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Practical matters Classification Logistic Regression More than two classes

Practical issues

▶ Homework 1: try to program it without help from specialized
libraries (like NLTK)

▶ Time to think about projects. A short proposal towards the
end of May.
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The problem
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▶ The response (outcome) is a
label. In the example:
positive + or negative −

▶ Given the features (x1 and
x2), we want to predict the
label of an unknown
instance ?

▶ Note: regression is not a
good idea here
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The problem (with a single predictor)
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A quick survey of some solutions
Decision trees
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A quick survey of some solutions
Instance/memory based methods
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▶ No training: just memorize
the instances

▶ During test time, decide
based on the k nearest
neighbors

▶ Like decision trees, kNN is
non-parametric

▶ It can also be used for
regression
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A quick survey of some solutions
(Linear) discriminant functions
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▶ Find a discriminant function
(f) that separates the
training instance best (for a
definition of ‘best’)

▶ Use the discriminant to
predict the label of unknown
instances

ŷ =

{
+ f(x) > 0

− f(x) < 0
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A quick survey of some solutions
Probability-based solutions
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▶ Estimate distributions of
p(x|y = +) and
p(x|y = −) from the
training data

▶ Assign the new items to the
class c with the highest
p(x|y = c)
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A quick survey of some solutions
Artificial neural networks
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Logistic regression

▶ Logistic regression is a classification method
▶ In logistic regression, we fit a model that predicts P(y|x)

▶ Alternatively, logistic regression is an extension of linear
regression. It is a member of the family of models called
generalized linear models
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A simple example
We would like to guess whether a child would develop dyslexia or
not based on a test applied to pre-verbal children. Here is a
simplified problem:

▶ We test children when they are less than 2 years of age.
▶ We want to predict the diagnosis from the test score
▶ The data looks like

Test score Dyslexia
82 0
22 1
62 1

...
...

* The research question is from a real study by Ben Maasen and his colleagues. Data is fake as usual.
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Example: fitting ordinary least squares regression
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Problems:
▶ The probability values

are not bounded
between 0 and 1

▶ Residuals will be large
for correct predictions

▶ Residuals are not
distributed normally
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Example: transforming the output variable
Instead of predicting the probability p, we predict logit(p)

ŷ = logit(p) = log
p

1− p
= w0 +w1x

▶ p
1−p

(odds) is bounded between 0 and ∞
▶ log p

1−p
(log odds) is bounded between −∞ and ∞

▶ we can estimate logit(p) with regression, and convert it to a
probability using the inverse of logit

p̂ =
ew0+w1x

1+ ew0+w1x
=

1

1+ e−w0−w1x

which is called logistic function (or sometimes sigmoid
function, with some ambiguity).
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Logit function
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1−p
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Logit function
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Logistic regression as a generalized linear model

Logistic regression is a special case of generalized linear models
(GLM). GLMs are expressed with,

g(y) = Xw+ ϵ

▶ The function g() is called the link function
▶ ϵ is distributed according to a distribution from exponential

family
▶ For logistic regression, g() is the logit function, ϵ is

distributed binomially
▶ For linear regression g() is the identity function, ϵ is

distributed normally
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Interpreting the dyslexia example

glm(formula = diag ~ score, family = binomial, data = dys)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.90079 2.31737 2.978 0.00290 **
score -0.14491 0.04493 -3.225 0.00126 **
---
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 54.548 on 39 degrees of freedom
Residual deviance: 30.337 on 38 degrees of freedom
AIC: 34.337
Number of Fisher Scoring iterations: 5
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Interpreting the dyslexia example
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logit(p) = 6.9− 0.14x p = 1
1+e−6.9+0.14x
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How to fit a logistic regression model
Reminder:

P(y = 1|x) = p =
1

1+ e−wx
P(y = 0|x) = 1− p =

e−wx

1+ e−wx

The likelihood of the training set is,

L(w) =
∏
i

P(yi|xi) =
∏
i

pyi(1− p)1−yi

In practice, maximizing log likelihood is more practical:

ŵ = argmax
w

logL(w) =
∑
i

P(yi|xi) =
∑
i

yi log p+(1−yi) log(1−p)

To maximize, we find the gradient:

∇ logL(w) =
∑
i

(yi −
1

1+ e−wx
)xi
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How to fit a logistic regression model (2)
▶ Bad news is that there is no analytic solution to the set of

equations
∇ logL(w) = 0

▶ Good news is that the (negative) log likelihood is a convex
function: there is a global maximum

▶ We can use iterative methods such as gradient descent to find
parameters that maximize the (log) likelihood

▶ In practice, it is more common minimize the negative log
likelihood

J(w) = −logL(w)

J(w) is called the loss function, cost function or objective
function

▶ Using gradient descent, we repeat
w← w− α∇J(w)

until convergence. α is called learning rate.
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An example with two predictors

Call: glm(formula = label ~ x1 + x2, family = binomial, data = d)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.09692 4.74728 0.020 0.9837
x1 -2.53416 1.69222 -1.498 0.1343
x1 2.57632 1.36655 1.885 0.0594 .
---
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 19.408 on 13 degrees of freedom
Residual deviance: 7.987 on 11 degrees of freedom
AIC: 13.987
Number of Fisher Scoring iterations: 6
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An example with two predictors (2)
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More than two classes

▶ Some algorithms can naturally be extended to multiple labels
▶ Others tend to work well in binary classification
▶ Any binary classifier can be turned into a k-way classifier by

▶ training k one-vs.-rest (OvR) or one-vs.-all (OvA) classifiers.
Decisions are made based on the class with the highest
confidence score. This approach is feasible for classifiers that
assign a weight or probability to the individual classes

▶ training k(k−1)
2

one-vs.-one (OvO) classifiers. Decisions are
made based on majority voting
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One vs. Rest
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× ▶ For 3 classes we fit 3
classifiers separating one
class from the rest

▶ Some regions of the feature
space will be ambiguous

▶ We can assign labels based
on probability or weight
value, if classifier returns one

▶ One-vs.-one and majority
voting is another option
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Multi-class logistic regression

▶ Generalizing logistic regression for more than two classes is
straightforward

▶ We estimate,
P(Ck|x) =

ewkx∑
j e

wjx

Where Ck is the kth class. j iterates over all classes.
▶ This model is also known as a log-linear model, Maximum

entropy model, Boltzman machine
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