Database-enabled web technology
(LIX021B05)

Instructor: Cagrn Coltekin

c.coltekin@rug.nl

Information science/Informatiekunde

Fall 2012/13

http://www.let.rug.nl/coltekin
http://www.rug.nl/let/onderwijs/bachelor/informatiekunde/index

Practical information

Who, where, when

Course DB-enabled web technology (LIX021B05) 2012/13
Instructor Cagn Coltekin

Email c.coltekin@rug.nl

Lectures Mon 11:00-13:00, 1313.0338

Office hours Mon 13:00-17:00, H1311.0426 (or by appointment)
Course page http://www.let.rug.nl/coltekin/courses/dbweb2012/

Note: The computer room 1312.0107A is reserved for this course
on Tuesdays 13:00-15:00, but we will not have formal lab sessions.

C. Coltekin, Informatiekunde Databases & Web 1/34

http://www.let.rug.nl/coltekin
mailto:c.coltekin@rug.nl
http://www.let.rug.nl/coltekin/courses/dbweb2012/
http://www.let.rug.nl/coltekin

Practical information

Literature

There is no compulsory textbook for this course.

» A good database book, for example one of the following, will
be handy to have at hand.

» Database System Concepts by A. Silberschatz, H. F. Korth &

S. Sudarshan.

Database Management Systems by Ramakrishnan & Gehrke

A First Course in Database Systems by Ullman & Widom

Fundamentals of Database Systems by Elmasri & Navathe

Database Systems: The Complete Book by Garcia-Molina,

Ullman & Widom

» Database Systems: A Practical Approach to Design,
Implementation, and Management by Connolly & Begg

vV vy VvVYyy

» You will be referred to online sources if/when necessary.

C. Coltekin, Informatiekunde Databases & Web 2/34

http://www.let.rug.nl/coltekin

Practical information

What you should already know

Databases You are assumed know basic relational database
design concepts and SQL. We will only have a quick
review/reminder session.

HTML You are assumed know the basics of HTML. We will
only revisit/review HTML forms in this course.
Programming You are assumed to have some experience with
programming, and some earlier exposition to PHP
(from the web programming course). If not, you
should be able to pick it up quickly.

C. Coltekin, Informatiekunde Databases & Web 3/34

http://www.let.rug.nl/coltekin

Practical information

After this course ...

You should be able to

» develop interactive server-side web applications with a
relational database back end

> develop a relational database for a real-world application

» understand what happens behind the browser in a web-based
application

» be able to identify potential security problems in web-based
applications

> be familiar with performance issues for large scale web-based
applications using databases.

C. Coltekin, Informatiekunde Databases & Web 4/34

http://www.let.rug.nl/coltekin

Practical information

Time plan

’ Week ‘ Lecture (Wed)

1 Introduction & organization

2 Meeting with teams: no course

3 Web programming & Accessing databases from PHP
4 Session management
5

6

7

Security
Summary & QA & Discussion
Project (prototype) demonstrations

C. Coltekin, Informatiekunde Databases & Web 5/34

http://www.let.rug.nl/coltekin

Practical information

Evaluation

» Project: 70%.
» Requirements and initial design report (Due date: Nov 26).
» Project (prototype) demonstration (Dec 17).
» Finalized project (Jan 31).

» Individual homeworks: 30%.
» Homeworks will consist of steps of a small similar project.

You need a minimum of 5.5 (from both) to pass.

C. Coltekin, Informatiekunde Databases & Web 6/34

http://www.let.rug.nl/coltekin

Practical information

About projects

Project form the main part of this course.
» Projects can be done by a team up to 4 people.
» Contribution by all members are compulsory.

> Naturally, you will share tasks, however, everybody should
understand the project they are working on fully.

» You are required to use a version management system for all
project related files (more on this today).

» There is a single project subject. But, your end results will
differ based on your requirement collection as well as your
choices to implement additional features.

Time is short: you need to act quickly to team up, and start
working.

C. Coltekin, Informatiekunde Databases & Web 7/34

http://www.let.rug.nl/coltekin

Practical information

Project subject

A web-based application for managing a personal library

In general, your application should support

>

>

multiple users

different document types (e.g., books, news reports, scientific
articles)

different document formats, particularly paper & electronic.

storing electronic documents on the server (securely and by
respecting to the laws and regulations)

You will collect the full requirements yourself by interviewing the
user(s). (next week)

C. Coltekin, Informatiekunde Databases & Web 8/34

http://www.let.rug.nl/coltekin

Practical information

Projects and deadlines

1 2 3 4
5 6 7 8 9 1011
12 13 14 15@17 18
19 20 21 22 23 24 25
@272829301 2

. Team formation and
requirements collection.

November 2012

3456789 Requirements
‘é 10 11 12 13 14 15 16 documentation & initial
57 18 19 20 21 22 23 project report.
24 25 26 27 28 29 30 <:> _
311 2 3 4 5 6 Prototype demonstration.

7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27

28 29 30 @

@ Deadline for the finalized
project. No extensions!

January 2013

C. Coltekin, Informatiekunde Databases & Web 9/34

http://www.let.rug.nl/coltekin

Practical information

Project evaluation

» Good database design
» Secure and efficient web programming

» Continuous effort
There are two early steps that that contribute to the evaluation:

» An initial project report (about 3 pages, due 2012-11-26). It
should include,

» a summary of the project requirements
» your Initial database design (e.g., E-R design, DB schema)
> type(s) of users, typical queries expected, security
(authentication, authorization) requirements.
» Project demonstration/presentation (2012-12-17): you will
present an early version/prototype, explain planned work for
the final version.

C. Coltekin, Informatiekunde Databases & Web 10/34

http://www.let.rug.nl/coltekin

Plan

Rest of today

Today:
» A quick refresher on PHP & HTML form processing.

» A quick introduction to software version control using git.

C. Coltekin, Informatiekunde Databases & Web 11/34

http://www.let.rug.nl/coltekin

HTML forms: a short review

HTML Forms

<form action="form.php" method="post">

Name: <input type="text" name="name">
Password: <input type="passowrd" name="pass">
</form>

» HTML forms are defined in <form> tag.

» action attribute specifies the URL that will handle the form
input when submitted.

> method is either GET or POST.
> Input elements are specified inside the form.

> <input> tag specifies most common input types, but some
elements have different tags, e.g., <textarea>.

> You can specify a default value, typically using value
attribute.

C. Coltekin, Informatiekunde Databases & Web 12/34

http://www.let.rug.nl/coltekin

HTML forms: a short review

Input types

text A single line text field
password Same as text, but the input is not displayed
textarea A multi-line text field

radio Radio button, among a set of buttons user can select
only one

checkbox Like radio buttons, but user can select multiple (or
none)

option/select Create drop-down lists.
button A button
img A button with an image
file A file upload button
hidden A static value.

C. Coltekin, Informatiekunde Databases & Web 13/34

http://www.let.rug.nl/coltekin

HTML forms: a short review

GET OF POST ?

» GET method,
» Encodes the form output in the URL:
http://my.hostname/form.php?name=myname&age=myage
+ users can bookmark it.
— the values are visible on the URL bar (passwords?).
— there may be size limitation. No set standard, but rule of
thumb: no more than about 2K characters.
» POST method,
» Encodes the form output in the message body.

POST /form.php HTTP/1.1
header: value

name=myname&age=myage

+ with the help of HTTP, you can pass values securely.
+ it can handle much more data.
— you cannot bookmark the output of a form submission.

C. Coltekin, Informatiekunde Databases & Web 14/34

http://www.let.rug.nl/coltekin

PHP: handling form input

PHP and forms

» Form output from PHP is easy, it is just HTML output.
» If a form uses your PHP script as action, you can access the
form input using two super globals,
» $_POST if you used method=post
» $_GET if you used method=get
» PHP also provides a unified associative array $_REQUEST,
which combines both $_POST and $_GET.
» All these variables are associative arrays. For example, if you
had a form input with name="username", the value could be
accessed using $_REQUEST [’username’].

C. Coltekin, Informatiekunde Databases & Web 15/34

http://www.let.rug.nl/coltekin

PHP: handling form input

A simple form example

1|<!-- This is a simple HTML form 1|<!-- this is a PHP script that
2 -=> 2 processes it -->
3| <form action=form.php method=get> 3
4 | Username: <input type="text" 4 | <?php
5 name="name"/>
| 5
6 | Password: <input type="password" 6|if (!isset($_REQUEST[’submit’])){
7 name="pass"/>
 7 echo "Why are you here?";
8 <input type="submit" 811} else {
9 name="submit" 9 echo "Your name is: "
10 value="submit"> 10 . "${_REQUEST[’name’]}
";
11 | </form> 11 echo "And passowrd: "
12 . "${_REQUEST[’pass’]}
";
13|}
14 | 7>

C. Coltekin, Informatiekunde Databases & Web 16/34

http://www.let.rug.nl/coltekin

PHP: handling form input

PHP and forms: a common trick

1

2 | <?php

3 |if (!isset ($_REQUEST[’submit’])){

417>

5

6 | <form method="post"

7 action="<?php echo "${_SERVER[’PHP_SELF’]1}";?>">
8 | Username: <input type="text" name="name"/>

9 | Password: <input type="password" name="pass"/>

10 <input type="submit" name="submit" value="submit">
11 | </form>

12

13 | <?php

14

15 |} else {

16 echo "Your name is: " . "${_REQUEST[’name’]}
";
17 echo "And passowrd: " . "${_REQUEST[’pass’]}
";
18 |}

19 | 7>

C. Coltekin, Informatiekunde Databases & Web 17/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Is this familiar?

Frist day affer the project is assigned ..

mak@company § mkdir proj
mak@company $ Is proj
index html

After a week . 11111

mak@company $ Is proj

header.php headerl.php headerz.php
header_current.php index.html index.html.bkp
index.html.cld

After a fortnight ...

mak@company § |s proj

archive footer.php footer.php.latest
footer_final.php header.php header1.php
headerz.php header_current.php GodHelp
index.html index.html.bkp index.html.old
messed up main_index.html main_header.php
never used new_footer.php new

old old_data todo
TODO.latest toShowManager versioni
version2 webHelp

From http://maktoons.blogspot.nl/2009/06/if-dont-use-version-control-system.html

C. Coltekin, Informatiekunde Databases & Web 18/34

http://maktoons.blogspot.nl/2009/06/if-dont-use-version-control-system.html
http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Version Control Systems

A version control system (or, revision control or source control
system) is an indispensable tool in software development.

A VCS,

>

>

Records a history of all changes to all files under VC.

Allows going back in time: you can go back to any past state
recorded in VCS.

Allows inspecting which change happened when.

Allows maintaining multiple branches of the same software
without multiple copies.

Allows sandboxing: you can try (experimental) changes
without disrupting the ‘working copy’.

Facilitates team work.

It can also be used for other purposes, for example, web
pages, documents . ..

C. Coltekin, Informatiekunde Databases & Web 19/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

VCS: some terms

repository is the database where the VCS stores the code,
versions and associated information.

working copy is where the programmer makes the changes.
tag is a name given to the state of the repository at a

certain time.

branch is a virtual copy of the whole repository for a specific
purpose.

check-in operation updates the repository using the working

copy.

merge brings code in different branches (possibly from
different programmers) together.

conflict may occur during a merge, if same segment of the
code was changed in different ways.

C. Coltekin, Informatiekunde Databases & Web 20/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Some VC systems

RCS Dates back to early 1980's. Typically single user,
single system. Keeps track of single files.

CVS Client-server system with support for multiple users
on a network. Server side manages the central
repository, client side keeps the users’ working copies.

SVN An improvement over CVS.

GNU arch, mercurial, bazaar, git ... are distributed VCSs. Every
working copy keeps a repository. The repository for
each programmer is local, but can be merged using
different methods.

C. Coltekin, Informatiekunde Databases & Web 21/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: introduction

» Git is a distributed VCS.

» Developed (primarily) for Linux kernel, but used by many
projects.

» Available for almost all operating systems.
» Can be shared through HTTP, SSH, git, rsync, email ...

» Many (somewhat) free software-hosting providers for projects
using git. Just a few: GitHub, Gitorious, Bitbucket ...

C. Coltekin, Informatiekunde Databases & Web 22/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: starting a new repository

git init

» Initializes an empty git repository in the current directory (you
should already be in your ‘project directory’).

> All repository files live in .git subdirectory.

» You rarely touch files under .git (although, you can if you
know what you are doing).

C. Coltekin, Informatiekunde Databases & Web 23/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction
Git: starting a new repository
git init
» Initializes an empty git repository in the current directory (you
should already be in your ‘project directory’).

> All repository files live in .git subdirectory.

» You rarely touch files under .git (although, you can if you
know what you are doing).

<html>
<head></head>
mkdir testproject <body>
cd testproject <?php
git init echo "Hello Wrold!\n";
$EDIT index.php #=====> 7>
</body>
</html>

C. Coltekin, Informatiekunde Databases & Web 23/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: recording changes in the repository

git add and git commit

» Git has a two-stage commit process. First you need to add the
changes you want to commit. (This adds the change to a
‘cache’, called ‘index’, but we are not concerned with that.)

» Then, commit updates the repository with the changes.

C. Coltekin, Informatiekunde Databases & Web 24/34

http://www.let.rug.nl/coltekin

C. Coltekin, Informatiekunde Databases & Web

Revision control using git: a quick introduction

Git: recording changes in the repository

git add and git commit

Git has a two-stage commit process. First you need to add the
changes you want to commit. (This adds the change to a
‘cache’, called ‘index’, but we are not concerned with that.)

» Then, commit updates the repository with the changes.

git add index.php
git commit -m "added index.php"

24/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: recording changes in the repository

git add and git commit

» Git has a two-stage commit process. First you need to add the
changes you want to commit. (This adds the change to a
‘cache’, called ‘index’, but we are not concerned with that.)

» Then, commit updates the repository with the changes.

git add index.php
git commit -m "added index.php"

> -m option to commit gives a short comment. Otherwise, git
fires up a text editor to write a comment.

» Comments are important. Do not skip and be descriptive.

C. Coltekin, Informatiekunde Databases & Web 24/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction
Git: inspecting changes

git diff

C. Coltekin, Informatiekunde Databases & Web 25/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction
Git: inspecting changes

git diff

found a bug!

edit index.php, change ’Wrold’ to ’World’
git diff

--- a/index.php

+++ b/index.php

e -4,7 +4,7 Q@

<?php
- echo "Hello Wrold!";
+ echo "Hello World!";
7>

C. Coltekin, Informatiekunde Databases & Web 25/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction
Git: inspecting changes

git diff

found a bug!

edit index.php, change ’Wrold’ to ’World’
git diff

--- a/index.php

+++ b/index.php

e -4,7 +4,7 Q@

<?php
- echo "Hello Wrold!";
+ echo "Hello World!";
7>

» Without options, diff will give you differences between the
working copy and the HEAD of the repository for all files.

> You can inspect differences for any set of files between any
two states of the repository using diff (more on this later).

C. Coltekin, Informatiekunde Databases & Web 25/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: checking the status

git status
git status
On branch master
Changed but not updated:
(use "git add <file>..." to update what will be committed)
#
modified: index.php
#
no changes added to commit (use "git add" and/or "git commit -a")

C. Coltekin, Informatiekunde Databases & Web 26/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: checking the status

git status
git status
On branch master
Changed but not updated:
(use "git add <file>..." to update what will be committed)
#
modified: index.php
#
no changes added to commit (use "git add" and/or "git commit -a")

> status gives you a summary of the current state of your
working copy.

> Let's commit our bug-fix:

git commit -a -m "fixed a typo"

C. Coltekin, Informatiekunde Databases & Web 26/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: logs

git log

git log

commit 933f1de6b727d7816df94202a4f0c85c00455d19
Author: Cagri Coltekin <c.coltekin@rug.nl>
Date: Sun Nov 6 15:59:31 2011 +0100

fixed a typo
commit 7742fd6ff2a90372bf9545732a9e6923588d3052
Author: Cagri Coltekin <c.coltekin@rug.nl>

Date: Sun Nov 6 15:31:56 2011 +0100

added inex.php

C. Coltekin, Informatiekunde Databases & Web 27/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: working with branches

git branch and git checkout

» Branches are fast and cheap: use them!

» Branches can be used for maintaining long-term different
versions of software, or short term experimental changes.

$ git branch experimental # we are about to do a major change create
$ git checkout experimental # a new branch and switch to it

Switched to branch "experimental"

$ git status # let’s see if everything is as expected

On branch experimental

nothing to commit (working directory clean)

$ $EDITOR index.php # change ’Hello’ to ’Hi’

$ S$EDITOR LICENSE # also add a LICENSE file

$ git status # check the status again

On branch experimental

Changed but not updated:

(use "git add <file>..." to update what will be committed)

modified: index.php

Untracked files:

(use "git add <file>..." to include in what will be committed)
LICENSE

no changes added to commit (use "git add" and/or "git commit -a")

C. Coltekin, Informatiekunde Databases & Web 28/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: working with branches (2)

git commit -m "Major change in index.php + added LICENSE"
1s
index.php LICENSE
$ grep World index.php
echo "Hi World!";
$ git checkout master
$ 1s
index.php
$ grep World index.php
echo "Hello World!";

$ git add LICENSE # add the new file

$ git add index.php # add the changes to index.php
$ git status # checking once more doesn’t hurt
On branch experimental

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: LICENSE

modified: index.php

#

$

$

» Note: your commits should better be atomic.

C. Coltekin, Informatiekunde Databases & Web 29/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: merging branches

git merge

$ git merge experimental

Updating 933flde..e07aa49

Fast forward
index.php | 2 +-
1 files changed, 1 insertions(+), 1 deletions(-)
create mode 100644 LICENSE

> this merge succeeds with no conflicts

» now both branches are identical. We can delete the
experimental branch if we like with the command
git branch -d experimental.

» if there were conflicts, we'd need to resolve them manually
(helpful tools exist).

C. Coltekin, Informatiekunde Databases & Web 30/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: interacting with other repositories

git clome, git pull and git push

» clone makes a complete copy of a repository.

» As well as local files, a repository can be accessed (and
cloned) through a number of ways. Including, ssh, http.

> This allows git to be used in a client—server-like setup.

» Once you cloned an original source, you can use git pull to
receive updates, and git push to push your changes.

» You can pull from or push to multiple repositories.

» A number of software hosting sites are primarily dedicated for
git.

C. Coltekin, Informatiekunde Databases & Web 31/34

http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git: graphical user interfaces

git gui, gitk, qgit ...

> the native gui git gui allows you to do most of these
operations by pointé&click.

> a few others exist: gitk, qgit, Git Extensions (for
Windows), GitX (for Mac) ... See
http://git-scm.com/tools for more.

» Hosting sites, e.g., GitHub, BitBucket, also provide some
web-based functionality.

C. Coltekin, Informatiekunde Databases & Web 32/34

http://git-scm.com/tools
http://www.let.rug.nl/coltekin

Revision control using git: a quick introduction

Git (or other VCS) in your projects

» We did not even cover the tip of the iceberg, git (and most
other VCSes) provide many possibilities that makes your life
easier in the long run.

» More documentation and pointers to good tutorials can be
found at http://git-scm.com/documentation.

» Take it seriously in your projects.
» The time you invest to learn to use a VCS will pay off.

» You are required to point me to a repository that | can inspect
for your projects.

C. Coltekin, Informatiekunde Databases & Web 33/34

http://git-scm.com/documentation
http://www.let.rug.nl/coltekin

Summary

Summary & next week

Today:

» Some refresher on PHP & HTML forms processing.

» A quick introduction to software version control using git.
Next week:

» Form your team, and arrange a project meeting within next
week.

» Homework part 1.

» No course.

C. Coltekin, Informatiekunde Databases & Web 34/34

http://www.let.rug.nl/coltekin

	Week 1: organization, PHP, Git
	Practical information
	Who, where, when
	Literature
	Prerequisites
	Objectives
	Time plan
	Evaluation
	About projects
	Projects: subject
	Projects and deadlines
	Project evaluation

	Plan
	Rest of today

	HTML forms: a short review
	HTML Forms
	Input types
	+GET+ or +POST+ ?

	PHP: handling form input
	PHP and forms
	A simple form example
	PHP and forms: a common trick

	Revision control using git: a quick introduction
	Is this familiar?
	Version Control Systems
	VCS: some terms
	Some VC systems
	Git: introduction
	Git: starting a new repository
	Git: recording changes in the repository
	Git: inspecting changes
	Git: checking the status
	Git: logs
	Git: working with branches
	Git: working with branches
	Git: merging branches
	Git: interacting with other repositories
	Git: graphical user interfaces
	Git (or other VCS) in your projects

	Summary
	Summary & next week

