Text Reuse Detection Using a Composition of Text Similarity Measures Bär, Zesch, Gurevych 2012

HS Computational study of linguistic differences sabrina.

Sabrina Galasso sabrina.galasso@student.uni-tuebingen.de What is meant by "text reuse"? How and why should text reuse be detected?

2. Text Similarity Measures

How can text similarity be measured? What types of measures do exist?

3. Experiments & Results

How do the measures perform on different datasets? How do individual measure perform? How can they be combined?

4. Summary

What can we conclude from the experiments? What can be done as future work?

What is text reuse?

- Examples for text reuse:
 - Mirroring texts on different websites
 - · Reusing texts in public blogs
- Problems with text reuse:
 - \cdot Using systems in a collaborative manner
 - \cdot e.g., Wikipedia
 - · Users should avoid content duplication
- Idea: Supporting authors of collaborative text collections by means of automatic text reuse detection

Text reuse detection

- \cdot Applications:
 - Detection of journalistic text reuse
 - \cdot $\,$ Identification of rewrite sources for ancient texts
 - \cdot Analysis of text reuse in blogs or web pages
 - · Plagiarism detection
 - Near-duplicate detection of websites (web search and crawling)
- · Few NLP used so far

Text reuse detection

- Common approach:
 - Computation of similarity based on surfacelevel or semantic features
 - \rightarrow only consider the text's content
- Idea: investigation of three similarity dimensions:
 - · content
 - · structure
 - · style

Μ

E A S

U R

Ε

S

E X

Ρ

E R

M E

> N T S

•

Text reuse detection

Verbatim reuse vs. use of similar words or phrases

Source Text. <u>PageRank</u> is a link analysis <u>algorithm</u> used by the <u>Google</u> <u>Internet search engine</u> that assigns a <u>numerical weighting</u> to <u>each element</u> of a <u>hyperlinked set of documents</u>, such as the World Wide Web, with the purpose of "measuring" its <u>relative importance</u> within the set.

Text Reuse. The <u>PageRank algorithm</u> is used to designate <u>every aspect</u> of a set of <u>hyperlinked documents</u> with a <u>numerical weighting</u>. It is used by the <u>Google search engine</u> to estimate the <u>relative importance</u> of a web page according to this weighting.

- \rightarrow detectable by content-centric measures
- \rightarrow But: What about structural and stylistic similarity?
 - Source text was split into two sentences
 - · Similar vocabulary richness

M E A S

> U R

E S

Ε

X P

Text Similarity Measures Content Similarity

Detecting verbatim copying: using string measures on substring sequences:

 Longest Common Substring length of longest contiguous sequence of characters, normalized by the text length

Longest Common Subsequence: allows for insertions/deletions

• Greedy String Tiling:

determines a set of shared contiguous substrings \rightarrow allows to deal with reordered parts

Other string similarity measures, e.g. Levenshtein

•

•

Text Similarity Measures Content Similarity

tfidf:

Measuring similarity based on the importance of individual words

- word n-grams
- character n-grams
- Semantic similarity measures using WordNet
- Latent Semantic Analysis (LSA)
- *Explicit Semantic Analysis (ESA)* using WordNet, Wikipedia and Wiktionary

M E A

S

U R

E S

Ε

Х

P E

Text Similarity Measures Structural Similarity

- Assumption: "Two independently written texts about the same topic are likely to make use of a common vocabulary to a certain extent."
 - \rightarrow content similarity is not sufficient
 - \rightarrow inclusion of structural aspects
- \cdot often only content words are exchanged:
 - → comparison of *stopword n-grams*
 - → comparison of *part-of-speech n-grams*
- two words are likely to occur again in the same order (with any number of words in between)
 - word pair order
 - word pair distance

Text Similarity Measures *Stylistic Similarity*

Stylistic similarity:

- Ideas partly adopted from authorship attribution
- Investigation of statistical properties of a text

Type-token ratio (TTR)

- \rightarrow no sensitivity to text length
- → assumes textual homogeneity

Sequential TTR

computation of the mean length of a string sequence, which maintains a TTR above a default threshold M E A

> S U R

E S

Ε

X P

E R

M E N

S

Text Similarity Measures Stylistic Similarity

- · sentence length ratio
- token length ratio
- function word frequencies
 - makes use of a set of 70 function words identified by Mosteller and Wallace (1964)

MEASUR

E S

Experiments & Results *Experimental Setup*

- Three datasets:
 - Wikipedia Rewrite Corpus (Clough and Stevenson, 2011) \rightarrow plagiarism detection
 - METER Corpus (Gaizauskas et al., 2001)
 - \rightarrow journalistic text reuse
 - Webis Crowd Paraphrase Corpus (Burrows et al., 2012)
 - \rightarrow paraphrase recognition

T S

Е

Μ

E A S

U

R E S

E X

P E

R

Μ

E N

S

Experiments & Results *Experimental Setup*

- Computation of text similarity scores
- Machine learning classifiers: Naive Bayes and decision tree classifier
- Three sets of experiments using 10-fold cross-validation:
 - Performance of individual features
 - Performance of feature combinations within dimensions
 - Performance of feature combinations across dimensions
- Comparison baselines:
 - Majority class baseline
 - Word trigram similarity measure (Ferret)
- Evaluation in terms of accuracy and \bar{F}_1 score (arithmetic mean across the F_1 scores of all classes)

Μ

E A S

U R E

S

E X

Wikipedia Rewrite Corpus Dataset

- 100 pairs of short texts (193 words)
- Topics of computer science
- Source texts: manually created out of Wikipedia texts
- Reused texts: generated by participants according to 4 rewrite levels:
 - Cut & paste
 - Light revision
 - Heavy revision
 - No plagiarism

Wikipedia Rewrite Corpus Comparison to other approaches

• Results for the best classification (combining measures across dimensions):

System	Acc.	$\bar{F_1}$
Majority Class Baseline Ferret Baseline	.400 .642	.143 .517
<i>Chong et al. (2010)⁶</i> Clough and Stevenson (2011)	.705	.641
- our re-implementation ⁷	.726	.658
- as reported in their work	.800	.757
Our Approach	.842	.811

Features used in Clough and Stevenson (2011):

- word n-gram containment (n= 1,2,...,5)
- longest common subsequence

NTRO

S

S U M

M A R M E

Α

Wikipedia Rewrite Corpus Consideration of individual measures

Tract Circilarity Frances	WP Rewrite	
Text Similarity Feature	Acc.	$\bar{F_1}$
Majority Class Baseline	.400	.143
Ferret Baseline	.642	.517
Content Similarity		
Character 5-gram Profiles	.642	.537
ESA (Wikipedia)	.474	.323
Greedy String Tiling	.558	.457
Longest Common Substring	.621	.524
Resnik	.632	.500
Word 2-grams Containment	.747	.683
Structural Similarity		
Lemma Pair Distance	.611	.489
Lemma Pair Ordering	.642	.494
POS 3-grams Containment	.642	.554
Stopword 3-grams	.632	.515
Stopword 7-grams	.653	.527
Stylistic Similarity		
Function Word Frequencies	.453	.296
Sequential TTR	.400	.220
Sentence Ratio	.389	.268
Token Ratio	.432	.222
Type-Token Ratio	.379	.197

- Reasonable performance of some content measures
- Structural measures at most

 $\bar{F}_1 = 0.554$

• Stylistic measures only slightly better than baseline

December 16th, 2015

P E

R

MENTS

S U M M

A R Y

Wikipedia Rewrite Corpus Performance within and across dimensions

Е
Α
S
U
R
Е
S

Μ

S U M M A R Y

Text Similarity Dimension	Acc.	$\bar{F_1}$
Combinations within dimensions		
Content	.747	.693
Structure	.716	.660
Style	.442	.398
Combinations across dimensions		
Content + Style	.800	.757
Content + Structure	.842	.811
Structure + Style	.632	.569
Content + Structure + Style	.832	.798

- **Content** outperforms structural and stylistic similarity
- Best performance by combination across content and structure:
 - Iongest common subsequence (content)
 - stopword 10-grams (content)
 - character 5-gram profiles (structure)

Wikipedia Rewrite Corpus Error analysis

- 15 out of 95 texts have been classified wrongly
- light vs. heavy revision \rightarrow 67 % of all misclassification
- Annotation study: only "fair" inter-annotator agreement for this distinction

 $\bar{F}_{1} = 0.811$

exp. class.	cut&paste	light rev.	heavy rev.	no plag.
cut&paste	15	1	1	2
light rev.	3	13	3	0
heavy rev.	2	2	15	0
no plag.	0	0	1	37

exp. class.	cut&paste	potential	no plag.
cut&paste	14	3	2
potential	5	33	0
no plag.	0	1	37

\overline{F}_1 :	= 0.	859
${ar F_1}$:	= 0.	859

4	exp.	plagiarism	no plag.
	plagiarism	55	2
	no plag.	1	37

 \bar{F}_{1} = 0.967

HS LingDiff

EXPER

MENTS

S U M M

A R Y

NTRO

M E A

> S U R

E S

E X P

E R

M E

Ν

S

METER Corpus Dataset

- Source texts:
 - News sources from the UK press Association (PA)
- Derived texts: articles from 9 newspapers that reused PA source texts.
- 2 domains: *Law & court* and *show business*
- 253 pairs of short texts
- binary classification: 181 reused (wholly or partially) texts 72 non-reused texts

Μ

Ε

A S

U R

E S

E X

P E

METER Corpus Individual measures vs. combinations

Trank Cine ile vites Transforme	M	ETER
Text Similarity Feature	Acc.	$\bar{F_1}$
Majority Class Baseline	.715	.417
Ferret Baseline	.684	.535
Content Similarity		
Character 5-gram Profiles	.715	.417
ESA (Wikipedia)	.711	.484
Greedy String Tiling	.755	.645
Longest Common Substring	.719	.467
Resnik	.715	.417
Word 2-grams Containment	.727	.692
Structural Similarity		
Lemma Pair Distance	.715	.417
Lemma Pair Ordering	.715	.417
POS 3-grams Containment	.731	.701
Stopword 3-grams	.715	.417
Stopword 7-grams	.652	.482
Stylistic Similarity		
Function Word Frequencies	.715	.417
Sequential TTR	.715	.417
Sentence Ratio	.755	.625
Token Ratio	.755	.619
Type-Token Ratio	.715	.417

→ Application of individual measures often cannot exceed majority baseline

 \rightarrow improvement by measure combination

Text Similarity Dimension	Acc.	$\bar{F_1}$
Combinations within dimensions		
Content	.759	.712
Structure	.731	.701
Style	.755	.672
Combinations across dimensions		
Content + Style	.779	.733
Content + Structure	.739	.713
Structure + Style	.767	.739
Content + Structure + Style	.802	.768

METER Corpus Comparison to other approaches

- Sanchez-Vega et al. (2010):
 - Length and frequency of common word sequences
 - Relevance of individual words

System	Acc.	$\bar{F_1}$
Majority Class Baseline	.715	.417
Ferret Baseline	.684	.535
Clough and Stevenson (2011) ¹³	.692	.680
Sánchez-Vega et al. (2010)	. <i>783</i>	. <i>705</i>
Our Approach	.802	.768

MEASURES

METER Corpus Error analysis

class. exp.	reuse	no reuse
reuse	151	30
no reuse	20	52

System	Acc.	$\bar{F_1}$
Majority Class Baseline	.715	.417
Ferret Baseline	.684	.535
Clough and Stevenson (2011) ¹³	.692	.680
Sánchez-Vega et al. (2010)	. <i>783</i>	. <i>705</i>
Our Approach	.802	.768

- 50 out of 253 texts were classified incorrectly
- Cause for many of the 30 errors: Lower similarity ⇒ no reuse e.g., text length (introduction of new facts, ideas etc.)

 \rightarrow similarity measures could be computed per section, not per document

- \rightarrow detection of text reuse for partially matching texts
- Still sufficient performance for providing authors with suggestions of potential instances

T S M E A S

> U R

E S

E X

Ρ

E R

Μ

Webis Crowd Paraphrase Corpus Dataset

 7859 pairs of texts (original book excerpt from the *Project Gutenberg* + paraphrase acquired via crowdsourcing)

manual assignment:

- 52% positive samples
 good paraphrases: e.g., synonym use, changes between active and passive voice
- 48% negative samples
 bad paraphrases: near-duplicates

MEASURES

Webis Crowd Paraphrase Corpus Comparison to other approaches

System	Acc.	$\bar{F_1}$
Majority Class Baseline	.517	.341
Ferret Baseline	.794	.789
Clough and Stevenson (2011) ¹³	.798	.795
Burrows et al. (2012)	. <i>839</i>	. <i>837</i>
Our Approach	.853	.852

Burrows et al. (2012): 10 similarity measures on string sequences

Μ

A R Y

Μ

Е

EXPER

MEASURE

S

E X P

E R

M E N

Webis Crowd Paraphrase Corpus *Performance of individual measures*

Text Similarity Feature	Web Acc.	is CPC $\bar{F_1}$
Majority Class Baseline	.517	.341
Ferret Baseline	.794	.789
Content Similarity		
Character 5-gram Profiles	.753	.742
ESA (Wikipedia)	.760	.753
Greedy String Tiling	.805	.800
Longest Common Substring	.743	.736
Resnik	.666	.656
Word 2-grams Containment	.801	.797
Structural Similarity		,
Lemma Pair Distance	.775	.767
Lemma Pair Ordering	.785	.780
POS 3-grams Containment	.787	.783
Stopword 3-grams	.778	.776
Stopword 7-grams	.753	.750
Stylistic Similarity		
Function Word Frequencies	.727	.719
Sequential TTR	.667	.638
Sentence Ratio	.657	.653
Token Ratio	.778	.774
Type-Token Ratio	.723	.712

 Many measures achieve a very reasonable performance (> 0.7) individually

December 16th, 2015

Webis Crowd Paraphrase Corpus *Performance of measure combinations*

Μ

Acc.	$\bar{F_1}$
.840	.839
.816	.814
.819	.817
.844	.843
.838	.838
.831	.830
.853	.852
	.840 .816 .819 .844 .838 .831

- *Content* alone is stronger than *Content+Structure*
- *Content* performs as good as Burrows et al. (2012)
- *Content* + *Structure* + *Style*: combination of 16 features

NTRO

Μ Ε Α S U R Е S

Webis Crowd Paraphrase Corpus **Error Analysis**

class. exp.	paraphrase	no para.
paraphrase	3,654	413
no para.	759	3,033

- 15% were classified incorrectly
- 759 false positives are less severe, as the users can still decide on them
- For the other 2 corpora it holds that: Higher similarity \Rightarrow higher degree of reuse
- For Webis:
 - Higher similarity is annotated as bad paraphrases (including also empty samples, unrelated texts)
 - \rightarrow highly elaborate definition of positive and negative cases
 - \rightarrow difficult to learn a proper model

HS LingDiff

S U M M

A R Y

Μ

E A

S U

R E S

EXPER

M E

Ν

S

Summary *Hypothesis*

Hypothesis: **Content** alone is not a reliable indicator for text reuse because of possible modifications such as:

split sentences
 changed order of reused parts
 stylistic variance

Investigation of three characteristic dimensions: *content*, *structure* and *style*

M E A

> S U

> R E

S

EXPER

Μ

E N

S

Summary *Evaluation*

Evaluation based on three datasets: Wikipedia Rewrite Corpus METER Corpus Webis Crowd Paraphrase Corpus

Text reuse can be best detected if measures are combined across dimensions

M E A S

> U R

E S

Ε

X P E

Summary Conclusion

- Choice of dimensions should depend on the type
 of text reuse
 - Stylistic similarity performs poorly on Wikipedia Rewrite Corpus
 - Stylistic similarity performs well on the other 2 datasets
- Dimensions should be addressed explicitly in the annotation process

M E A S

> U R E

S

E X

P E

R

M E N

S

Summary *Future work*

- Consideration of a dimensional representation should benefit in other tasks, e.g.:
 - paraphrase recognition
 - automatic essay grading (might include also measures for grammar analysis, lexical complexity or discourse measures)
- Choice of dimensions is task dependent

Thanks for your attention!

Any questions?

 \rightarrow All the references used in this presentation can be found in the paper's references

December 16th, 2015

HS LingDiff