Machine Learning for Computational Linguistics

A refresher on linear algebra

Çağrı Çöltekin
University of Tübingen
Seminar für Sprachwissenschaft

April 14, 2016

Frequently asked questions

- The course is worth 9 ECTS.
- Term project/paper deadline will extend to semester break, but you should start working on your projects during during the semester.
- Please check the course web page (http://coltekin.net/cagri/courses/ml/) for reading material, slides, and assignments.

A few example (supervised) machine learning tasks

Input	Output
Email messages	spam or not
Product reviews	positive/neutral/negative
Books/blog posts/tweets	age of the author
Images of digits	the digit
Images of scenes	objects/people in the image
Music (audio) files	genre of the music
People/companies	credit risk/reliability
Sentences	syntactic representation
Questions	answers

A few example (supervised) machine learning tasks

Input				
x_{1}	x_{2}	x_{3}	\ldots	Output
30	0	0.10	\ldots	18
60	1	1.20	\ldots	45
20	1	-1.20	\ldots	65
90	0	0.00	\ldots	23
\ldots	\ldots	\ldots	\ldots	\ldots

A few example (supervised) machine learning tasks

Input				
x_{1}	x_{2}	x_{3}	\ldots	Output
30	0	0.10	\ldots	N
60	1	1.20	\ldots	P
20	1	-1.20	\ldots	N
90	0	0.00	\ldots	P
\ldots	\ldots	\ldots	\ldots	\ldots

Machine learning as function approximation

- We assume that data we observe is generated by an unknown functions

$$
y=f\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

- During training we want to estimate the function f
- Once we have an estimate of f, \hat{f}, we use it to predict y, given an input

$$
\hat{y}=\hat{f}\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

How do we approximate f?

- We assume that f comes from a class of functions F. For example,

$$
F(x)=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+\ldots
$$

where w_{1}, w_{2}, w_{3} are parameters

- The approximation, or learning, is finding an optimum set of weights

Linear algebra

Linear algebra is the field of mathematics that studies vectors and matrices.

- A vector is an ordered sequence of numbers

$$
\boldsymbol{v}=(6,17)
$$

- A matrix is a rectangular arrangement of numbers

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]
$$

- Most common application of linear algebra includes solving a set of linear equations

$$
\begin{aligned}
2 x_{1}+x_{2} & =6 \\
x_{1}+4 x_{2} & =17
\end{aligned}
$$

Why study linear algebra?

Remember our input matrix:

Input				
x_{1}	x_{2}	x_{3}	\ldots	Output
30	0	0.10	\ldots	18
60	1	1.20	\ldots	45
20	1	-1.20	\ldots	65
90	0	0.00	\ldots	23
\ldots	\ldots	\ldots	\ldots	\cdots

Why study linear algebra?

Remember our input matrix:

Input				
x_{1}	x_{2}	x_{3}	\ldots	Output
30	0	0.10	\ldots	18
60	1	1.20	\ldots	45
20	1	-1.20	\ldots	65
90	0	0.00	\ldots	23
\ldots	\cdots	\ldots	\cdots	\cdots

You should now be seeing vectors and matrices here.

Why study linear algebra?

In machine learning,

- We typically represent input, output, parameters as vectors or matrices.
- Some insights from linear algebra is helpful in understanding ML methods
- It makes notation concise and manageable
- In programming, many machine learning libraries make use of vector and matrices explicitly
- 'Vectorized' operations may run much faster on GPUs

Vectors: some notation

- Typical notation for vectors include

$$
\boldsymbol{v}=\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)=\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

- A vector of n real numbers $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots v_{n}\right)$ is said to be in vector space $\mathbb{R}^{n}\left(v \in \mathbb{R}^{n}\right)$.

Geometric interpretation of vectors

- Vectors are objects with a magnitude and a direction
- Geometrically, they are represented by arrows from the origin

Vector norms

- Euclidian norm, or L2 (or L_{2}) norm is the most commonly used norm For $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$,

$$
\|v\|_{2}=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

$\|(3,1)\|_{2}=\sqrt{3^{2}+1^{2}}=3.16$
L2 norm is often written without a subscript: $\|\boldsymbol{v}\|$

Vector norms

- Euclidian norm, or L2 (or L_{2}) norm is the most commonly used norm For $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$,

$$
\|v\|_{2}=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

$\|(3,1)\|_{2}=\sqrt{3^{2}+1^{2}}=3.16$
L2 norm is often written without a subscript: $\|\boldsymbol{v}\|$

- Another norm often used in machine learning is L1 norm

$$
\begin{gathered}
\|v\|_{1}=\left|v_{1}\right|+\left|v_{2}\right| \\
\|(3,1)\|_{1}=|3|+|1|=4
\end{gathered}
$$

Multiplying a vector with a scalar

- For a vector $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and a scalar a,

$$
a v=\left(a v_{1}, a v_{2}\right)
$$

- multiplying with a scalar 'scales' the vector

Vector addition and subtraction

- For vectors $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and $\boldsymbol{w}=\left(w_{1}, w_{2}\right)$ and

$$
\boldsymbol{v}+\boldsymbol{w}=\left(v_{1}+w_{1}, v_{2}+w_{2}\right)
$$

$$
(1,2)+(2,1)=(3,3)
$$

- $\boldsymbol{v}-\boldsymbol{w}=\boldsymbol{v}+(-\boldsymbol{w})$

Dot product

- For vectors $\boldsymbol{w}=\left(w_{1}, w_{2}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$,

$$
w v=w_{1} v_{1}+w_{2} v_{2}
$$

or,

$$
\boldsymbol{w v}=\|w\|\|v\| \cos \alpha
$$

- The dot product of orthogonal vectors is 0
- $\|\boldsymbol{w}\|=\boldsymbol{w} \boldsymbol{w}$
- Dot product is often used as a similarity measure between two vectors.

Cosine similarity

- Cosine of the angle between two vectors

$$
\cos \alpha=\frac{\boldsymbol{v} \boldsymbol{w}}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}
$$

is often used as another similarity metric, called cosine similarity

- The cosine similarity related to dot product, but ignores the magnitudes of the vectors
- For unit vectors (vectors of length 1) cosine similarity is equal to dot product

Matrices

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots & a_{2, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & a_{m, 3} & \ldots & a_{m, n}
\end{array}\right]
$$

- We can think of matrices as collection of row or column vectors
- A matrix with n rows and m columns is in $\mathbb{R}^{n \times m}$

Transpose of a matrix

Transpose of a $n \times m$ matrix is a $m \times n$ matrix whose rows are the columns of the original matrix.
Transpose of a matrix \boldsymbol{A} is denoted with \boldsymbol{A}^{\top}.

$$
\text { If } \boldsymbol{A}=\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right], \boldsymbol{A}^{\top}=\left[\begin{array}{lll}
a & c & e \\
b & d & f
\end{array}\right]
$$

Multiplying a matrix with a scalar

Similar to vectors, each element is multiplied by the scalar.

$$
2\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 \times 2 & 2 \times 1 \\
2 \times 1 & 2 \times 4
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 8
\end{array}\right]
$$

Matrix addition and subtraction

Each element is added to (or subtracted from) the corresponding element

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right]
$$

Matrix multiplication

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{11}=a_{11} b_{11}+a_{12} b_{21}+\ldots a_{1 k} b_{k 1} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{12}=a_{11} b_{12}+a_{12} b_{22}+\ldots a_{1 k} b_{k 2} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \\
c_{1 m}=\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m} b_{12}
\end{array}\right) \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} b_{k m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{21}=a_{21} b_{11}+a_{22} b_{22}+\ldots a_{2 k} b_{k 1} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{22}=a_{21} b_{12}+a_{22} b_{22}+\ldots a_{2 k} b_{k 2} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{2 m}=a_{21} b_{1 m}+a_{22} b_{2 m}+\ldots a_{2 k} b_{k m} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{n 1}=a_{n 1} b_{11}+a_{n 2} b_{22}+\ldots a_{n k} b_{k 1} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{n 2}=a_{n 1} b_{12}+a_{n 2} b_{22}+\ldots a_{n k} b_{k 2} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

$$
\begin{aligned}
&\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
& c_{n m}= a_{n 11} b_{1 m}+a_{n 2} b_{2 m}+\ldots \\
& a_{n k} b_{k m} \\
&=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{aligned}
$$

Matrix multiplication

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots a_{i k} b_{k j} \\
= \\
\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Dot product as matrix multiplication

In machine learning literature, dot product of two vectors are often written as

$$
w^{\top} v
$$

For example, $\boldsymbol{w}=(2,2)$ and $\boldsymbol{v}=(2,-2)$,

$$
\left[\begin{array}{ll}
2 & 2
\end{array}\right]\left[\begin{array}{c}
2 \\
-2
\end{array}\right]=2 \times 2+2 \times-2=4-4=0
$$

Although, this notation is somewhat sloppy, since the result of matrix multiplication is in fact not a scalar.

Identity matrix

- A square matrix in which all the elements of the principal diagonal are ones and all other elements are zeros, is called identity matrix and often denoted I.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Multiplying a matrix with the identity matrix does not change the original matrix.

$$
I A=A
$$

Matrix multiplication as transformation

- Multiplying a vector with a matrix transforms the vector
- Some exmaples for transformaton to/from \mathbb{R}^{2}
- Identity: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- 90-dgrees rotation: $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

In general: $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

- Shear: $\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$
- Stretch along y-axis $\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right]$

Matrix-vector representation of a set of linear equations

Our earlier example set of linear equations

$$
\begin{aligned}
2 x_{1}+x_{2} & =6 \\
x_{1}+4 x_{2} & =17
\end{aligned}
$$

can be written as:

$$
\underbrace{\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]}_{w} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
6 \\
17
\end{array}\right]}_{\mathbf{b}}
$$

One can solve the above equation using Gaussian elimination (we will not cover it today).

Inverse of a matrix

Inverse of a square matrix \mathbf{W} is defined denoted \mathbf{W}^{-1}, and defined as

$$
\mathbf{W}^{-1} \mathbf{W}=\mathbf{I}
$$

The inverse can be used to solve equation in our previous example:

$$
\begin{aligned}
\mathbf{W} \boldsymbol{x} & =\mathbf{b} \\
\mathbf{W}^{-1} \mathbf{W} \boldsymbol{\chi} & =\mathbf{W}^{-1} \mathbf{b} \\
\mathbf{I} \boldsymbol{\chi} & =\mathbf{W}^{-1} \mathbf{b} \\
\boldsymbol{x} & =\mathbf{W}^{-1} \mathbf{b}
\end{aligned}
$$

Determinant of a matrix

$$
\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|=\mathrm{ad}-\mathrm{bc}
$$

The above formula generalizes to higher dimensional matrices through a recursive definition, but you are unlikely to calculate it by hand. Some properties:

- A matrix is invertible if it has a non-zero determinant
- A system of linear equations has a uniqe solution if the coefficient matrix has a non-zero determinant
- Geometric interpretation of determinant is the (signed) changed in the volume of a unit (hyper)cube caused by transformation caused by the matrix

Eigen values and eigen vectors of a matrix

An eigen vector of a matrix \boldsymbol{A} is such that

$$
A x=\lambda x
$$

where λ is a scalar called eigenvalue.

- Eigen values an eigen vectors have many applications from communication theory to quantum mechanics
- A better known example (and close to home) is Google's PageRank algorighm
- We will return to them while discussing PCA

Summary \& next week

- See bibliography at the end of the slides if you want a 'more complete' refresher/introduction
- Next week we will do a similar excursion to probability theory

Further reading

A classic reference book in the field is Strang (2009). Shifrin and Adams (2011) and Farin and Hansford (2014) are textbooks with a more practical/graphical orientation. Cherney, Denton, and Waldron (2013) and Beezer (2014) are two textbooks that are freely available!

Beezer, Robert A. (2014). A First Course in Linear Algebra. version 3.40. Congruent Press. ISBN: 9780984417551.
Cherney, David, Tom Denton, and Andrew Waldron (2013). Linear algebra. math.ucdavis.edu. URL:
https://www.math.ucdavis.edu/~linear/.
Farin, Gerald E. and Dianne Hansford (2014). Practical linear algebra: a geometry toolbox. Third edition. CRC
Press. ISBN: 9781466579569,1466579560,978-1-4665-7958-
3,1466579587,9781466579590,1466579595,9781482211283,1482211289.
Shifrin, Theodore and Malcolm R Adams (2011). Linear Algebra. A Geometric Approach. 2nd. W. H. Freeman. ISBN: 1429215216, 978-1429215213.

Strang, Gilbert (2009). Introduction to Linear Algebra, Fourth Edition. 4th ed. Wellesley Cambridge Press. ISBN: 9780980232714.

