Machine Learning for Computational Linguistics

Regression

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft

April 26/28, 2016

- Course credits:

9 ECTS with term paper
6 ECTS without term paper

- Homeworks \& evaluation: For each homework, you either get

0 not satisfactory or not submitted
[6,10$]$ satisfactory and on time

- Late homeworks are not accepted

Please follow the instructions precisely!

Entropy of your random numbers

Entropy of your random numbers

Entropy of your random numbers

If the data was really uniformly distributed: $\mathrm{H}(\mathrm{X})=4.32$.

Coding a four-letter alphabet

letter	prob	code 1	code 2	
a	$1 / 2$	0	0	0
b	$1 / 4$	0	1	10
c	$1 / 8$	1	0	110
d	$1 / 8$	1	1	111

Average code length of a string under code 1 :

$$
\frac{1}{2} 2+\frac{1}{4} 2+\frac{1}{8} 2+\frac{1}{8} 2=2.0 \text { bits }
$$

Average code length of a string under code 2 :

$$
\frac{1}{2} 1+\frac{1}{4} 2+\frac{1}{8} 3+\frac{1}{8} 3=1.75 \text { bits }=\mathrm{H}
$$

Statistical inference and estimation

- Statistical inference is about making generalizations that go beyond the data at hand (training set, or experimental sample)
- In a typical scenario, we (implicitly) assume that a particular class of models describe the real-world process, and try to find the best model within the class of models
- In most cases, our models are parametrized: the model is defined by a set of parameters
- The task, then, becomes estimating the parameters from the training set such that the resulting model is useful for unseen instances

Estimation of model parameters

A typical statistical model can be formulated as

$$
y=f(x ; w)+\epsilon
$$

x is the input to the model
y is the quantity or label assigned to for a given input
w is the parameter(s) of the model
$f(x ; w)$ is the model's estimate of output y given the input x, sometimes denoted as \hat{y}
ϵ represents the uncertainty or noise that we cannot explain or account for

- In machine learning, focus is correct prediction of y
- In statistics, the focus is on inference (testing hypotheses or explaining the observed phenomena)

Estimating parameters: Bayesian approach

Given the training data \mathbf{X}, we find the posterior distribution

$$
p(\boldsymbol{w} \mid \mathbf{X})=\frac{p(\mathbf{X} \mid \boldsymbol{w}) p(\boldsymbol{w})}{p(\mathbf{X})}
$$

- The result, posterior, is a probability distribution of the parameter(s)
- One can get a point estimate of \boldsymbol{w}, for example, by calculating the expected value from the distribution
- The posterior distribution also contains the information on the uncertainty of the estimate
- Prior information can be specified by the prior distribution

Estimating parameters: frequentist approach

Given the training data \boldsymbol{X}, we find the value of \boldsymbol{w} that maximizes the likelihood

$$
\hat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\arg \min } p(\mathbf{X} \mid \boldsymbol{w})
$$

- The likelihood function $p(\mathbf{X} \mid \boldsymbol{w})$, often denoted $\mathcal{L}(\boldsymbol{w} \mid \mathbf{X})$, is the probability of data given \boldsymbol{w} for discrete variables, and the value of probability mass function for the continuous variables
- The problem becomes searching for the maximum value of a function
- Note that we cannot make probabilistic statements about w
- Uncertainty of the estimate is less straightforward

A simple example: estimation of the population mean

We assume that data observed comes from the model:

$$
y=\mu+\epsilon
$$

where, $\epsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)$
An example:

- Let's assume that we are estimating the average number of characters in twitter messages. We will use two data sets:
- $87,101,88,45,138$
- The mean of the sample (\bar{x}) is 91.8
- Variance of the sample $\left(s d^{2}\right)$ is $1111.7(s d=33.34)$
- $87,101,88,45,138,66,79,78,140,102$
- $\bar{\chi}=92.4$
- $s d^{2}=876.71(s d=29.61)$

Estimating mean: Bayesian way

We simply use Bayes' formula:

$$
p(\mu \mid D)=\frac{p(D \mid \mu) p(\mu)}{p(D)}
$$

- With a vague prior (high variance/entropy), the posterior mean is (almost) the same as the mean of the data
- With a prior with lower variance, posterior is between the prior and the data mean
- Posterior variance indicates the uncertainty of our estimate. With more data, we get a more certain estimate

Estimating mean: Bayesian way

vague prior, small sample

Estimating mean: Bayesian way

vague prior, larger sample

Estimating mean: Bayesian way

visualization

Estimating mean: frequentist way

- The MLE of the mean of the population is the mean of the sample
- For 5-tweet sample: $\hat{\mu}=\bar{x}=91.8$
- For 10-tweet sample: $\hat{\mu}=\bar{x}=92.4$
- We express the uncertainty in terms of standard error of the mean (SE)

$$
S E_{\bar{x}}=\frac{s d_{x}}{\sqrt{n}}
$$

which corresponds to the means of the (hypothetical) samples of the same size drawn from the same population.

- For 5-tweet sample: $\mathrm{SE}_{\overline{\mathrm{x}}}=33.34 / \sqrt{5}=14.91$
- For 10-tweet sample: $\mathrm{SE}_{\overline{\mathrm{x}}}=29.61 / \sqrt{10}=9.36$
- A rough estimate for a 95% confidence interval is $\bar{x} \pm 2 \mathrm{SE}_{\bar{x}}$
- For 5-tweet sample: $91.8 \pm 2 \times 14.91=[61.98,121.62]$
- For 10 -tweet sample: $92.4 \pm 2 \times 9.36=[83.04,101.76]$

Regression

- Regression is a supervised method for predicting value of a continuous response variables based on a number of predictors
- We estimate the conditional expectation of the outcome variable given the predictor(s)
- If the outcome is a label, the problem is called classification. But the border between the two often is not that clear

The linear equation: a reminder

$$
y=a+b x
$$

a (intercept) is where the line crosses the y axis.
b (slope) is the change in y as x is increased one unit.

The linear equation: a reminder

$$
y=a+b x
$$

a (intercept) is where the line crosses the y axis.
b (slope) is the change in y as x is increased one unit.

What is the correlation between x and y for each line (relation)?

The simple linear model

$$
y_{i}=a+b x_{i}+\epsilon_{i}
$$

y is the outcome (or response, or dependent) variable. The index i represents each unit observation/measurement (sometimes called a 'case').
x is the predictor (or explanatory, or independent) variable.
a is the intercept.
b is the slope of the regression line.
a and b are called coefficients or parameters.
$a+b x$ is the deterministic part of the model. It is the model's prediction of $y(\hat{y})$, given x.
ϵ is the residual, error, or the variation that is not accounted for by the model. Assumed to be normally distributed with 0 mean

Notation differences for the regression equation

$$
y_{i}=a+b x_{i}+\epsilon_{i}
$$

Notation differences for the regression equation

$$
y_{i}=\alpha+\beta x_{i}+\epsilon_{i}
$$

- Sometimes, Greek letters α and β are used for intercept and the slope, respectively.

Notation differences for the regression equation

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

- Sometimes, Greek letters α and β are used for intercept and the slope, respectively.
- Another common notation to use only $b, \beta \theta$, but use subscripts, 0 indicating the intercept and 1 indicating the slope.

Notation differences for the regression equation

$$
y_{i}=w_{0}+w_{1} x_{i}+\epsilon_{i}
$$

- Sometimes, Greek letters α and β are used for intercept and the slope, respectively.
- Another common notation to use only $b, \beta \theta$, but use subscripts, 0 indicating the intercept and 1 indicating the slope.
- In machine learning it is common to use w for all coefficients (sometimes you may see b used instead of w_{0})

Notation differences for the regression equation

$$
y_{i}=\hat{w}_{0}+\hat{w}_{1} x_{i}+\epsilon_{i}
$$

- Sometimes, Greek letters α and β are used for intercept and the slope, respectively.
- Another common notation to use only $b, \beta \theta$, but use subscripts, 0 indicating the intercept and 1 indicating the slope.
- In machine learning it is common to use w for all coefficients (sometimes you may see b used instead of w_{0})
- Sometimes coefficients wear hats, to emphasize that they are estimates.

Notation differences for the regression equation

$$
y_{i}=w \boldsymbol{x}_{\mathfrak{i}}+\epsilon_{i}
$$

- Sometimes, Greek letters α and β are used for intercept and the slope, respectively.
- Another common notation to use only $b, \beta \theta$, but use subscripts, 0 indicating the intercept and 1 indicating the slope.
- In machine learning it is common to use w for all coefficients (sometimes you may see b used instead of w_{0})
- Sometimes coefficients wear hats, to emphasize that they are estimates.
- Often, we use the vector notation for both input(s) and coefficients: $\boldsymbol{w}=\left(w_{0}, w_{1}\right)$ and $x_{i}=\left(1, x_{i}\right)$

Visualization of regression procedure

Visualization of regression procedure

Visualization of regression procedure

Least-squares regression

Least-squares regression is the method of determining regression coefficients that minimizes the sum of squared residuals $\left(S S_{R}\right)$.

$$
y_{i}=\underbrace{w_{0}+w_{1} x_{i}}_{\hat{y}_{i}}+\epsilon_{i}
$$

Least-squares regression

Least-squares regression is the method of determining regression coefficients that minimizes the sum of squared residuals $\left(S S_{R}\right)$.

$$
y_{i}=\underbrace{w_{0}+w_{1} x_{i}}_{\hat{y}_{i}}+\epsilon_{i}
$$

- We try to find w_{0} and w_{2}, that minimize the prediction error:

$$
\sum_{i} \epsilon_{i}^{2}=\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- This minimization problem can be solved analytically, yielding:

$$
\begin{aligned}
& w_{1}=r \frac{s d_{y}}{s d_{x}} \\
& w_{0}=\bar{y}-w_{1} \bar{x}
\end{aligned}
$$

[^0]
Short digression: minimizing functions

In least squares regression, we want to find w_{0} and w_{1} values that minimize the quantity

$$
\sum_{i}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- Note that the above is a quadratic function of w_{0} and w_{1}
- This is important, since quadratic functions are convex and have a single extreme value: we have a unique solution for our minimization problem
- In case of least squares regression, we are even luckier: we can find an analytic solution
- Even if we do not have an analytic solution, if our error function is convex, a search procedure like gradient descent can find the global minimum

Explained variation

Total variation $=$ Unexplained variation + Explained variation

$$
y-\bar{y} \quad=\quad y-\hat{y} \quad+\quad \hat{y}-\bar{y}
$$

Assessing the model fit: r^{2}

We can express the variation explained by a regression model as:

$$
\frac{\text { Explained variation }}{\text { Total variation }}=\frac{\sum_{i}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i}^{n}\left(y_{i}-\bar{y}\right)^{2}}
$$

It can be shown that this value is the square of the correlation coefficient, r^{2}, also called the coefficient of determination.

- $100 \times \mathrm{r}^{2}$ can be interpreted as 'the percentage of variance explained by the model'.
- r^{2} shows how well the model fits to the data: closer the data points to the regression line, higher the value of r^{2}.

Regression and inference: an example

(1) The data

We want to see the effect of mother's IQ to four-year-old children's cognitive test scores (Fake data, based on analysis presented in Gelman\&Hill 2007).

Case	Kid's Score	Mother's IQ
1	109	91
2	99	102
3	96	88
\ldots		
43	108	101
44	110	78
45	97	67

Regression and inference: an example

(2) Analysis (R output)

```
lm(formula = kid.score ~ mother.iq)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5174 24.2375 0.145 0.885
mother.iq 0.6023 0.2471 2.437 0.019 *
Residual standard error: 22.59 on 43 degrees of freedom
Multiple R-squared: 0.1214, Adjusted R-squared: 0.101
F-statistic: 5.941 on 1 and 43 DF, p-value: 0.019
```

$w_{1}=0.6$ Expected score difference between two children whose mother's IQ differs one unit.

Regression and inference: an example

(2) Analysis (R output)

```
lm(formula = kid.score ~ mother.iq)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5174 24.2375 0.145 0.885
mother.iq 0.6023 0.2471 2.437 0.019 *
---
Residual standard error: 22.59 on 43 degrees of freedom
Multiple R-squared: 0.1214, Adjusted R-squared: 0.101
F-statistic: 5.941 on 1 and 43 DF, p-value: 0.019
```

$w_{1}=0.6$ Expected score difference between two children whose mother's IQ differs one unit.
$r^{2}=0.12$ Mothers' IQ explains 12% of the variation in test scores.

Regression and inference: an example

(2) Analysis (R output)

```
lm(formula = kid.score ~ mother.iq)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5174 24.2375 0.145 0.885
mother.iq 0.6023 0.2471 2.437 0.019 *
Residual standard error: 22.59 on 43 degrees of freedom
Multiple R-squared: 0.1214, Adjusted R-squared: 0.101
F-statistic: 5.941 on 1 and 43 DF, p-value: 0.019
```

$w_{1}=0.6$ Expected score difference between two children whose mother's IQ differs one unit.
$r^{2}=0.12$ Mothers' IQ explains 12% of the variation in test scores.
$p=0.02$ Given the sample size, probability of finding a w_{1} value that far from 0 (two-tailed t-test with null hypothesis $w_{1}=0$).

Notes/issues on ordinary least squares regression

- Response variable should be linearly related to predictor(s)
- Least squares estimation is sensitive to outliers
- The residuals should be normally distributed

You should always check your data

* This data set is known as Anscombe's quartet (Anscombe, 1973).

All four sets have the same mean, variance and fitted regression line.

Regression with multiple predictors

$$
y_{i}=\underbrace{w_{0}+w_{1} x_{i, 1}+w_{2} x_{2, i}+\ldots+w_{k} x_{k, i}}_{\hat{y}}+\epsilon_{i}=w x_{i}+\epsilon_{i}
$$

w_{0} is the intercept (as before).
$w_{1 . . k}$ are the coefficients of the respective predictors.
ϵ is the error term (residual).

- using vector notation the equation becomes:

$$
\begin{gathered}
y_{i}=w x_{i}+\epsilon_{i} \\
\text { where } \boldsymbol{w}=\left(w_{0}, w_{1}, \ldots, w_{k}\right) \text { and } x_{i}=\left(1, x_{i, 1}, \ldots, x_{i, k}\right)
\end{gathered}
$$

It is a generalization of simple regression with some additional power and complexity.

Visualizing regression with two predictors

Input/output of liner regression: some notation

A regression with k input variables and n instances can be described as:

$$
\begin{gathered}
\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]}_{\boldsymbol{y}}=\underbrace{\left[\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \ldots & x_{1, k} \\
1 & x_{2,1} & x_{2,2} & \ldots & x_{2, k} \\
1 & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n, 1} & x_{n, 2} & \ldots & x_{n, k}
\end{array}\right]}_{\mathbf{x}} \times \underbrace{\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{k}
\end{array}\right]}_{\boldsymbol{w}}+\underbrace{\left[\begin{array}{c}
\epsilon_{0} \\
\epsilon_{1} \\
\vdots \\
\epsilon_{n}
\end{array}\right]}_{\boldsymbol{\epsilon}} \\
\mathbf{y}=\mathbf{X} \boldsymbol{w}+\mathbf{\epsilon}
\end{gathered}
$$

Estimation in multiple regression

$$
y=X w+\epsilon
$$

We want to minimize the error (as a function of \boldsymbol{w}):

$$
\begin{aligned}
\boldsymbol{\epsilon}^{2}=\mathrm{J}(\boldsymbol{w}) & =(\mathbf{y}-\mathbf{X} \boldsymbol{w})^{2} \\
& =\|\boldsymbol{y}-\mathbf{X} \boldsymbol{w}\|^{2}
\end{aligned}
$$

Our least-squres estimate is:

$$
\begin{aligned}
\hat{\boldsymbol{w}} & =\underset{\boldsymbol{w}}{\arg \min } \mathrm{J}(\boldsymbol{w}) \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}
\end{aligned}
$$

Note: the least squares estimate is also the maximum likelihood estimate under the assumption of normal distribution of errors.

Issues in multiple regression estimation

- Overfitting: many variables cause model to learn noise in the data (we will return to this issue)
- Collinearity: high correlation between predictors increase uncertainty of coefficient estimates
- Model/feature selection is typically needed for both prediction and inference

Categorical predictors

- Categorical predictors are represented as multiple binary coded input variables
- For a binary predictor, we use a single binary input. For example, (1 for one of the values, and 0 for the other)

$$
x= \begin{cases}0 & \text { for male } \\ 1 & \text { for female }\end{cases}
$$

- For a categorical predictor with k values, we use $k-1$ predictors (various coding schemes are possible). For example, for 3-values

$$
x= \begin{cases}(0,0) & \text { for neutral } \\ (0,1) & \text { for negative } \\ (1,0) & \text { for positive }\end{cases}
$$

Dealing with non-linearity (to some extent)

- Least squares works, because the loss function is linear with respect to parameter \boldsymbol{w}
- Introducing non-linear combinations of inputs does not affect the estimation procedure. The following are still linear models

$$
\begin{aligned}
y_{i} & =w_{0}+w_{1} x_{i}^{2}+\epsilon_{i} \\
y_{i} & =w_{0}+w_{1} \log \left(x_{i}\right)+\epsilon_{i} \\
y_{i} & =w_{0}+w_{1} x_{i, 1}+w_{2} x_{i, 2}+w_{3} x_{i, 1} x_{i, 2}+\epsilon_{i}
\end{aligned}
$$

- These transformations allow linear models to deal with some non-linearities
- In general, we can replace input x by a function of the input(s) $\Phi(x) . \Phi()$ is called a basis function

Example: polynomial basis functions

Next...

Tuesday hands-on exercises with regression Next week classification

Estimating the regression line

We express the sum of squared residuals as a function of the (unknown) regression line:

$$
\begin{aligned}
\sum_{i=1}^{n} \epsilon_{i}^{2} & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\left(a+b x_{i}\right)\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(a^{2}+2 a b x_{i}-2 a y_{i}+b^{2} x_{i}^{2}-2 b x_{i} y_{i}+y_{i}^{2}\right)
\end{aligned}
$$

Thus, $\sum_{i=1}^{n} \epsilon_{i}^{2}$ is function f in x, y with unknown parameters a, b.

Estimating the regression line

For a fixed sample $\mathcal{S}=(x, y)$, we want to minimize $f_{a b}(x, y)$ with

$$
f_{a b}(x, y)=\sum_{i=1}^{n}\left(a^{2}+2 a b x_{i}-2 a y_{i}+b^{2} x_{i}^{2}-2 b x_{i} y_{i}+y_{i}^{2}\right)
$$

To minimize this function, find a and b such that $f_{a b}^{\prime}(x, y)=0$.
Treat a and b as variables and find partial derivatives $\frac{\partial}{\partial a} f, \frac{\partial}{\partial b} f$

$$
\begin{aligned}
\frac{\partial}{\partial a} f=f_{x y b}^{\prime}(a) & =\sum_{i=1}^{n}\left(2 a+2 b x_{i}-2 y_{i}\right) \\
\frac{\partial}{\partial b} f=f_{x y a}^{\prime}(b) & =\sum_{i=1}^{n}\left(2 a x_{i}+2 b x_{i}^{2}-2 x_{i} y_{i}\right)
\end{aligned}
$$

Relationship between correlation and regression

Recall we obtained two partial derivatives (when minimizing sum of squared residuals):

$$
\begin{align*}
& f_{x y b}^{\prime}(a)=\sum_{i=1}^{n}\left(2 a+2 b x_{i}-2 y_{i}\right) \tag{1}\\
& f_{x y a}^{\prime}(b)=\sum_{i=1}^{n}\left(2 a x_{i}+2 b x_{i}^{2}-2 x_{i} y_{i}\right) \tag{2}
\end{align*}
$$

Set (1) to zero:

$$
\begin{array}{ll}
& f_{x y b}^{\prime}(a)=0 \\
\Leftrightarrow & n \cdot 2 a+\sum_{i=1}^{n}\left(2 b x_{i}-2 y_{i}\right)=0 \\
\Leftrightarrow & n \cdot 2 a+2 b \sum_{i=1}^{n} x_{i}-2 \sum_{i=1}^{n} y_{i}=0 \\
\Leftrightarrow & n \cdot a=n \cdot \bar{y}-n \cdot b \bar{x} \\
\Leftrightarrow & a=\bar{y}-b \bar{x}
\end{array}
$$

Relationship between correlation and regression

Plug $a=\bar{y}-b \bar{x}$ into (2) and set to zero:

$$
\begin{array}{ll}
& f_{x y a}^{\prime}(b)=0 \\
\Leftrightarrow & \sum_{i=1}^{n}\left(2(\bar{y}-b \bar{x}) x_{i}+2 b x_{i}^{2}-2 x_{i} y_{i}\right)=0 \\
\Leftrightarrow & (\bar{y}-b \bar{x})(n \bar{x})+b \sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} x_{i} y_{i}=0 \\
\Leftrightarrow & n \overline{x y}-b \bar{x}^{2} n+b \sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} x_{i} y_{i}=0 \\
\Leftrightarrow & b\left(\sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2} n\right)=\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y} \\
\Leftrightarrow & b=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}}{\sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2} n}
\end{array}
$$

Relationship between correlation and regression

$$
\begin{aligned}
b=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}}{\sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2} n} & \Leftrightarrow b=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& \Leftrightarrow b=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& \Leftrightarrow b=\frac{1}{n-1} \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)} \\
& \Leftrightarrow b=\frac{1}{n-1} \sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sigma_{x}^{2}} \\
& \Leftrightarrow b=\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)\right) \cdot \frac{\sigma_{y}}{\sigma_{x}} \\
& \Leftrightarrow b=r \frac{\sigma_{y}}{\sigma_{x}}
\end{aligned}
$$

Another relation between correlation and regression

$$
\begin{aligned}
\frac{\text { explained variance }}{\text { total variance }} & =\frac{\sum_{i=1}^{n}\left(\left(a+b x_{i}\right)-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(\left(\bar{y}-b \bar{x}+b x_{i}\right)-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n} b^{2}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \\
& =b^{2} \cdot\left(\frac{\sigma_{x}}{\sigma_{y}}\right)^{2} \\
& =r^{2}\left(\frac{\sigma_{y}}{\sigma_{x}}\right)^{2} \cdot\left(\frac{\sigma_{x}}{\sigma_{y}}\right)^{2} \\
& =r^{2}
\end{aligned}
$$

Standard error for the regression slope and intercept

$$
\begin{gathered}
S E_{b}=\frac{s d_{r}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}} \\
S E_{a}=s d_{r} \times \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}}
\end{gathered}
$$

[^0]: * See appendix for the derivation.

