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Practical matters A bit of machine learning Linear algebra

Frequently asked questions

▶ The course is worth 9 ECTS.
▶ Term project/paper deadline will extend to semester break,

but you should start working on your projects during during
the semester.

▶ Please check the course web page
(http://coltekin.net/cagri/courses/ml/) for reading
material, slides, and assignments.
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Practical matters A bit of machine learning Linear algebra

A few example (supervised) machine learning tasks

Input Output
Email messages spam or not
Product reviews positive/neutral/negative
Books/blog posts/tweets age of the author
Images of digits the digit
Images of scenes objects/people in the image
Music (audio) files genre of the music
People/companies credit risk/reliability
Sentences syntactic representation
Questions answers
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A few example (supervised) machine learning tasks

Input Output
x1 x2 x3 … y

30 0 0.10 … 18

N

60 1 1.20 … 45

P

20 1 −1.20 … 65

N

90 0 0.00 … 23

P

… … … … …
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Practical matters A bit of machine learning Linear algebra

Machine learning as function approximation

▶ We assume that data we observe is generated by an unknown
functions

y = f(x1, x2, x3, . . .)

▶ During training we want to estimate the function f

▶ Once we have an estimate of f, f̂, we use it to predict y, given
an input

ŷ = f̂(x1, x2, x3, . . .)
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Practical matters A bit of machine learning Linear algebra

How do we approximate f?

▶ We assume that f comes from a class of functions F. For
example,

F(x) = w1x1 +w2x2 +w3x3 + . . .

where w1, w2, w3 are parameters
▶ The approximation, or learning, is finding an optimum set of

weights
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Practical matters A bit of machine learning Linear algebra

Linear algebra
Linear algebra is the field of mathematics that studies vectors and
matrices.

▶ A vector is an ordered sequence of numbers

v = (6, 17)

▶ A matrix is a rectangular arrangement of numbers

A =

[
2 1

1 4

]
▶ Most common application of linear algebra includes solving a

set of linear equations

2x1 + x2 = 6

x1 + 4x2 = 17
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Practical matters A bit of machine learning Linear algebra

Why study linear algebra?

Remember our input matrix:

Input Output
x1 x2 x3 … y

30 0 0.10 … 18
60 1 1.20 … 45
20 1 −1.20 … 65
90 0 0.00 … 23
… … … … …

You should now be seeing vectors and matrices here.
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Practical matters A bit of machine learning Linear algebra

Why study linear algebra?

In machine learning,
▶ We typically represent input, output, parameters as vectors or

matrices.
▶ Some insights from linear algebra is helpful in understanding

ML methods
▶ It makes notation concise and manageable
▶ In programming, many machine learning libraries make use of

vector and matrices explicitly
▶ ‘Vectorized’ operations may run much faster on GPUs
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Practical matters A bit of machine learning Linear algebra

Vectors: some notation

▶ Typical notation for vectors include

v = v⃗ = (v1, v2, v3) = ⟨v1, v2, v3⟩ =

v1v2
v3


▶ A vector of n real numbers v = (v1, v2, . . . vn) is said to be in

vector space Rn (v ∈ Rn).
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Practical matters A bit of machine learning Linear algebra

Geometric interpretation of vectors

▶ Vectors are objects with a
magnitude and a direction

▶ Geometrically, they are
represented by arrows from
the origin

(1, 1)

(1, 3)

(−1,−3)
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Practical matters A bit of machine learning Linear algebra

Vector norms
▶ Euclidian norm, or L2 (or

L2) norm is the most
commonly used norm For
v = (v1, v2),

∥v∥2 =
√

v21 + v22

∥(3, 1)∥2 =
√
32 + 12 = 3.16

L2 norm is often written
without a subscript: ∥v∥

▶ Another norm often used in
machine learning is L1 norm

∥v∥1 = |v1|+ |v2|

∥(3, 1)∥1 = |3|+ |1| = 4

3

1
(3, 1)
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Practical matters A bit of machine learning Linear algebra

Multiplying a vector with a scalar

▶ For a vector v = (v1, v2) and
a scalar a,

av = (av1, av2)

▶ multiplying with a scalar
‘scales’ the vector

2v

v = (1, 2)

−0.5v
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Practical matters A bit of machine learning Linear algebra

Vector addition and subtraction

▶ For vectors v = (v1, v2) and
w = (w1, w2) and

v+w = (v1 +w1, v2 +w2)

(1, 2) + (2, 1) = (3, 3)

▶ v−w = v+ (−w)

v

w

v+w
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Practical matters A bit of machine learning Linear algebra

Dot product

▶ For vectors w = (w1, w2)
and v = (v1, v2),

wv = w1v1 +w2v2

or,

wv = ∥w∥∥v∥ cosα

▶ The dot product of
orthogonal vectors is 0

▶ ∥w∥ = ww

▶ Dot product is often used as
a similarity measure between
two vectors.

v

w
α

∥v∥ c
osα
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Practical matters A bit of machine learning Linear algebra

Cosine similarity

▶ Cosine of the angle between two vectors

cosα =
vw

∥v∥∥w∥

is often used as another similarity metric, called cosine
similarity

▶ The cosine similarity related to dot product, but ignores the
magnitudes of the vectors

▶ For unit vectors (vectors of length 1) cosine similarity is equal
to dot product
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Practical matters A bit of machine learning Linear algebra

Matrices

A =


a1,1 a1,2 a1,3 . . . a1,n

a2,1 a2,2 a2,3 . . . a2,n

... ... ... . . . ...
am,1 am,2 am,3 . . . am,n


▶ We can think of matrices as

collection of row or column
vectors

▶ A matrix with n rows and m

columns is in Rn×m
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Practical matters A bit of machine learning Linear algebra

Transpose of a matrix

Transpose of a n×m matrix is a m× n matrix whose rows are
the columns of the original matrix.
Transpose of a matrix A is denoted with AT .

If A =

a b

c d

e f

, AT =

[
a c e

b d f

]
.
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Practical matters A bit of machine learning Linear algebra

Multiplying a matrix with a scalar

Similar to vectors, each element is multiplied by the scalar.

2

[
2 1

1 4

]
=

[
2× 2 2× 1

2× 1 2× 4

]
=

[
4 2

2 8

]
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Practical matters A bit of machine learning Linear algebra

Matrix addition and subtraction

Each element is added to (or subtracted from) the corresponding
element [

2 1

1 4

]
+

[
0 1

1 0

]
=

[
2 2

2 4

]
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Practical matters A bit of machine learning Linear algebra

Matrix multiplication

a11 a12 . . . a1k

a21 a22 . . . a2k

... ... . . . ...
an1 an2 . . . ank



 ×
b11 b12 . . . b1m

b21 b22 . . . b2m

... ... . . . ...
bk1 bk2 . . . bkm





c11 c12 . . . c1m
c21 c22 . . . c2m

... ... . . . ...
cn1 cn2 . . . cnm



=

c11 = a11b11 + a12b21 + . . . a1kbk1

c12 = a11b12 + a12b22 + . . . a1kbk2c1m = a11b1m + a12b2m + . . . a1kbkmc21 = a21b11 + a22b22 + . . . a2kbk1c22 = a21b12 + a22b22 + . . . a2kbk2c2m = a21b1m + a22b2m + . . . a2kbkmcn1 = an1b11 + an2b22 + . . . ankbk1cn2 = an1b12 + an2b22 + . . . ankbk2cnm = an1b1m + an2b2m + . . . ankbkmcij = ai1b1j + ai2b2j + . . . aikbkj
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Practical matters A bit of machine learning Linear algebra

Dot product as matrix multiplication

In machine learning literature, dot product of two vectors are often
written as

wTv

For example, w = (2, 2) and v = (2,−2),

[
2 2

] [ 2

−2

]
= 2× 2+ 2× − 2 = 4− 4 = 0

Although, this notation is somewhat sloppy, since the result of matrix
multiplication is in fact not a scalar.
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Practical matters A bit of machine learning Linear algebra

Identity matrix

▶ A square matrix in which all the elements of the principal
diagonal are ones and all other elements are zeros, is called
identity matrix and often denoted I.1 0 0

0 1 0

0 0 1


▶ Multiplying a matrix with the identity matrix does not change

the original matrix.
IA = A
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Practical matters A bit of machine learning Linear algebra

Matrix multiplication as transformation

▶ Multiplying a vector with a matrix transforms the vector
▶ Some exmaples for transformaton to/from R2

▶ Identity:
[
1 0

0 1

]
▶ 90-dgrees rotation:

[
0 −1

1 0

]
In general:

[
cos θ − sin θ
sin θ cos θ

]
▶ Shear:

[
1 k

0 1

]
▶ Stretch along y-axis

[
1 0

0 k

]
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Practical matters A bit of machine learning Linear algebra

Matrix-vector representation of a set of linear equations

Our earlier example set of linear equations

2x1 + x2 = 6

x1 + 4x2 = 17

can be written as: [
2 1

1 4

]
︸ ︷︷ ︸

W

[
x1
x2

]
︸︷︷︸

x

=

[
6

17

]
︸︷︷︸

b

One can solve the above equation using Gaussian elimination (we
will not cover it today).
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Inverse of a matrix

Inverse of a square matrix W is defined denoted W−1, and defined
as

W−1W = I

The inverse can be used to solve equation in our previous example:

Wx = b

W−1Wx = W−1b

Ix = W−1b

x = W−1b

Ç. Çöltekin, SfS / University of Tübingen April 14, 2016 25 / 28



Practical matters A bit of machine learning Linear algebra

Determinant of a matrix

∣∣∣∣a b

c d

∣∣∣∣ = ad− bc

The above formula generalizes to higher dimensional matrices
through a recursive definition, but you are unlikely to calculate it
by hand. Some properties:

▶ A matrix is invertible if it has a non-zero determinant
▶ A system of linear equations has a uniqe solution if the

coefficient matrix has a non-zero determinant
▶ Geometric interpretation of determinant is the (signed)

changed in the volume of a unit (hyper)cube caused by
transformation caused by the matrix
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Practical matters A bit of machine learning Linear algebra

Eigen values and eigen vectors of a matrix

An eigen vector of a matrix A is such that

Ax = λx

where λ is a scalar called eigenvalue.
▶ Eigen values an eigen vectors have many applications from

communication theory to quantum mechanics
▶ A better known example (and close to home) is Google’s

PageRank algorighm
▶ We will return to them while discussing PCA
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Summary & next week

▶ See bibliography at the end of the slides if you want a ‘more
complete’ refresher/introduction

▶ Next week we will do a similar excursion to probability theory
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Further reading

A classic reference book in the field is Strang (2009). Shifrin and
Adams (2011) and Farin and Hansford (2014) are textbooks with a
more practical/graphical orientation. Cherney, Denton, and
Waldron (2013) and Beezer (2014) are two textbooks that are
freely available!

Beezer, Robert A. (2014). A First Course in Linear Algebra. version 3.40. Congruent Press. isbn: 9780984417551.

Cherney, David, Tom Denton, and Andrew Waldron (2013). Linear algebra. math.ucdavis.edu. url:
https://www.math.ucdavis.edu/~linear/.

Farin, Gerald E. and Dianne Hansford (2014). Practical linear algebra: a geometry toolbox. Third edition. CRC
Press. isbn: 9781466579569,1466579560,978-1-4665-7958-
3,1466579587,9781466579590,1466579595,9781482211283,1482211289.

Shifrin, Theodore and Malcolm R Adams (2011). Linear Algebra. A Geometric Approach. 2nd. W. H. Freeman.
isbn: 1429215216, 978-1429215213.

Strang, Gilbert (2009). Introduction to Linear Algebra, Fourth Edition. 4th ed. Wellesley Cambridge Press. isbn:
9780980232714.
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