
Database-enabled web technology
Session management & Security

Instructor: Çağrı Çöltekin
c.coltekin@rug.nl

Information science/Informatiekunde

Fall 2011/12

http://www.let.rug.nl/coltekin
http://www.rug.nl/let/onderwijs/bachelor/informatiekunde/index

Previously in this course . . .

Previous weeks

W1: Quick introductions to PHP & git.

W2: An overview of DB design and SQL.

W3: Some background on server-side programming, HTTP.
Interacting with users in PHP: HTML forms, and cookies.

W4: DB Programming: stored procedures, programming with Pear
DB, transactions, triggers...

Ç. Çöltekin, Informatiekunde Databases & Web 1/28

http://www.let.rug.nl/coltekin

Previously in this course . . .

Stored Procedures

I Stored procedures are database-side programs that are stored
and run in a DBMS.

I Stored procedures add procedural-language support in
relational (SQL) databases.

I Stored procedures are database objects, they are created and
dropped the same way as the other database objects.

I Stored procedures run with the credentials of the user who
creates them. As a result, one can run stored procedures
without having access to any of the underlying tables.

I Stored procedures may reduce the network I/O, and may run
faster in certain systems/cases.

I There is a relatively recent standard. However, the stored
procedure language differ widely among different DBMSes.

Ç. Çöltekin, Informatiekunde Databases & Web 2/28

http://www.let.rug.nl/coltekin

Previously in this course . . .

SP in MySQL an example

1 drop procedure if exists confirm_order;

2 delimiter $$

3 create procedure confirm_order(in cust_id int , out nitems int)

4 begin

5 declare isbn_tmp varchar (13) default null;

6 declare customer , quantity int;

7 declare more_rows bool default true;

8 declare cur cursor for

9 select cID , ISBN , qty from basket where cID = cust_id;

10 declare continue handler for not found set more_rows = false;

11 set nitems = 0;

12 open cur;

13 fetch cur into customer , isbn_tmp , quantity;

14 while more_rows do

15 set nitems = nitems + quantity;

16 insert into orders (cID , ISBN , qty , order_date , status)

17 values (customer , isbn_tmp , quantity , now(), ’N’);

18 fetch cur into customer , isbn_tmp , quantity;

19 end while;

20 end $$

21 delimiter ;

call confirm_order(10, @nbooks);

select @nbooks;

Ç. Çöltekin, Informatiekunde Databases & Web 3/28

http://www.let.rug.nl/coltekin

Previously in this course . . .

PHP Pear DB library

I Pear DB library provides a unified way of connecting to
multiple DBMS systems from PHP.

I In comparison to other methods of database access, e.g., PHP
mysql_ functions, Pear DB provides a more portable approach.

I Independent of the DBMS or library in use, you should always
validate the user input.

I Pear DB provides three functions: escapeSimple(),
escapeSmart() and quoteIdentifier() to sanitize the input
before using in an SQL statement.

I Pear DB also provides a prepare()/execute() interface (as
well as the query()).

Ç. Çöltekin, Informatiekunde Databases & Web 4/28

http://www.let.rug.nl/coltekin

Previously in this course . . .

Pear DB: a first example

1 <?php

2 require_once(’DB.php’);

3 require_once(’db -config.php’);

4 $conn = DB:: connect("mysql :// $user:$pass@$host/$db");

5
6 $res = $conn ->query(’select * from book’);

7
8 echo "<table border =\"1\">";

9 echo "<tr ><th >ISBN </th ><th >title </th ></tr >";

10 while ($row = $res ->fetchRow(DB_FETCHMODE_ASSOC)) {

11 echo "<tr ><td >${row[’ISBN ’]}</td >";

12 echo "<td >${row[’title ’]}</td ></tr >";

13 }

14 echo "</table >";

15 $conn ->disconnect ();

16 ?>

Ç. Çöltekin, Informatiekunde Databases & Web 5/28

http://www.let.rug.nl/coltekin

Previously in this course . . .

DB Transactions

I The (SQL) statements in a transaction is treated as atomic:
either all or none of them are run.

I The (SQL) statements in a transaction is treated as isolated:
DBMS isolates statements in a transaction from possible
effects of other tasks running in parallel.

$db ->autoCommit(false);

$db ->query (...);

...

if (some condition) {

$db ->rollback ()

} else {

$db ->commit ();

}

Ç. Çöltekin, Informatiekunde Databases & Web 6/28

http://www.let.rug.nl/coltekin

Overview

Today...

I Revisiting cookies.

I Session management.

I Some bits of security: ...

Ç. Çöltekin, Informatiekunde Databases & Web 7/28

http://www.let.rug.nl/coltekin

Cookies: again...

HTTP Cookies

I A cookie is a piece of information a HTTP server asks the
client to retain for until a specific expiry date/time.

I Cookies are passed in the HTTP header field (as opposed to
GET data in URL, or POST data in content).

The server sends a cookie (in HTTP headers) to a client using,

Set−Cookie : name=va l ; e x p i r e s=date t ime ; domain=d ; path=p

There may be additional options, e.g., Secure or HttpOnly.
The client sends the matching cookie back in every request if,

I the domain and path matches

I the cookie is not expired

Cook ie : name=va l ; name=va l ; name=va l ; . . .

Ç. Çöltekin, Informatiekunde Databases & Web 8/28

http://www.let.rug.nl/coltekin

Cookies: again...

Cookies: domain

I Server can the domain of the cookie, by default the domain is
the full domain name of the server.

I Client sends back a cookie, only if domain matches.

I If the web server runs on www.let.rug.nl, then all cookies
for www.let.rug.nl, let.rug.nl and rug.nl will be sent
by the client to the server.

I A server is allowed to set cookie domain for its higher level
domains (except the top-level domains).

I Cookies for top-level domains, e.g., .nl, .edu, .net, are
ignored by the browsers.

I Cross-domain cookies are also discarded by the clients. The
server with domain name www.let.rug.nl cannot set a
cookie for example.com.

Ç. Çöltekin, Informatiekunde Databases & Web 9/28

www.let.rug.nl
www.let.rug.nl
let.rug.nl
rug.nl
www.let.rug.nl
example.com
http://www.let.rug.nl/coltekin

Cookies: again...

Cookies: path

I Similar to the domain, server can also specify a path attribute
for a cookie.

I A client sends a cookie if the path it requests is a sub-path of
the cookie’s path attribute.

I If path is /myapp/ then client will sent the cookie back only if
it requests /myapp/ or a sub-path, e.g., /myapp/login.php.

I If the cookie path attribute is /, then it is sent for all paths in
the domain.

Ç. Çöltekin, Informatiekunde Databases & Web 10/28

http://www.let.rug.nl/coltekin

Cookies: again...

Cookies: expiry

I The client retains the cookie until the expiry date/time
specified during its creation.

I If unspecified, or the value is 0, the cookie is kept until the
browser terminates.

I The server cannot delete a cookie, but it can (re)set the
cookie with an expiry time in the past. This will cause the
client to delete the cookie.

I Note that the clocks of server and client may not be in sync.

Ç. Çöltekin, Informatiekunde Databases & Web 11/28

http://www.let.rug.nl/coltekin

Cookies: again...

Cookies: options

Besides the name, value and the standard options expiry, path and
domain, there are a number of additional options.

I If Secure options is specified, the client sends the cookie back
only if the connection is secure (HTTPS).

I If HttpOnly options is specified, the client does not allow
client-side programs (e.g., JavaScript) to access the cookie.
Otherwise, the server side programs have access to the
cookies in the browser.

Ç. Çöltekin, Informatiekunde Databases & Web 12/28

http://www.let.rug.nl/coltekin

Cookies: again...

Working with cookies in PHP

I You can set cookies with function setcookie(). For example
setcookie ($name, $val, $exp, $path, $domain, $secure, $httponly)

where, except $name all arguments are optional.

I You have to set the cookies before sending any content
(remember: they are part of the HTTP headers, not the
content).

I Received cookies are stored in the global associative array
$_COOKIE

I Assuming you have a cookie with name user, you can access
it using $_COOKIE[’user’].

I Cookies are also present in the combined associative array
$_REQUEST

Ç. Çöltekin, Informatiekunde Databases & Web 13/28

http://www.let.rug.nl/coltekin

Cookies: again...

PHP and cookies

1 <?php

2 if (! isset($_COOKIE[’MyCookie ’])) {

3 setcookie(’MyCookie ’,

4 ’some value’,

5 time ()+3600*24*7);

6 }

7 ?>

8 <html >

9 <!--- ... some html stuff -->

10
11 <?php

12 if (! isset($_COOKIE[’MyCookie ’])) {

13 echo "You do not have the cookie yet.";

14 } else {

15 echo "MyCookie = ${_COOKIE[’MyCookie ’]}";

16 }

17 ?>

Ç. Çöltekin, Informatiekunde Databases & Web 14/28

http://www.let.rug.nl/coltekin

Session Management

Need for session management

A simple interactive/desktop
application

1 process starts

2 displays some output

3 receives some input from the
user

4 process ends

A simple web application

1 process starts

2 (possibly) receives some
input from the user

3 displays some output

4 process ends

Ç. Çöltekin, Informatiekunde Databases & Web 15/28

http://www.let.rug.nl/coltekin

Session Management

Need for session management

A simple interactive/desktop
application

1 process starts

2 displays some output

3 receives some input from the
user

4 process ends

A simple web application

1 process starts

2 (possibly) receives some
input from the user

3 displays some output

4 process ends

Ç. Çöltekin, Informatiekunde Databases & Web 15/28

http://www.let.rug.nl/coltekin

Session Management

Servers-side programming: difficulties

A server-side web application,

I cannot use ordinary (global) variables that spans throughout
the application lifetime.

I has to identify and cope with multiple runs of the same
application,

I cannot assume that input provided on the next run is provided
by the same source that started the application.

A session in web-based programming provides a way to solve
these problems.

Ç. Çöltekin, Informatiekunde Databases & Web 16/28

http://www.let.rug.nl/coltekin

Session Management

Servers-side programming: difficulties

A server-side web application,

I cannot use ordinary (global) variables that spans throughout
the application lifetime.

I has to identify and cope with multiple runs of the same
application,

I cannot assume that input provided on the next run is provided
by the same source that started the application.

A session in web-based programming provides a way to solve
these problems.

Ç. Çöltekin, Informatiekunde Databases & Web 16/28

http://www.let.rug.nl/coltekin

Session Management

What is in a session?

A session consist of two components:

1. A unique session ID passed back-and-forth between client and
the server. This makes sure that the server side identifies the
client and resumes the session where it was left in the previous
step. The session ID can be communicated using:

I Cookies.
I ‘Hidden’ form fields, which passed with GET or POST data.

2. A server side storage for session data. This makes sure that
parts of the session can share information. The information is
typically stored in local files, but can also be stored in a
database (or any other means).

Why not pass all the information back-and-forth like the session ID?

Ç. Çöltekin, Informatiekunde Databases & Web 17/28

http://www.let.rug.nl/coltekin

Session Management

PHP sessions: introduction

I The session is initiated using he function session_start().

I If using cookies for sessions, session_start() should be used
before any output.

I PHP sessions can use cookies (preferable for most purposes)
or GET/POST methods.

I The session information is available through the super global
array $_SESSION: values of the members of $_SESSION persists
throughout the session.

I The data is stored in files by default, but other ‘handlers’ are
available, and new handlers can be created by the user.

I Name of the default session ID (cookie or the name of the
html form field) is PHPSESSID, but can be customized.

Ç. Çöltekin, Informatiekunde Databases & Web 18/28

http://www.let.rug.nl/coltekin

Session Management

PHP sessions: an example

1 <?php session_start (); ?>

2 <html > <body >

3 <?php

4 if (! isset($_SESSION[’page_seq ’])) {

5 $_SESSION[’page_seq ’] = 0;

6 } else {

7 $_SESSION[’page_seq ’] += 1;

8 }

9 echo "You are on page ${_SESSION[’page_seq ’]}.";

10 ?>

11
12 </body ></html >

Ç. Çöltekin, Informatiekunde Databases & Web 19/28

http://www.let.rug.nl/coltekin

Session Management

PHP: starting a session

I session_start() starts a session if it is not already started. It
will typically send a cookie with default name PHPSESSID.

I The default session name can be changed using PHP
configuration for the site, or using session_name().

I Cookie parameters, lifetime, path, domain, secure, and
httponly can also be set using
session_set_cookie_params().

I Some other session configuration parameters can be
configured through ini_set() function. A few parameters of
interest are (see PHP session manual for more):

I session.use_cookies
I session.use_only_cookies

I Session related parameters must be set before calling
session_start().

Ç. Çöltekin, Informatiekunde Databases & Web 20/28

http://www.let.rug.nl/coltekin

Session Management

PHP: using session variables

I Session variables are stored in global array $_SESSION.

I The members of the $_SESSION persists until session is
destroyed, by session_destroy() or in case the session is
expired.

I Session cookie (on the browser side) will by default live until
the browser is closed, otherwise it is controlled by lifetime of
the session cookie.

I session_name() (without parameters) returns the name of the
session, and session_id() returns the session ID.

I Session ID can be changed anytime using
session_regenerate_id(). It is a good idea to change the
session ID at least at every security context change (we will
return to this in discussion of security).

Ç. Çöltekin, Informatiekunde Databases & Web 21/28

http://www.let.rug.nl/coltekin

Session Management

Where is my session data?

I PHP keeps your session data, by default, in files in a
system-wide directory.

I You can switch to an existing handler, e.g., for sqlite, using
PHP configuration variable session.save_handler.

I You can write your own handlers, e.g., to keep your session
information in MySQL or in memory, using
session_set_save_handler() You need to specify handlers
for: open, close, write, read, destroy, garbage collection.

I This may, for example, allow you to maintain sessions on a
load-balanced web server environment.

I Writing your own session handlers may also help you have
more control over your sessions.

Ç. Çöltekin, Informatiekunde Databases & Web 22/28

http://www.let.rug.nl/coltekin

Web-based application security

Web, Databases & Security

http://xkcd.com/327/

Ç. Çöltekin, Informatiekunde Databases & Web 23/28

http://xkcd.com/327/
http://www.let.rug.nl/coltekin

Web-based application security

Secure coding: why?

An application developed and set up without attention to security,
may

I allow unauthorized use of the application,

I provide unauthorized access to a complete system, potentially
causing other applications to be compromised,

I leak sensitive information (e.g., passwords, credit card
numbers),

I do unintended work for others (typically with malicious
intent).

Ç. Çöltekin, Informatiekunde Databases & Web 24/28

http://www.let.rug.nl/coltekin

Web-based application security

A few guidelines (before we start)

I Always check user input before using (e.g., in an SQL query).

I Do not store and transfer sensitive information unencrypted.

I Do not store or transfer sensitive information if you can avoid
it.

I Sanitize your output (e.g., properly escape special characters
if you are outputting HTML).

I Try to implement multiple levels/layers of security.

Ç. Çöltekin, Informatiekunde Databases & Web 25/28

http://www.let.rug.nl/coltekin

Web-based application security

Sessions and Security

Badly implemented session management systems may allow
unauthorized access to data/application. Typically,

I An easy to guess session ID may be found by brute-force trial
& error.

I An attacker may obtain the session ID by sniffing the network
traffic.

I An attacker may steal the session ID/key physically.

I An attacker may trick someone to use a URL (e.g., sent via
email), causing a particular session ID to be used (session
fixation).

Ç. Çöltekin, Informatiekunde Databases & Web 26/28

http://www.let.rug.nl/coltekin

Web-based application security

Some guidelines for session security

I Change your session ID frequently, particularly after every
authorization level change (e.g., successful login).
session_regenerate_id() is your friend.

I Avoid using GET, for passing session ID, use cookies when
available.

I Use HTTPS, secure cookies if available.

I Timeout your sessions.

I In some cases, you may also consider checking client IP, or
referrer string.

Ç. Çöltekin, Informatiekunde Databases & Web 27/28

http://www.let.rug.nl/coltekin

Summary & next week

Summary & Next week

This week:

I Cookies & sessions.

I Security, particularly related to sessions.

Next week:

I More on security.

Ç. Çöltekin, Informatiekunde Databases & Web 28/28

http://www.let.rug.nl/coltekin

	Week 5: Sessions and Security
	Previously in this course …
	Previous weeks
	Stored Procedures
	SP in MySQL an example
	PHP Pear DB library
	Pear DB: a first example
	DB Transactions

	Overview
	Today...

	Cookies: again...
	HTTP Cookies
	Cookies: domain
	Cookies: path
	Cookies: expiry
	Cookies: options
	Working with cookies in PHP
	PHP and cookies

	Session Management
	Need for session management
	Servers-side programming: difficulties
	What is in a session?
	PHP sessions: introduction
	PHP sessions: an example
	PHP: starting a session
	PHP: using session variables
	Where is my session data?

	Web-based application security
	Web, Databases & Security
	Secure coding: why?
	A few guidelines (before we start)
	Sessions and Security
	Some guidelines for session security

	Summary & next week
	Summary & Next week

