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Practical matters Revisiting entropy Statistical inference Regression

▶ Course credits:
9 ECTS with term paper
6 ECTS without term paper
▶ Homeworks & evaluation:

For each homework, you either get
0 not satisfactory or not submitted

[6, 10] satisfactory and on time
▶ Late homeworks are not accepted

Please follow the instructions precisely!
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Entropy of your random numbers
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H(X) = −
∑
x

P(x) log2 P(x)

= 2.61

If the data was really uniformly distributed: H(X) = 4.32.
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Coding a four-letter alphabet

letter prob code 1 code 2
a 1/2 0 0 0
b 1/4 0 1 10
c 1/8 1 0 110
d 1/8 1 1 111

Average code length of a string under code 1:

1

2
2+

1

4
2+

1

8
2+

1

8
2 = 2.0bits

Average code length of a string under code 2:

1
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8
3 = 1.75bits = H
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Statistical inference and estimation

▶ Statistical inference is about making generalizations that go
beyond the data at hand (training set, or experimental
sample)

▶ In a typical scenario, we (implicitly) assume that a particular
class of models describe the real-world process, and try to find
the best model within the class of models

▶ In most cases, our models are parametrized: the model is
defined by a set of parameters

▶ The task, then, becomes estimating the parameters from the
training set such that the resulting model is useful for unseen
instances
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Estimation of model parameters
A typical statistical model can be formulated as

y = f(x;w) + ϵ

x is the input to the model
y is the quantity or label assigned to for a given input
w is the parameter(s) of the model

f(x;w) is the model’s estimate of output y given the input x,
sometimes denoted as ŷ

ϵ represents the uncertainty or noise that we cannot explain or
account for

▶ In machine learning, focus is correct prediction of y
▶ In statistics, the focus is on inference (testing hypotheses or

explaining the observed phenomena)
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Estimating parameters: Bayesian approach

Given the training data X, we find the posterior distribution

p(w|X) =
p(X|w)p(w)

p(X)

▶ The result, posterior, is a probability distribution of the
parameter(s)

▶ One can get a point estimate of w, for example, by
calculating the expected value from the distribution

▶ The posterior distribution also contains the information on the
uncertainty of the estimate

▶ Prior information can be specified by the prior distribution
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Estimating parameters: frequentist approach

Given the training data X, we find the value of w that maximizes
the likelihood

ŵ = argmin
w

p(X|w)

▶ The likelihood function p(X|w), often denoted L(w|X), is the
probability of data given w for discrete variables, and the
value of probability mass function for the continuous variables

▶ The problem becomes searching for the maximum value of a
function

▶ Note that we cannot make probabilistic statements about w
▶ Uncertainty of the estimate is less straightforward
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A simple example: estimation of the population mean
We assume that data observed comes from the model:

y = µ+ ϵ

where, ϵ ∼ N(0,σ2)
An example:

▶ Let’s assume that we are estimating the average number of
characters in twitter messages. We will use two data sets:

▶ 87, 101, 88, 45, 138
▶ The mean of the sample (x̄) is 91.8
▶ Variance of the sample (sd2) is 1111.7 (sd = 33.34)

▶ 87, 101, 88, 45, 138, 66, 79, 78, 140, 102

▶ x̄ = 92.4
▶ sd2 = 876.71 (sd = 29.61)
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Estimating mean: Bayesian way

We simply use Bayes’ formula:

p(µ|D) =
p(D|µ)p(µ)

p(D)

▶ With a vague prior (high variance/entropy), the posterior
mean is (almost) the same as the mean of the data

▶ With a prior with lower variance, posterior is between the prior
and the data mean

▶ Posterior variance indicates the uncertainty of our estimate.
With more data, we get a more certain estimate
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Estimating mean: Bayesian way
vague prior, small sample
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Prior: N(70, 1000)
Likelihood: N(91.8, 33.34)
Posterior: N(91.78, 14.91)
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Estimating mean: Bayesian way
vague prior, larger sample
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Estimating mean: Bayesian way
visualization
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Estimating mean: frequentist way
▶ The MLE of the mean of the population is the mean of the

sample
▶ For 5-tweet sample: µ̂ = x̄ = 91.8
▶ For 10-tweet sample: µ̂ = x̄ = 92.4

▶ We express the uncertainty in terms of standard error of the
mean (SE)

SEx̄ =
sdx√
n

which corresponds to the means of the (hypothetical) samples
of the same size drawn from the same population.

▶ For 5-tweet sample: SEx̄ = 33.34/
√
5 = 14.91

▶ For 10-tweet sample: SEx̄ = 29.61/
√
10 = 9.36

▶ A rough estimate for a 95% confidence interval is x̄± 2SEx̄

▶ For 5-tweet sample: 91.8± 2× 14.91 = [61.98, 121.62]
▶ For 10-tweet sample: 92.4± 2× 9.36 = [83.04, 101.76]
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Regression

▶ Regression is a supervised method for predicting value of a
continuous response variables based on a number of predictors

▶ We estimate the conditional expectation of the outcome
variable given the predictor(s)

▶ If the outcome is a label, the problem is called classification.
But the border between the two often is not that clear
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The linear equation: a reminder

y = a+ bx

a (intercept) is
where the line
crosses the y axis.

b (slope) is the
change in y as x is
increased one unit.

x

y
y
=
1
−
x

y =
1
2
x

y = 2+
1
2
x

y = −1
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y = a+ bx

a (intercept) is
where the line
crosses the y axis.

b (slope) is the
change in y as x is
increased one unit.
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and y for each line
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The simple linear model

yi = a+ bxi + ϵi

y is the outcome (or response, or dependent) variable. The
index i represents each unit observation/measurement
(sometimes called a ‘case’).

x is the predictor (or explanatory, or independent) variable.
a is the intercept.
b is the slope of the regression line.

a and b are called coefficients or parameters.
a+ bx is the deterministic part of the model. It is the model’s

prediction of y (ŷ), given x.
ϵ is the residual, error, or the variation that is not accounted for

by the model. Assumed to be normally distributed with 0

mean
Ç. Çöltekin, SfS / University of Tübingen April 26/28, 2016 16 / 35



Practical matters Revisiting entropy Statistical inference Regression

Notation differences for the regression equation

yi = a+ bxi + ϵi

▶ Sometimes, Greek letters α and β are used for intercept and
the slope, respectively.

▶ Another common notation to use only b, β θ, but use
subscripts, 0 indicating the intercept and 1 indicating the
slope.

▶ In machine learning it is common to use w for all coefficients
(sometimes you may see b used instead of w0)

▶ Sometimes coefficients wear hats, to emphasize that they are
estimates.

▶ Often, we use the vector notation for both input(s) and
coefficients: w = (w0,w1) and xi = (1, xi)
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Notation differences for the regression equation

yi = β0 + β1xi + ϵi

▶ Sometimes, Greek letters α and β are used for intercept and
the slope, respectively.

▶ Another common notation to use only b, β θ, but use
subscripts, 0 indicating the intercept and 1 indicating the
slope.

▶ In machine learning it is common to use w for all coefficients
(sometimes you may see b used instead of w0)

▶ Sometimes coefficients wear hats, to emphasize that they are
estimates.

▶ Often, we use the vector notation for both input(s) and
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Notation differences for the regression equation

yi = ŵ0 + ŵ1xi + ϵi

▶ Sometimes, Greek letters α and β are used for intercept and
the slope, respectively.

▶ Another common notation to use only b, β θ, but use
subscripts, 0 indicating the intercept and 1 indicating the
slope.

▶ In machine learning it is common to use w for all coefficients
(sometimes you may see b used instead of w0)
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Visualization of regression procedure
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y
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Least-squares regression
Least-squares regression is the method of determining regression
coefficients that minimizes the sum of squared residuals (SSR).

yi = w0 +w1xi︸ ︷︷ ︸
ŷi

+ϵi

▶ We try to find w0 and w2, that minimize the prediction error:∑
i

ϵ2i =
∑
i

(yi − ŷi)
2 =

∑
i

(yi − (w0 +w1xi))
2

▶ This minimization problem can be solved analytically, yielding:

w1 = r
sdy

sdx

w0 = ȳ−w1x̄

* See appendix for the derivation.
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Short digression: minimizing functions
In least squares regression, we want to find w0 and w1 values that
minimize the quantity∑

i

(yi − (w0 +w1xi))
2

▶ Note that the above is a quadratic function of w0 and w1

▶ This is important, since quadratic functions are convex and
have a single extreme value: we have a unique solution for our
minimization problem

▶ In case of least squares regression, we are even luckier: we can
find an analytic solution

▶ Even if we do not have an analytic solution, if our error
function is convex, a search procedure like gradient descent
can find the global minimum
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Explained variation

ȳ

y

ŷ

x

Total variation
Unexplained varia

tion

Explained varia
tion

Total variation = Unexplained variation + Explained variation
y− ȳ = y− ŷ + ŷ− ȳ
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Assessing the model fit: r2

We can express the variation explained by a regression model as:

Explained variation
Total variation =

∑n
i (ŷi − ȳ)2∑n
i (yi − ȳ)2

It can be shown that this value is the square of the correlation
coefficient, r2, also called the coefficient of determination.

▶ 100× r2 can be interpreted as ‘the percentage of variance
explained by the model’.

▶ r2 shows how well the model fits to the data: closer the data
points to the regression line, higher the value of r2.
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Regression and inference: an example
(1) The data

We want to see the effect of mother’s IQ to four-year-old children’s
cognitive test scores (Fake data, based on analysis presented in
Gelman&Hill 2007).

Case Kid’s Score Mother’s IQ
1 109 91
2 99 102
3 96 88
…

43 108 101
44 110 78
45 97 67
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Regression and inference: an example
(2) Analysis (R output)

lm(formula = kid.score ~ mother.iq)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5174 24.2375 0.145 0.885
mother.iq 0.6023 0.2471 2.437 0.019 *
---
Residual standard error: 22.59 on 43 degrees of freedom
Multiple R-squared: 0.1214, Adjusted R-squared: 0.101
F-statistic: 5.941 on 1 and 43 DF, p-value: 0.019

w1 = 0.6 Expected score difference between two children whose
mother’s IQ differs one unit.

r2 = 0.12 Mothers’ IQ explains 12% of the variation in test scores.
p = 0.02 Given the sample size, probability of finding a w1 value that

far from 0 (two-tailed t-test with null hypothesis w1 = 0).
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Notes/issues on ordinary least squares regression

▶ Response variable should be linearly related to predictor(s)
▶ Least squares estimation is sensitive to outliers
▶ The residuals should be normally distributed
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You should always check your data

* This data set is known as Anscombe’s quartet (Anscombe, 1973).

All four sets have the same mean, variance and fitted regression line.
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Regression with multiple predictors

yi =w0 +w1xi,1+w2x2,i + . . .+wkxk,i︸ ︷︷ ︸
ŷ

+ϵi = wxi + ϵi

w0 is the intercept (as before).
w1..k are the coefficients of the respective predictors.

ϵ is the error term (residual).
▶ using vector notation the equation becomes:

yi = wxi + ϵi

where w = (w0,w1, . . . ,wk) and xi =
(
1, xi,1, . . . , xi,k

)
It is a generalization of simple regression with some additional
power and complexity.
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Visualizing regression with two predictors
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Input/output of liner regression: some notation

A regression with k input variables and n instances can be
described as:

y1

y2

...
yn


︸ ︷︷ ︸

y

=


1 x1,1 x1,2 . . . x1,k
1 x2,1 x2,2 . . . x2,k

1
... ... . . . ...

1 xn,1 xn,2 . . . xn,k


︸ ︷︷ ︸

X

×


w0

w1

...
wk


︸ ︷︷ ︸

w

+


ϵ0
ϵ1
...
ϵn


︸ ︷︷ ︸

ϵ

y = Xw+ ϵ
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Estimation in multiple regression

y = Xw+ ϵ

We want to minimize the error (as a function of w):

ϵ2 = J(w) = (y− Xw)2

= ∥y− Xw∥2

Our least-squres estimate is:

ŵ = argmin
w

J(w)

= (XTX)−1XT

Note: the least squares estimate is also the maximum likelihood
estimate under the assumption of normal distribution of errors.
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Issues in multiple regression estimation

▶ Overfitting: many variables cause model to learn noise in the
data (we will return to this issue)

▶ Collinearity: high correlation between predictors increase
uncertainty of coefficient estimates

▶ Model/feature selection is typically needed for both prediction
and inference

Ç. Çöltekin, SfS / University of Tübingen April 26/28, 2016 31 / 35



Practical matters Revisiting entropy Statistical inference Regression

Categorical predictors
▶ Categorical predictors are represented as multiple binary coded

input variables
▶ For a binary predictor, we use a single binary input. For

example, (1 for one of the values, and 0 for the other)

x =

{
0 for male
1 for female

▶ For a categorical predictor with k values, we use k− 1

predictors (various coding schemes are possible). For example,
for 3-values

x =


(0, 0) for neutral
(0, 1) for negative
(1, 0) for positive
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Dealing with non-linearity (to some extent)

▶ Least squares works, because the loss function is linear with
respect to parameter w

▶ Introducing non-linear combinations of inputs does not affect
the estimation procedure. The following are still linear models

yi = w0 +w1x
2
i + ϵi

yi = w0 +w1log(xi) + ϵi

yi = w0 +w1xi,1 +w2xi,2 +w3xi,1xi,2 + ϵi

▶ These transformations allow linear models to deal with some
non-linearities

▶ In general, we can replace input x by a function of the
input(s) Φ(x). Φ() is called a basis function
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Example: polynomial basis functions
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Example: polynomial basis functions
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Example: polynomial basis functions
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y = 45.50− 3.52x+ 12.13x2
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Example: polynomial basis functions
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y

y = −221.3+ 109.9x
y = 45.50− 3.52x+ 12.13x2

y = 1445.80− 3189.13x +2604.21x2

− 1026.76x3 +218.40x4

− 25.52x5 +1.54x6
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Next...

Tuesday hands-on exercises with regression
Next week classification
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Estimating the regression line Relationship between correlation and regression

Estimating the regression line
We express the sum of squared residuals as a function of the
(unknown) regression line:

n∑
i=1

ϵ2i =

n∑
i=1

(yi − ŷi)
2

=

n∑
i=1

(yi − (a+ bxi))
2

=

n∑
i=1

(yi − a− bxi)
2

=

n∑
i=1

(a2 + 2abxi − 2ayi + b2x2i − 2bxiyi + y2
i )

Thus,
∑n

i=1 ϵ
2
i is function f in x, y with unknown parameters a,

b.
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Estimating the regression line

For a fixed sample S = (x,y), we want to minimize fab(x,y) with

fab(x,y) =

n∑
i=1

(a2 + 2abxi − 2ayi + b2x2i − 2bxiyi + y2
i )

To minimize this function, find a and b such that f′ab(x,y) = 0.

Treat a and b as variables and find partial derivatives ∂
∂a

f, ∂
∂b

f

∂

∂a
f = f ′xyb(a) =

n∑
i=1

(2a+ 2bxi − 2yi)

∂

∂b
f = f ′xya(b) =

n∑
i=1

(2axi + 2bx2i − 2xiyi)
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Relationship between correlation and regression
Recall we obtained two partial derivatives (when minimizing sum of
squared residuals):

f ′xyb(a) =

n∑
i=1

(2a+ 2bxi − 2yi) (1)

f ′xya(b) =

n∑
i=1

(2axi + 2bx2i − 2xiyi) (2)

Set (1) to zero:
f ′xyb(a) = 0

⇔ n · 2a+

n∑
i=1

(2bxi − 2yi) = 0

⇔ n · 2a+ 2b

n∑
i=1

xi − 2

n∑
i=1

yi = 0

⇔ n · a = n · y− n · bx⇔ a = y− bx
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Relationship between correlation and regression
Plug a = y− bx into (2) and set to zero:

f ′xya(b) = 0

⇔ n∑
i=1

(2(y− bx)xi + 2bx2i − 2xiyi) = 0

⇔ (y− bx)(nx) + b

n∑
i=1

x2i −

n∑
i=1

xiyi = 0

⇔ nxy− bx2n+ b

n∑
i=1

x2i −

n∑
i=1

xiyi = 0

⇔ b(

n∑
i=1

x2i − x2n) =

n∑
i=1

xiyi − nxy

⇔ b =

∑n
i=1 xiyi − nxy∑n
i=1 x

2
i − x2n
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Relationship between correlation and regression

b =

∑n
i=1 xiyi − nxy∑n
i=1 x

2
i − x2n

⇔ b =

∑n
i=1 xiyi − nxy∑n
i=1(xi − x)2

⇔ b =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2

⇔ b =
1

n− 1

∑n
i=1(xi − x)(yi − y)(
1

n−1

∑n
i=1(xi − x)2

)
⇔ b =

1

n− 1

n∑
i=1

(xi − x)(yi − y)

σ2
x

⇔ b =

(
1

n− 1

n∑
i=1

(
xi − x

σx

)(
yi − y

σy

))
· σy

σx

⇔ b = r
σy

σx
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Another relation between correlation and regression

explained variance
total variance =

∑n
i=1((a+ bxi) − y)2∑n

i=1(yi − y)2

=

∑n
i=1((y− bx+ bxi) − y)2∑n

i=1(yi − y)2

=

∑n
i=1 b

2(xi − x)2∑n
i=1(yi − y)2

= b2 ·
(
σx

σy

)2

= r2
(
σy

σx

)2

·
(
σx

σy

)2

= r2
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Standard error for the regression slope and intercept

SEb =
sdr√∑
(xi − x̄)2

SEa = sdr ×

√
1

n
+

x̄2∑
(xi − x̄)2
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