Machine Learning for Computational Linguistics Intorduction to artificial neural networks

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

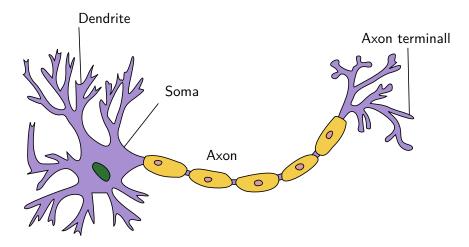
June 7, 2016

Practical stuff

- Reminder: proposal due June 13 (next week)
- Homework 2: FAQ
 - Training/test split is only necessary for the last question. In other questions use training data as the test set
 - While calculating precision, recall, f-measure, make sure that 'German' is your positive class
 - You are encouraged to use a (public) version control system like GitHub. If you do so, send me the repository address only (no need to send the files). If you use private repositories, make sure that I can access them.
 - You can submit your homework until Wednesday morning 10:00.

The biological neuron

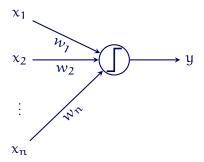
(showing a picture of a real neuron is mandatory in every ANN lecture)



Artificial neural networks (ANNs)

- Artificial neural networks are machine learning models *inspired* by the biological neural networks.
- Although some strong claims have been made about the link between the two, for our purposes, ANNs are just another statistical method in machine learning
- The founding blocks of ANNs are simple units (like biological neurons) that carry out simple calculations in parallel
- ANNs have many similarities to the linear models we discussed so far, but allow non-linearities that are often useful in practice
- The recent 'deep learning' methods are variations of ANN architectures.

The perceptron

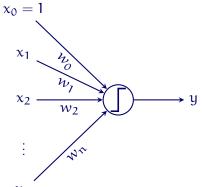


$$y = f\left(\sum_{i}^{n} w_{i} x_{i}\right)$$

where

$$f(x) = \begin{cases} +1 & \text{if} \quad \sum_{i}^{n} w_{i} x_{i} > 0 \\ -1 & \text{otherwise} \end{cases}$$

The perceptron



$$y = f\left(\sum_{i}^{n} w_{i} x_{i}\right)$$

where

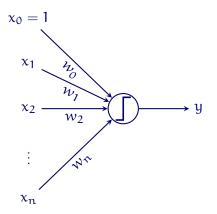
f

$$(x) = \begin{cases} +1 & \text{if} \quad \sum_{i}^{n} w_{i} x_{i} > 0 \\ -1 & \text{otherwise} \end{cases}$$

x_n

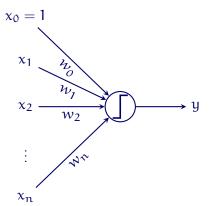
Similar to the *intercept* in linear models, an additional input x_0 which is always set to one is often used (called bias in ANN literature.)

The perceptron: in plain words



- Sum all input x_i weighted with corresponding weight w_i
- Pass it through a threshold function
- Classify the input a positive if the perceptron fires (the sum is larger than 0),
 negative otherwise

The perceptron: in plain words



- Sum all input x_i weighted with corresponding weight w_i
- Pass it through a threshold function
- Classify the input a positive if the perceptron fires (the sum is larger than 0),
 negative otherwise

The perceptron can solve *linearly separable* classification problems.

The perceptron algorithm

- For correctly classified examples, we do not update the parameters
- ► For misclassified example, we try to minimize

$$\mathsf{E}(w) = -\sum_{i} w \mathbf{x}_{i} \mathbf{y}_{i}$$

where i ranges over all misclassified examples.

▶ For each misclassified example, we update the weights

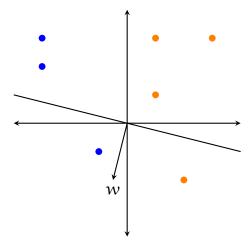
$$w \leftarrow w + \eta \nabla \mathsf{E}(w)$$

 $w \leftarrow w + \mathbf{x}_i \mathbf{y}_i$

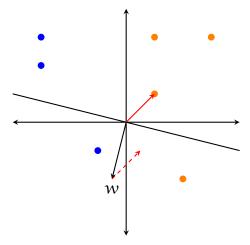
note that with every update the set of misclassified examples change.

The perceptron algorithm

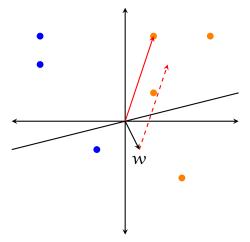
- The perceptron algorithm (eventually) converges to the global minimum if the classes are linearly separable.
- If the classes are not linearly separable, the perceptron algorithm will not stop
- We do not know whether the classes are linearly separable or not before the algorithm converges



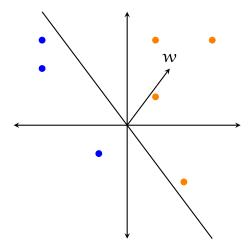
- Randomly initialize w the decision boundary is orthogonal to w
- 2. Pick a misclassified example x_i add it to w.
- 3. Set $w \leftarrow w + y_i x_i$, repeat step 2 until convergence



- Randomly initialize w the decision boundary is orthogonal to w
- 2. Pick a misclassified example x_i add it to w.
- 3. Set $w \leftarrow w + y_i x_i$, repeat step 2 until convergence



- Randomly initialize w the decision boundary is orthogonal to w
- Pick a misclassified example x_i add it to w.
- 3. Set $w \leftarrow w + y_i x_i$, repeat step 2 until convergence



- Randomly initialize w the decision boundary is orthogonal to w
- 2. Pick a misclassified example x_i add it to w.
- 3. Set $w \leftarrow w + y_i x_i$, repeat step 2 until convergence

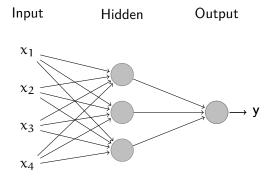
Perceptron: a bit of history

- The perceptron was developed in late 1950's and early 1960's (Rosenblatt 1958)
- It caused some excitement in many fields including computer science, artificial intelligence, cognitive science
- The excitement (and funding) died away in early 1970's (after the criticism by Minsky and Papert 1969)
- The main issue was the fact that perceptron cannot handle problems that are not linearly separable.

Multi-layer perceptron

- Multi-layer perceptron (MLP) is a fully connected feed-forward network consisting of perceptron-like units
- The units in an MLP use a continuous activation function, unlike threshold threshold function used in perceptron
- The MLP can be trained using gradient-based methods
- The MLP can represent many interesting machine learning problems. It can be used for both regression and classification

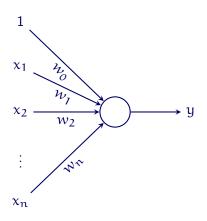
Multi-layer perceptron



Activation functions in MLP

- The activation functions in MLP are typically continuous (differentiable) functions
- For hidden units sigmoid functions (logistic sigmoid or tanh) are a common choice (more on this in a few weeks)
- The activation functions of the output units depends on the task
 - For regression, identity function
 - ► For binary classification, logistic sigmoid
 - For multi-class classification, softmax

Single neuron in an MLP



$$y = f\left(\sum_{i}^{n} w_{i} x_{i}\right)$$

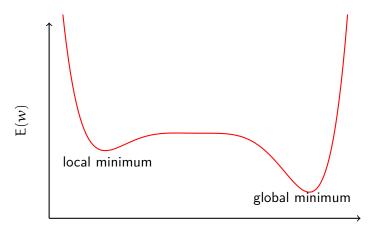
 With logistic sigmoid as the activation function

$$y = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + \dots + w_n x_n)}}$$

it is equivalent to the logistic regression

 We can now use gradient-descent to estimate the parameters Practical stuff Introduction Perceptron MLP

Finding minima of the error function



Gradient descent: a refresher

The general idea is to approach a minimum of the error function in small steps

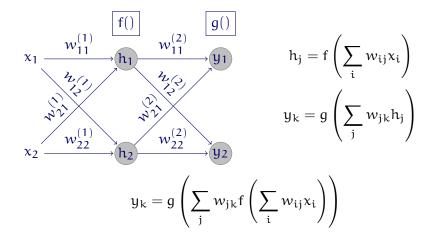
$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \boldsymbol{\alpha} \nabla \mathsf{E}(\boldsymbol{w})$$

- ► ∇E is the gradient of the error function, it points to the direction of the maximum increase
- α is the learning rate

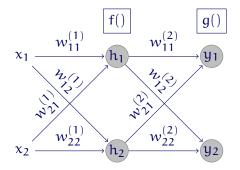
The updates can be made in

batch updates are performed for the complete training set on-line updates are performed for each training instance. This verson is known as *stochastic gradient descent* (SGD)

MLP: a simple example



MLP: a simple example



 Alternatively, we can write the computations in matrix form

 $\mathbf{h} = \mathbf{f}(W^{(1)}\mathbf{x})$

$$\mathbf{y} = g(W^{(2)}\mathbf{h})$$
$$= g\left(W^{(2)}f(W^{(1)}\mathbf{x})\right)$$

 This corresponds to a series of (non-linear) transformations of the input

Activation functions

- Choice of activation functions depend on the application, and the type of unit
- ► For hidden units, common choices are sigmoid functions

Logistic
$$\sigma(z) = \frac{1}{1+e^z}$$

Hyperbolic tangent $tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$
(We will later introduce a few others)

- ► For regression the common choice is a linear function, most typically the identity function I(z) = z
- For classification, either logistic function (for binary classification), or softmax (for multi-class) softmax(z)_j = e^{z_j}/∑_k e^{z_j}/_k

Error functions in ANN training

If we assume Gaussian noise, a natural choice is the minimizing the sum of squared error

$$\mathsf{E}(w) = \sum_{i} (y_{i} - \hat{y}_{i})^{2}$$

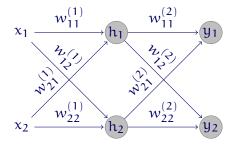
For binary classification, we use cross entropy

$$\mathsf{E}(w) = -\sum_{i} y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)$$

Similarly, for multi-class classification, also cross entropy

$$\mathsf{E}(w) = -\sum_{i}\sum_{k} y_{i,k} \log \hat{y}_{k}$$

Learning in multi-layer networks: back propagation



- The final output of the network is computed by calculating the output each layer and passing it to the next (forward propagation)
- The weights are updated using a technique called back propagation
- Back-propagation algorithm makes use of chain rule of derivatives to efficiently propagate the error from output units to the input weights

Regularization in neural networks

 As in linear models we studied, we can use L1 and L2 regularization by adding a regularization term to the error function (known as weight decay). For example,

 $J(w) = E(w) + \|W\|$

- There are other ways to fight overfitting
 - With early stopping, one stops the training before it reaches to the smallest training error
 - With dropout, random units (with all of their connections) are dropped during training
 - Injecting noise at the output, as a way to (implicitly) model the noise in the target classes/values

How many layers, units

- A network with single hidden layer, is said to be a universal approximator: it can approximate any continuous function with arbitrary precision
- However, in practice multiple interconnected layers are useful and commonly used in modern ANN models
- The choice of layers, in general the architecture of the system, depends on the application

Another bit of history

- In 1980's ANNs became popular again
- One of the important developments that made this possible was the back propagation algorithm
- In 1990's the ANNs had again fallen 'out of fashion'. Mainly due to
 - ► From the engineering perspective: other, more successful algorithms (such as SVMs) performed generally better
 - From the cognitive science perspective: the fact that ANNs are complex systems that are difficult to interpret
- At present (after 2005 or so) they, once more, enjoy success stories and popularity with the name 'deep learning'
- We will study some aspects of the deep learning methods for the remainder of the course

References/Credits

- The neuron figure on slide 3 is adapted from the figure by Quasar Jarosz at English Wikipedia.
- Minsky, Marvin and Seymour Papert (1969). Perceptrons: An introduction to computational geometry. MIT Press.
 Rosenblatt, Frank (1958). "The perceptron: a probabilistic model for information storage and organization in the brain." In: *Psychological review* 65.6, pp. 386–408.