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Practical stuff Introduction Perceptron MLP

Practical stuff

▶ Reminder: proposal due June 13 (next week)
▶ Homework 2: FAQ

▶ Training/test split is only necessary for the last question. In
other questions use training data as the test set

▶ While calculating precision, recall, f-measure, make sure that
’German’ is your positive class

▶ You are encouraged to use a (public) version control system
like GitHub. If you do so, send me the repository address only
(no need to send the files). If you use private repositories,
make sure that I can access them.

▶ You can submit your homework until Wednesday morning
10:00.
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The biological neuron
(showing a picture of a real neuron is mandatory in every ANN lecture)

Dendrite

Soma

Axon

Axon terminall
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Artificial neural networks (ANNs)

▶ Artificial neural networks are machine learning models inspired
by the biological neural networks.

▶ Although some strong claims have been made about the link
between the two, for our purposes, ANNs are just another
statistical method in machine learning

▶ The founding blocks of ANNs are simple units (like biological
neurons) that carry out simple calculations in parallel

▶ ANNs have many similarities to the linear models we discussed
so far, but allow non-linearities that are often useful in practice

▶ The recent ‘deep learning’ methods are variations of ANN
architectures.
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The perceptron
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f(x) =

{
+1 if
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i wixi > 0

−1 otherwise

Similar to the intercept in linear models, an additional input x0
which is always set to one is often used (called bias in ANN
literature.)

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 4 / 23



Practical stuff Introduction Perceptron MLP

The perceptron

x2

x1

...

xn

w
1

w2

wn

y

x0 = 1

w
0 y = f

(
n∑
i

wixi

)
where

f(x) =

{
+1 if

∑n
i wixi > 0

−1 otherwise

Similar to the intercept in linear models, an additional input x0
which is always set to one is often used (called bias in ANN
literature.)

Ç. Çöltekin, SfS / University of Tübingen June 7, 2016 4 / 23



Practical stuff Introduction Perceptron MLP

The perceptron: in plain words
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▶ Sum all input xi weighted
with corresponding weight
wi

▶ Pass it through a threshold
function

▶ Classify the input a
positive if the perceptron fires

(the sum is larger than 0),
negative otherwise

The perceptron can solve linearly separable classification problems.
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The perceptron algorithm

▶ For correctly classified examples, we do not update the
parameters

▶ For misclassified example, we try to minimize

E(w) = −
∑
i

wxiyi

where i ranges over all misclassified examples.
▶ For each misclassified example, we update the weights

w← w+ η∇E(w)

w← w+ xiyi

note that with every update the set of misclassified examples
change.
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The perceptron algorithm

▶ The perceptron algorithm (eventually) converges to the global
minimum if the classes are linearly separable.

▶ If the classes are not linearly separable, the perceptron
algorithm will not stop

▶ We do not know whether the classes are linearly separable or
not before the algorithm converges
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Perceptron learning: demonstration
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1. Randomly initialize w the
decision boundary is
orthogonal to w

2. Pick a misclassified example
xi add it to w.

3. Set w← w+ yixi, repeat
step 2 until convergence
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Perceptron: a bit of history

▶ The perceptron was developed in late 1950’s and early 1960’s
(Rosenblatt 1958)

▶ It caused some excitement in many fields including computer
science, artificial intelligence, cognitive science

▶ The excitement (and funding) died away in early 1970’s (after
the criticism by Minsky and Papert 1969)

▶ The main issue was the fact that perceptron cannot handle
problems that are not linearly separable.
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Multi-layer perceptron

▶ Multi-layer perceptron (MLP) is a fully connected
feed-forward network consisting of perceptron-like units

▶ The units in an MLP use a continuous activation function,
unlike threshold threshold function used in perceptron

▶ The MLP can be trained using gradient-based methods
▶ The MLP can represent many interesting machine learning

problems. It can be used for both regression and classification
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Multi-layer perceptron
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Activation functions in MLP

▶ The activation functions in MLP are typically continuous
(differentiable) functions

▶ For hidden units sigmoid functions (logistic sigmoid or tanh)
are a common choice (more on this in a few weeks)

▶ The activation functions of the output units depends on the
task

▶ For regression, identity function
▶ For binary classification, logistic sigmoid
▶ For multi-class classification, softmax
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Single neuron in an MLP
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▶ With logistic sigmoid as the
activation function

y =
1

1+ e−(w0x0+w1x1+...+wnxn)

it is equivalent to the logistic
regression

▶ We can now use
gradient-descent to estimate
the parameters
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Finding minima of the error function
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Gradient descent: a refresher

▶ The general idea is to approach a minimum of the error
function in small steps

w← w− α∇E(w)

▶ ∇E is the gradient of the error function, it points to the
direction of the maximum increase

▶ α is the learning rate
▶ The updates can be made in

batch updates are performed for the complete training set
on-line updates are performed for each training instance. This verson

is known as stochastic gradient descent (SGD)
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MLP: a simple example
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MLP: a simple example
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▶ Alternatively, we can write
the computations in matrix
form

h = f(W(1)x)

y = g(W(2)h)

= g
(
W(2)f(W(1)x)

)
▶ This corresponds to a series

of (non-linear)
transformations of the input
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Activation functions
▶ Choice of activation functions depend on the application, and

the type of unit
▶ For hidden units, common choices are sigmoid functions

Logistic σ(z) = 1
1+ez

Hyperbolic tangent tanh(z) = ez−e−z

ez+e−z

(We will later introduce a few others)
▶ For regression the common choice is a linear function, most

typically the identity function I(z) = z

▶ For classification, either logistic function (for binary
classification), or softmax (for multi-class)
softmax(z)j =

e
zj∑
k ez

k
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Error functions in ANN training

▶ If we assume Gaussian noise, a natural choice is the
minimizing the sum of squared error

E(w) =
∑
i

(yi − ŷi)
2

▶ For binary classification, we use cross entropy

E(w) = −
∑
i

yi log ŷi + (1− yi) log(1− ŷi)

▶ Similarly, for multi-class classification, also cross entropy

E(w) = −
∑
i

∑
k

yi,k log ŷk
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Learning in multi-layer networks: back propagation
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▶ The final output of the network is computed by calculating
the output each layer and passing it to the next (forward
propagation)

▶ The weights are updated using a technique called back
propagation

▶ Back-propagation algorithm makes use of chain rule of
derivatives to efficiently propagate the error from output units
to the input weights
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Regularization in neural networks

▶ As in linear models we studied, we can use L1 and L2
regularization by adding a regularization term to the error
function (known as weight decay). For example,

J(w) = E(w) + ∥W∥

▶ There are other ways to fight overfitting
▶ With early stopping, one stops the training before it reaches to

the smallest training error
▶ With dropout, random units (with all of their connections) are

dropped during training
▶ Injecting noise at the output, as a way to (implicitly) model

the noise in the target classes/values
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How many layers, units

▶ A network with single hidden layer, is said to be a universal
approximator: it can approximate any continuous function
with arbitrary precision

▶ However, in practice multiple interconnected layers are useful
and commonly used in modern ANN models

▶ The choice of layers, in general the architecture of the system,
depends on the application
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Another bit of history

▶ In 1980’s ANNs became popular again
▶ One of the important developments that made this possible

was the back propagation algorithm
▶ In 1990’s the ANNs had again fallen ‘out of fashion’. Mainly

due to
▶ From the engineering perspective: other, more successful

algorithms (such as SVMs) performed generally better
▶ From the cognitive science perspective: the fact that ANNs are

complex systems that are difficult to interpret
▶ At present (after 2005 or so) they, once more, enjoy success

stories and popularity with the name ‘deep learning’
▶ We will study some aspects of the deep learning methods for

the remainder of the course
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