to commit the dbconfig.php file. It is not part of our source code, it is a configuration file. It is
a common practice to include an example configuration file, but we will skip this here.

Commit the changes to display.php and add.php with a descriptive log message.
Now, Richard is happy that the project is easier to maintain, and the leak of DB credentials is also

prevented in case source code is opened to others. However, since he types git status every now and then,
he is annoyed with the fact that git status complains about dbconfig.php as an untracked file every time.
Luckily there is an easy way to prevent git from complaining files we do not want to track.

Create a text file .gitignore in the project directory with a single line containing the text dbconfig.php.
Check the output of git status again.

If everything went well, you should see git status to stop complaining about dbconfig.php. However,
this time it will complain about the file .gitignore. It is possible to add .gitignore to itself. However we
chose to add it to the repository.

Add .gitignore to the repository, and commit it with a descriptive log message.

Page 8

The .gitignore file can also contain ‘wild cards’, for example if you were working with a compiled
language and wanted to ignore all object files, you could add a line ‘*.o’ to tell git to ignore all files with
extension ‘.o’.

Now that the experimental code seems to be working fine, Richard wants to apply these changes to the
master branch. This is done using the command git merge.

To merge the branch exp to the branch master you first need to switch to master branch.

$ git checkout master

Before merging, if you want to see the changes on the exp branch, you can type,

$ git log exp

Naturally, log messages for exp will be the same with the branch master until the point of branching.
However, you should see two additional commits messages in the exp branch that are not on the master

branch.
If you wanted to see the actual changes between two branches, you could type

$ git diff exp

which would bring you all the changes in diff format.
After seeing that all changes are what we want to include, we are ready to merge exp into master.

$ git merge exp

Updating a80f93e ..1 f93f89

Fast forward

.gitignore | 1 +

add.php | 5 +++--

display.php | 5 +++--

3 files changed , 7 insertions (+), 4 deletions (-)

create mode 100644 .gitignore

Now both branches are identical. Since we wanted the branch exp until we applied the changes to the
master branch, we can now delete it,

$ git branch -d exp

Deleted branch exp.

Branching and merging are useful for many other cases. In these exercises we used a temporary branch
to make sure that we do not modify the stable code until we are confident about our modifications. Branches
does not have to be temporary, in some cases you may want to maintain multiple (permanent) branches.
For example, we could create a new branch for using another database management system.

The merge in the above exercise is called a fast-forward merge; there were no changes on the master
branch during time development was going on in the experimental branch. If there were, then we could have
a possible conflict. When conflicts happen, git informs you about which files include conflicts, and marks
the conflicting regions in these files. In case of a conflict, you will need to resolve the conflicts manually,
and commit the result of the merge. We will not demonstrate a conflict in this tutorial, however you are
encouraged to try yourself.

In our exercises so far, Richard colened repository of Linus. So, his repository knows where the repository
origin is, and can pull the changes when he wants. And since he has write access to Linus’ repository
(due to our peculiar setup), he can also push his changes. In real world, this mode of sharing is rare, it is
more common to use a common repository for the aim of only sharing the code. Various source code hosting
services (such as GitHub or BitBucket) may come handy in these cases. Of course, you can also run your
own service if you have the means and motivation for it.

For the exercises here, we will stick to our model, and to see how you can add other repositories for
using pull and push we will do one last exercise. In our setup, Linus cannot pull directly from Richard’s
repository, or push to it.

Page 9

git uses the file .git/config in the prject directory to store the information about the other repositories.
If you examine the differences between .git/config files in both repositories, you will find that Richard’s
repository configuration includes some additional lines roughly corresponding to:

[remote "origin "]

url = /home/cagri/public_html/bdcal/.git

fetch = +refs/heads /*: refs/remotes/origin /*

[branch "master "]

remote = origin

merge = refs/heads/master

In a nutshell, these configuration directives instruct git that there is a remote repository origin located
in /home/cagri/public_html/bdcal/.git, and the branch master in the local repository, in a sense, ‘mir-
rors’ the remote master branch. We will not go into details here, but note a few possibilities. First, note that
the remote is identified by an URL. As a result, you can use any URL that git understands, such as http,
ssh. Second, the branch names in remote and local does not have to match. You can for example record a
remote repository, and track their master (or any other) branch with any local branch name you like. Also
note that you can edit this file using a text editor, or you can use appropriate git config commands to
update the values.

We now return the problem that Linus wants to be able to pull and push to Richard’s repository whenever
he likes, instead of asking him every time to make sure both repositories are in sync.

Using a text editor edit .git/config file, and add the following lines:

[remote "richard "]

url = /home/cagri/public_html/bdcar/.git

fetch = +refs/heads /*: refs/remotes/origin /*

[branch "master "]

remote = richard

merge = refs/heads/master

Of course you need to change the url line to match the repository you have created as Richard.
After this, we should be able to pull from Richard’s repository whenever we want. However, we did

not name the repository origin, so we need to add the repository name to the git pull and git push

commands. Here is an example:

$ git pull richard

remote: Counting objects: 10, done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 7 (delta 3), reused 0 (delta 0)

Unpacking objects: 100% (7/7) , done.

From /home/cagri/public_html/bdcar/

* [new branch] master -> origin/master

Updating a80f93e ..1 f93f89

This exercise concludes our tutorial. Hopefully, these exercises were useful to get you started. We have
just scratched the surface of version management with git. git is a sophisticated tool, you will likely to use
only a subset of features for your projects. And, like many other sophisticated tools, the best way to learn
git is to use it.

Even though a VCS may seem too abstract at first, as you use it you will realize that it is an indispensable
tool for software development. However, it can also be useful for many other cases, for example a web page,
a PhD dissertation, or your list of cooking recipes.

Page 10

