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Practical matters A bit of machine learning Linear algebra

Frequently asked questions

» The course is worth 9 ECTS.

» Term project/paper deadline will extend to semester break,
but you should start working on your projects during during
the semester.

» Please check the course web page

(http://coltekin.net/cagri/courses/ml/) for reading
material, slides, and assignments.
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Practical matters A bit of machine learning Linear algebra

A few example (supervised) machine learning tasks

Input

Output

Email messages

Product reviews
Books/blog posts/tweets
Images of digits

Images of scenes

Music (audio) files
People/companies
Sentences

Questions

spam or not
positive/neutral /negative
age of the author

the digit

objects/people in the image
genre of the music

credit risk/reliability
syntactic representation
answers
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A few example (supervised) machine learning tasks

Input Output

X1 X2 X3 y
30 0 0.10 .. 18
60 1 1.20 .. 45
20 1 -1.20 .. 65
90 0 0.00 .. 23

C. Coltekin, SfS / University of Tiibingen April 14, 2016 3/28



Practical matters A bit of machine learning Linear algebra

A few example (supervised) machine learning tasks

Input Output

X1 X2 X3 Y
30 0 0.10 N
60 1 1.20 P
20 1 —1.20 N
90 0 0.00 P
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Practical matters A bit of machine learning Linear algebra

Machine learning as function approximation

> We assume that data we observe is generated by an unknown
functions

Y= f(xhXZ)X?n .. )
» During training we want to estimate the function f

» Once we have an estimate of T, l/‘\ we use it to predict y, given
an input

AS

Q = f(XhXZ)X?ﬂ . )
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Practical matters A bit of machine learning Linear algebra

How do we approximate {7

» We assume that f comes from a class of functions F. For
example,
F(x) = wix; +waxo +wix3z + ...
where wq, Wy, W3 are parameters

» The approximation, or learning, is finding an optimum set of
weights
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Practical matters A bit of machine learning Linear algebra

Linear algebra

Linear algebra is the field of mathematics that studies vectors and
matrices.

» A vector is an ordered sequence of numbers
v =(6,17)
» A matrix is a rectangular arrangement of numbers
2 1
A=
1 4
» Most common application of linear algebra includes solving a
set of linear equations

21 + x = 6
X1 + 4dxp; = 17
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Practical matters A bit of machine learning Linear algebra

Why study linear algebra?

Remember our input matrix:

Input Output

X1 X2 X3 . y
30 0 0.10 .. 18
60 1 1.20 .. 45
20 1 =120 . 65
90 0 0.00 .. 23

C. Coltekin, SfS / University of Tiibingen

April 14, 2016

7/ 28



Practical matters A bit of machine learning

Why study linear algebra?

Remember our input matrix:

Linear algebra

Input Output

X1 X2 X3 Yy
30 0 0.10 18
60 1 1.20 45
20 1 -1.20 65
90 0 0.00 23

You should now be seeing vectors and matrices here.
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Linear algebra

Why study linear algebra?

In machine learning,

» We typically represent input, output, parameters as vectors or
matrices.

» Some insights from linear algebra is helpful in understanding
ML methods

> It makes notation concise and manageable

» In programming, many machine learning libraries make use of
vector and matrices explicitly

> ‘Vectorized' operations may run much faster on GPUs
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Practical matters A bit of machine learning Linear algebra

Vectors: some notation

» Typical notation for vectors include

V1
v=v=(vi,v2,v3) = (v1,v2,V3) = (W2
V3

» A vector of n real numbers v = (v1,v,...vy,) is said to be in
vector space R" (v € R").
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Geometric interpretation of vectors

» Vectors are objects with a
magnitude and a direction

» Geometrically, they are

represented by arrows from
the origin
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Practical matters A bit of machine learning Linear algebra

Vector norms

» Euclidian norm, or L2 (or
L) norm is the most
commonly used norm For

v = (v1,Vv2),

VIl = 3/vi +v3

13,1, = V32 +12=3.16 . (3,1)
L2 norm is often written
3

without a subscript: |[v]|
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Practical matters A bit of machine learning Linear algebra

Vector norms

» Euclidian norm, or L2 (or
L) norm is the most
commonly used norm For
V= (V])VZ)-

VIl = 3/vi +v3

13, D, = V32412 =316
L2 norm is often written

without a subscript: |[v]|

> Another norm often used in
machine learning is L1 norm

VIl = [vil + vz

13, 1)l = [3] +[1] = 4
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Practical matters A bit of machine learning Linear algebra

Multiplying a vector with a scalar

» For a vector v = (vy,v2) and

v=(1,2)
a scalar aq,

av = (avy, avy)

» multiplying with a scalar _0.5v
‘scales’ the vector
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Practical matters A bit of machine learning Linear algebra

Vector addition and subtraction

» For vectors v = (vy,v,) and
w = (W],Wz) and

v+w = (v +wi,v2 +wy)

(1,2)4+(2,1) =(3,3)

»vV—w=v+ (—Ww)
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Practical matters A bit of machine learning Linear algebra

Dot product

C. Céltekin,

For vectors w = (wq,w3)
and v = (v1,v2),

WV = wivy +WwWovp
or,
wv = ||wl|||v|| cos «

The dot product of
orthogonal vectors is 0

W] =ww
Dot product is often used as

a similarity measure between
two vectors.

SfS / University of Tiibingen
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Practical matters A bit of machine learning Linear algebra

Cosine similarity

» Cosine of the angle between two vectors

yw

COS X = T
villwll

is often used as another similarity metric, called cosine
similarity

» The cosine similarity related to dot product, but ignores the
magnitudes of the vectors

» For unit vectors (vectors of length 1) cosine similarity is equal
to dot product
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Practical matters A bit of machine learning Linear algebra

Matrices

» We can think of matrices as
a a a ...oa .
L 12 13 In collection of row or column
A— a%’] a%,z a%’g az_’“ vectors

» A matrix with n rows and m
am,1 Gm2 am3 ... Gmn columns is in RM*m
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Practical matters A bit of machine learning Linear algebra

Transpose of a matrix

Transpose of a 1 X M matrix is a m X 1 matrix whose rows are
the columns of the original matrix.
Transpose of a matrix A is denoted with AT.

a b a4 c e
_ T_
fA=|c d|, A _[b d f}
e f
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Practical matters A bit of machine learning Linear algebra

Multiplying a matrix with a scalar

Similar to vectors, each element is multiplied by the scalar.

S[2 1] _[2x2 2x1]_[4 2
1 4] 7 2x1 2x4] " |2 8
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Practical matters A bit of machine learning Linear algebra

Matrix addition and subtraction

Each element is added to (or subtracted from) the corresponding

element
2 1 n 0 11 |2 2
1 4 1 0] |2 4
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Practical matters A bit of machine learning Linear algebra

Matrix multiplication

app ap ... a by b1z ... bin
axp ap ... ax < bz by ... bam
an1 an2 ... Qpg bk] ka bkm

c11 = anby + anby +...abig

C11 €12 ... Cim
C21 C22 ... Com

Cnl Cn2 -.. Chm
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Matrix multiplication

apnr apg ... a1k by bz ... blm
az az ... Qax >< by by ... by
an1 an2 ... Qpg bk] bkz bkm

ci2 = anbyy +apby +...abie

C11 €12 ... Cim
C21 €22 ... Cm

Cnl Cn2 -.. Chm
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Practical matters A bit of machine learning Linear algebra

Matrix multiplication

C. Céltekin,

ayr ap ... 1k bﬂ b12
az; axp ... Qax < by b
anl1 An2 ... Qng bk] bkz

Clm = anbim + anzbom + ... argbim

C11 €12 ... Cim
C21 C22 ... Com

Cnl Cn2 -.. Chm
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Practical matters A bit of machine learning Linear algebra

Matrix multiplication

C. Céltekin,

ay ap ... 1k bH b12
a ap ... ax < b1 b2
anl1 An2 ... Qng bk] bkz

c21 = ax1byy + axnby + ... axbyg

C11 €12 ... Cim
C21 C22 ... Com

Cnl Cn2 -.. Chm
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Matrix multiplication

apr apg ... g by bz ... blm
azy azp ... Qax >< by by ... by
an1 an2 ... Qpg bk] bkz bkm

c22 = aybyiy + axnby +...axbi

C11 €12 ... Cim
C21 C22 ... Com

Cnl Cn2 -.. Chm
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Matrix multiplication

C. Céltekin,

ay ap ... 1k bﬂ b12
a ap ... ax < by b2
anl1 An2 ... Qng bk] bkz

Com = a21b1m + apbom + ... axbim

C11 €12 ... Cim
C21 C22 ... Com

Cnl Cn2 -.. Chm
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Matrix multiplication

C. Céltekin,

ay ap ... 1k bH b12
az; axp ... Qax < by b
an1 An2 ... Qng bk] bkz

Cn1 = An1b11 + an2b2 + ... ankbyg

C11 €12 ... Cim
C21 C22 ... Com

Cn] an “ee Cnm
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Matrix multiplication

C. Céltekin,

ay ap ... 1k bﬂ b12
az; axp ... Qax < by b
an1 An2 ... Qng bk] bkz

Cn2 = Qn1b12 + anabz + ... ankbia

C11 €12 ... Cim
C21 C22 ... Com

Cnl Cn2 -.. Chm
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Matrix multiplication

C. Céltekin,

ay ap ... 1k bﬂ b12
az; axp ... Qax < by b
an1 An2 ... Qng bk] bkz

Cnm = a—n1b1m + aanZm +... ankbkm

C11 €12 ... Cim
C21 C22 ... Com

Cnl Cn2 -.. Chm
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Practical matters A bit of machine learning Linear algebra

Matrix multiplication

apr apg ... g by bz ... blm
az az ... Qax by by ... by

an1 an2 ... Qpg bk] bkz bkm

Cyj = (1ﬂb1j + aizsz + ... aikbkj

C11 €12 ... Cim
C21 C22 ... Com

Cn] an “ee Cnm
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Practical matters A bit of machine learning Linear algebra

Dot product as matrix multiplication

In machine learning literature, dot product of two vectors are often

written as

WTV

For example, w = (2,2) and v = (2,—2),

2 2] {_22] =2x%x242x —2=4—-4=0

Although, this notation is somewhat sloppy, since the result of matrix
multiplication is in fact not a scalar.
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dent

C. Céltekin,

Practical matters A bit of machine learning Linear algebra

ity matrix

» A square matrix in which all the elements of the principal
diagonal are ones and all other elements are zeros, is called
identity matrix and often denoted I.

100
010
0 01

» Multiplying a matrix with the identity matrix does not change

the original matrix.
IA=A

SfS / University of Tiibingen April 14, 2016
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Practical matters A bit of machine learning Linear algebra

Matrix multiplication as transformation

» Multiplying a vector with a matrix transforms the vector
» Some exmaples for transformaton to/from R?

> Identity: [] O}

0 1
. 0 -1
» 90-dgrees rotation: 1 0
In seneral cos® —sinb
geNerat 1sin®  cos®

1 k
» Shear: [O ]]

. {1 0
» Stretch along y-axis {O k]
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Practical matters A bit of machine learning Linear algebra

Matrix-vector representation of a set of linear equations

Our earlier example set of linear equations

2x1 + x2 = 6
X1 + 4dx; = 17

w x b

can be written as:

One can solve the above equation using Gaussian elimination (we
will not cover it today).
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Practical matters A bit of machine learning Linear algebra

Inverse of a matrix

Inverse of a square matrix W is defined denoted W and defined
as
wWlw =1

The inverse can be used to solve equation in our previous example:

Wx=>
W wx =W b
Ix=Wb
x=W7b
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Linear algebra

Determinant of a matrix

a b
d

’:ad—bc

The above formula generalizes to higher dimensional matrices
through a recursive definition, but you are unlikely to calculate it
by hand. Some properties:

» A matrix is invertible if it has a non-zero determinant

» A system of linear equations has a unige solution if the
coefficient matrix has a non-zero determinant

» Geometric interpretation of determinant is the (signed)
changed in the volume of a unit (hyper)cube caused by
transformation caused by the matrix
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Practical matters A bit of machine learning Linear algebra

Eigen values and eigen vectors of a matrix

An eigen vector of a matrix A is such that
Ax = Ax

where A is a scalar called eigenvalue.
» Eigen values an eigen vectors have many applications from
communication theory to quantum mechanics
» A better known example (and close to home) is Google's
PageRank algorighm
» We will return to them while discussing PCA
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Summary & next week

» See bibliography at the end of the slides if you want a ‘more
complete’ refresher/introduction

> Next week we will do a similar excursion to probability theory
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Further reading

) &) & EDE

A classic reference book in the field is Strang (2009). Shifrin and
Adams (2011) and Farin and Hansford (2014) are textbooks with a
more practical /graphical orientation. Cherney, Denton, and
Waldron (2013) and Beezer (2014) are two textbooks that are
freely available!

Beezer, Robert A. (2014). A First Course in Linear Algebra. version 3.40. Congruent Press. 1sBN: 9780984417551,

Cherney, David, Tom Denton, and Andrew Waldron (2013). Linear algebra. math.ucdavis.edu. URL:

https://www.math.ucdavis.edu/~1linear/

Farin, Gerald E. and Dianne Hansford (2014). Practical linear algebra: a geometry toolbox. Third edition. CRC

Press. 1SBN: 9781466579569,1466579560,978-1-4665-7958
3,1466579587,9781466579590,1466579595,9781482211283,1482211289

Shifrin, Theodore and Malcolm R Adams (2011). Linear Algebra. A Geometric Approach. 2nd. W. H. Freeman
ISBN: 1429215216, 978-1429215213.

Strang, Gilbert (2009). Introduction to Linear Algebra, Fourth Edition. 4th ed. Wellesley Cambridge Press. 1sBN
9780980232714
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