
Machine Learning for Computational Linguistics
Intorduction to artificial neural networks

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft

June 7, 2016



Practical stuff Introduction Perceptron MLP

Practical stuff

▶ Reminder: proposal due June 13 (next week)
▶ Homework 2: FAQ

▶ Training/test split is only necessary for the last question. In
other questions use training data as the test set

▶ While calculating precision, recall, f-measure, make sure that
’German’ is your positive class

▶ You are encouraged to use a (public) version control system
like GitHub. If you do so, send me the repository address only
(no need to send the files). If you use private repositories,
make sure that I can access them.

▶ You can submit your homework until Wednesday morning
10:00.

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 1 / 23



Practical stuff Introduction Perceptron MLP

The biological neuron
(showing a picture of a real neuron is mandatory in every ANN lecture)

Dendrite

Soma

Axon

Axon terminall

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 2 / 23



Practical stuff Introduction Perceptron MLP

Artificial neural networks (ANNs)

▶ Artificial neural networks are machine learning models inspired
by the biological neural networks.

▶ Although some strong claims have been made about the link
between the two, for our purposes, ANNs are just another
statistical method in machine learning

▶ The founding blocks of ANNs are simple units (like biological
neurons) that carry out simple calculations in parallel

▶ ANNs have many similarities to the linear models we discussed
so far, but allow non-linearities that are often useful in practice

▶ The recent ‘deep learning’ methods are variations of ANN
architectures.

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 3 / 23



Practical stuff Introduction Perceptron MLP

The perceptron

x2

x1

...

xn

w
1

w2

wn

y

x0 = 1

w
0

y = f

(
n∑
i

wixi

)
where

f(x) =

{
+1 if

∑n
i wixi > 0

−1 otherwise

Similar to the intercept in linear models, an additional input x0
which is always set to one is often used (called bias in ANN
literature.)

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 4 / 23



Practical stuff Introduction Perceptron MLP

The perceptron

x2

x1

...

xn

w
1

w2

wn

y

x0 = 1

w
0 y = f

(
n∑
i

wixi

)
where

f(x) =

{
+1 if

∑n
i wixi > 0

−1 otherwise

Similar to the intercept in linear models, an additional input x0
which is always set to one is often used (called bias in ANN
literature.)

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 4 / 23



Practical stuff Introduction Perceptron MLP

The perceptron: in plain words

x2

x1

...

xn

w
1

w2

wn

y

x0 = 1

w
0

▶ Sum all input xi weighted
with corresponding weight
wi

▶ Pass it through a threshold
function

▶ Classify the input a
positive if the perceptron fires

(the sum is larger than 0),
negative otherwise

The perceptron can solve linearly separable classification problems.

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 5 / 23



Practical stuff Introduction Perceptron MLP

The perceptron: in plain words

x2

x1

...

xn

w
1

w2

wn

y

x0 = 1

w
0

▶ Sum all input xi weighted
with corresponding weight
wi

▶ Pass it through a threshold
function

▶ Classify the input a
positive if the perceptron fires

(the sum is larger than 0),
negative otherwise

The perceptron can solve linearly separable classification problems.

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 5 / 23



Practical stuff Introduction Perceptron MLP

The perceptron algorithm

▶ For correctly classified examples, we do not update the
parameters

▶ For misclassified example, we try to minimize

E(w) = −
∑
i

wxiyi

where i ranges over all misclassified examples.
▶ For each misclassified example, we update the weights

w← w+ η∇E(w)

w← w+ xiyi

note that with every update the set of misclassified examples
change.

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 6 / 23



Practical stuff Introduction Perceptron MLP

The perceptron algorithm

▶ The perceptron algorithm (eventually) converges to the global
minimum if the classes are linearly separable.

▶ If the classes are not linearly separable, the perceptron
algorithm will not stop

▶ We do not know whether the classes are linearly separable or
not before the algorithm converges

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 7 / 23



Practical stuff Introduction Perceptron MLP

Perceptron learning: demonstration

w

w

w

1. Randomly initialize w the
decision boundary is
orthogonal to w

2. Pick a misclassified example
xi add it to w.

3. Set w← w+ yixi, repeat
step 2 until convergence

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 8 / 23



Practical stuff Introduction Perceptron MLP

Perceptron learning: demonstration

w

w

w

1. Randomly initialize w the
decision boundary is
orthogonal to w

2. Pick a misclassified example
xi add it to w.

3. Set w← w+ yixi, repeat
step 2 until convergence

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 8 / 23



Practical stuff Introduction Perceptron MLP

Perceptron learning: demonstration

w

w

w

1. Randomly initialize w the
decision boundary is
orthogonal to w

2. Pick a misclassified example
xi add it to w.

3. Set w← w+ yixi, repeat
step 2 until convergence

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 8 / 23



Practical stuff Introduction Perceptron MLP

Perceptron learning: demonstration

w

w

w
1. Randomly initialize w the

decision boundary is
orthogonal to w

2. Pick a misclassified example
xi add it to w.

3. Set w← w+ yixi, repeat
step 2 until convergence

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 8 / 23



Practical stuff Introduction Perceptron MLP

Perceptron: a bit of history

▶ The perceptron was developed in late 1950’s and early 1960’s
(Rosenblatt 1958)

▶ It caused some excitement in many fields including computer
science, artificial intelligence, cognitive science

▶ The excitement (and funding) died away in early 1970’s (after
the criticism by Minsky and Papert 1969)

▶ The main issue was the fact that perceptron cannot handle
problems that are not linearly separable.

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 9 / 23



Practical stuff Introduction Perceptron MLP

Multi-layer perceptron

▶ Multi-layer perceptron (MLP) is a fully connected
feed-forward network consisting of perceptron-like units

▶ The units in an MLP use a continuous activation function,
unlike threshold threshold function used in perceptron

▶ The MLP can be trained using gradient-based methods
▶ The MLP can represent many interesting machine learning

problems. It can be used for both regression and classification

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 10 / 23



Practical stuff Introduction Perceptron MLP

Multi-layer perceptron

x1

x2

x3

x4

yyy

Input Hidden Output

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 11 / 23



Practical stuff Introduction Perceptron MLP

Activation functions in MLP

▶ The activation functions in MLP are typically continuous
(differentiable) functions

▶ For hidden units sigmoid functions (logistic sigmoid or tanh)
are a common choice (more on this in a few weeks)

▶ The activation functions of the output units depends on the
task

▶ For regression, identity function
▶ For binary classification, logistic sigmoid
▶ For multi-class classification, softmax

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 12 / 23



Practical stuff Introduction Perceptron MLP

Single neuron in an MLP

x2

x1

...

xn

w
1

w2

wn

y

1

w
0

y = f

(
n∑
i

wixi

)

▶ With logistic sigmoid as the
activation function

y =
1

1+ e−(w0x0+w1x1+...+wnxn)

it is equivalent to the logistic
regression

▶ We can now use
gradient-descent to estimate
the parameters

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 13 / 23



Practical stuff Introduction Perceptron MLP

Finding minima of the error function

w

E
(w

)

local minimum

global minimum

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 14 / 23



Practical stuff Introduction Perceptron MLP

Gradient descent: a refresher

▶ The general idea is to approach a minimum of the error
function in small steps

w← w− α∇E(w)

▶ ∇E is the gradient of the error function, it points to the
direction of the maximum increase

▶ α is the learning rate
▶ The updates can be made in

batch updates are performed for the complete training set
on-line updates are performed for each training instance. This verson

is known as stochastic gradient descent (SGD)

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 15 / 23



Practical stuff Introduction Perceptron MLP

MLP: a simple example

x1

x2

h1

h2

y1

y2

f() g()

w
(1)
11

w (1)12

w
(1
)

21

w
(1)
22

w
(2)
11

w
(2
)

21

w (2)12

w
(2)
22

hj = f

(∑
i

wijxi

)

yk = g

∑
j

wjkhj



yk = g

∑
j

wjkf

(∑
i

wijxi

)

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 16 / 23



Practical stuff Introduction Perceptron MLP

MLP: a simple example

x1

x2

h1

h2

y1

y2

f() g()

w
(1)
11

w (1)12

w
(1
)

21

w
(1)
22

w
(2)
11

w
(2
)

21

w (2)12

w
(2)
22

▶ Alternatively, we can write
the computations in matrix
form

h = f(W(1)x)

y = g(W(2)h)

= g
(
W(2)f(W(1)x)

)
▶ This corresponds to a series

of (non-linear)
transformations of the input

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 17 / 23



Practical stuff Introduction Perceptron MLP

Activation functions
▶ Choice of activation functions depend on the application, and

the type of unit
▶ For hidden units, common choices are sigmoid functions

Logistic σ(z) = 1
1+ez

Hyperbolic tangent tanh(z) = ez−e−z

ez+e−z

(We will later introduce a few others)
▶ For regression the common choice is a linear function, most

typically the identity function I(z) = z

▶ For classification, either logistic function (for binary
classification), or softmax (for multi-class)
softmax(z)j =

e
zj∑
k ez

k

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 18 / 23



Practical stuff Introduction Perceptron MLP

Error functions in ANN training

▶ If we assume Gaussian noise, a natural choice is the
minimizing the sum of squared error

E(w) =
∑
i

(yi − ŷi)
2

▶ For binary classification, we use cross entropy

E(w) = −
∑
i

yi log ŷi + (1− yi) log(1− ŷi)

▶ Similarly, for multi-class classification, also cross entropy

E(w) = −
∑
i

∑
k

yi,k log ŷk

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 19 / 23



Practical stuff Introduction Perceptron MLP

Learning in multi-layer networks: back propagation

x1

x2

h1

h2

y1

y2

w
(1)
11

w (1)12

w
(1
)

21

w
(1)
22

w
(2)
11

w
(2
)

21

w (2)12

w
(2)
22

▶ The final output of the network is computed by calculating
the output each layer and passing it to the next (forward
propagation)

▶ The weights are updated using a technique called back
propagation

▶ Back-propagation algorithm makes use of chain rule of
derivatives to efficiently propagate the error from output units
to the input weights

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 20 / 23



Practical stuff Introduction Perceptron MLP

Regularization in neural networks

▶ As in linear models we studied, we can use L1 and L2
regularization by adding a regularization term to the error
function (known as weight decay). For example,

J(w) = E(w) + ∥W∥

▶ There are other ways to fight overfitting
▶ With early stopping, one stops the training before it reaches to

the smallest training error
▶ With dropout, random units (with all of their connections) are

dropped during training
▶ Injecting noise at the output, as a way to (implicitly) model

the noise in the target classes/values

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 21 / 23



Practical stuff Introduction Perceptron MLP

How many layers, units

▶ A network with single hidden layer, is said to be a universal
approximator: it can approximate any continuous function
with arbitrary precision

▶ However, in practice multiple interconnected layers are useful
and commonly used in modern ANN models

▶ The choice of layers, in general the architecture of the system,
depends on the application

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 22 / 23



Practical stuff Introduction Perceptron MLP

Another bit of history

▶ In 1980’s ANNs became popular again
▶ One of the important developments that made this possible

was the back propagation algorithm
▶ In 1990’s the ANNs had again fallen ‘out of fashion’. Mainly

due to
▶ From the engineering perspective: other, more successful

algorithms (such as SVMs) performed generally better
▶ From the cognitive science perspective: the fact that ANNs are

complex systems that are difficult to interpret
▶ At present (after 2005 or so) they, once more, enjoy success

stories and popularity with the name ‘deep learning’
▶ We will study some aspects of the deep learning methods for

the remainder of the course

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 23 / 23



References/Credits

▶ The neuron figure on slide 3 is adapted from the figure by
Quasar Jarosz at English Wikipedia.

Minsky, Marvin and Seymour Papert (1969). Perceptrons: An
introduction to computational geometry. MIT Press.

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model
for information storage and organization in the brain.” In:
Psychological review 65.6, pp. 386–408.

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 A.1

https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg

	Machine Learning for Computational Linguistics
	Practical stuff
	Practical stuff

	Introduction
	The biological neuron
	Artificial neural networks (ANNs)

	Perceptron
	The perceptron
	The perceptron
	The perceptron: in plain words
	The perceptron: in plain words
	The perceptron algorithm
	The perceptron algorithm
	Perceptron learning: demonstration
	Perceptron learning: demonstration
	Perceptron learning: demonstration
	Perceptron learning: demonstration
	Perceptron: a bit of history

	Multi-layer perceptron
	Multi-layer perceptron
	Multi-layer perceptron
	Activation functions in MLP
	Single neuron in an MLP
	Finding minima of the error function
	Gradient descent: a refresher
	MLP: a simple example
	MLP: a simple example
	Activation functions
	Error functions in ANN training
	Learning in multi-layer networks: back propagation
	Regularization in neural networks
	How many layers, units
	Another bit of history


	Appendix
	References/Credits


