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Introduction SVD Embeddings Summary

Representations of linguistic units

▶ Most ML methods we use depend on how we represent the
objects of interest, such as

▶ words, morphemes
▶ sentences, phrases
▶ letters, phonemes
▶ documents
▶ speakers, authors
▶ …

▶ The way we represent these objects interacts with the ML
methods used

▶ They also affect what can be learned
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Symbolic representations

▶ A common way to represent words (and other units) is to
treat them as individual symbols
w1 = ‘cat’, w2 = ‘dog’, w3 = ‘book’

▶ The symbols do not include any information about the use or
meaning of the words or their relation to each other

▶ They are useful in many NLP tasks, but distinctions between
units and their relationships are categorical

▶ ‘cat’ as different from ‘dog’ as it is from ‘book’
▶ The relationship between ‘cat’ and ‘dog’ is not different from

‘story’ and ‘tale’
▶ Some of these can be extracted from conventional lexicons or

WordNets, but they will still be categorical/hard distinctions
▶ The similarity/difference decisions are typically made based on

hand-annotated data
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Vector representations
▶ The idea is to represent the linguistic objects as vectors

cat = (0.1, 0.3, 0.5, . . . , 0.4)

dog = (0.2, 0.3, 0.4, . . . , 0.3)

book = (0.9, 0.1, 0.8, . . . , 0.3)

▶ The (syntactic/semantic) differences between the words
correspond to distances in the high-dimensional vector space
the word vectors live

▶ Symbolic representations are equivalent to 1-of-K or one-hot
vectors

cat = (0, . . . , 1, 0, 0, . . . , 0)

dog = (0, . . . , 0, 1, 0, . . . , 0)

book = (0, . . . , 0, 0, 1, . . . , 0)

The distances in symbolic/one-hot representation are not
useful.
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Where does the vector representations come from?

▶ The vectors are (almost certainly) learned from the data
▶ The idea goes back to,

You shall know a word by the company it keeps.
—Firth (1957)

▶ In practice, we make use of the contexts where the words
appear to determine their representations

▶ The words that appear in similar contexts are mapped to
similar representations

▶ Context varies from a small window of words around the
target word to a complete document
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How to calculate word vectors

▶ Typically we use unsupervised (or self-supervised) methods
▶ Common approaches:

▶ Obtain global counts of words in each context, and use
techniques like SVD to assign vectors: the words with high
covariances are assigned to similar vectors (LSA/LSI)

▶ Predict the words from their context (or the context from the
target words), and update the vectors to minimize the
prediction error (word2vec, GloVe, …)

▶ Model each word as a mixture of latent variables (LDA)
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A toy example

A four-sentence corpus with bag of words (BOW) model.

The corpus:
S1: She likes cats and dogs
S2: He likes dogs and cats
S3: She likes books
S4: He reads books

Term-document (sentence) matrix
S1 S2 S3 S4

she 1 0 1 0
he 0 1 0 1
likes 1 1 1 0
reads 0 0 0 1
cats 1 1 0 0
dogs 1 1 0 0
books 0 0 1 1
and 1 1 0 0
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A toy example

A four-sentence corpus with bag of words (BOW) model.

The corpus:
S1: She likes cats and dogs
S2: He likes dogs and cats
S3: She likes books
S4: He reads books

Term-term (left-context) matrix

# sh
e

he lik
es

re
ad

s
ca

ts

do
gs

bo
ok

s
an

d

she 2 0 0 0 0 0 0 0 0
he 2 0 0 0 0 0 0 0 0
likes 0 2 1 0 0 0 0 0 0
reads 0 0 1 0 0 0 0 0 0
cats 0 0 0 1 0 0 0 0 1
dogs 0 0 0 1 0 0 0 0 1
books 0 0 0 1 1 0 0 0 0
and 0 0 0 0 0 1 1 0 0
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Term-document matrices

▶ The rows are about the
terms: similar terms
appear in similar
contexts

▶ The columns are about
the context: similar
contexts contain
similar words

▶ The term-context
matrices are typically
sparse and large

Term-document (sentence) matrix
S1 S2 S3 S4

she 1 0 1 0
he 0 1 0 1
likes 1 1 1 0
reads 0 0 0 1
cats 1 1 0 0
dogs 1 1 0 0
books 0 0 1 1
and 1 1 0 0
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SVD (again)
▶ Singular value decomposition is a well-known method in linear

algebra
▶ An n×m (n terms m documents) term-document matrix X

can be decomposed as

X = UΣVT

U is a n× r unitary matrix, where r is the rank of X
(r ⩽ min(n,m)). Columns of U are the eigenvectors of XXT

Σ is a r× r diagonal matrix of singular values (square root of
eigenvalues of XXT and XTX)

VT is a r×m unitary matrix. Columns of V are the eigenvectors
of XTX

▶ One can consider U and V as PCA performed for reducing
dimensionality of rows (terms) and columns (documents)
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Truncated SVD

X = UΣVT

▶ Using eigenvectors (from U and V) that correspond to k

largest singular values (k < r), allows reducing dimensionality
of the data with minimum loss

▶ The approximation,

X̂ = UkΣkVk

results in the best approximation of X, such that ∥X̂− X∥F is
minimum
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Truncated SVD

X = UΣVT

▶ Using eigenvectors (from U and V) that correspond to k

largest singular values (k < r), allows reducing dimensionality
of the data with minimum loss

▶ The approximation,

X̂ = UkΣkVk

results in the best approximation of X, such that ∥X̂− X∥F is
minimum

▶ Note that r may easily be millions (of words or contexts),
while we choose k much smaller (at most a few hundreds)
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Truncated SVD (2)



x1,1 x1,2 x1,3 . . . x1,m
x1,1 x1,2 x1,3 . . . x1,m
x2,1 x2,2 x2,3 . . . x2,m
x3,1 x3,2 x3,3 . . . x3,m

... ... ... . . . ...
xn,1 xn,2 xn,3 . . . xn,m


=


u1,1 . . . u1,k

u2,1 . . . u2,k

u3,1 . . . u3,k
... . . . ...

un,1 . . . un,k

×
σ1 . . . 0

... . . . ...
0 . . . σk

×
u1,1 u1,2 . . . u1,m

... ... . . . ...
uk,1 uk,2 . . . un,m


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Truncated SVD (2)



x1,1 x1,2 x1,3 . . . x1,m
x1,1 x1,2 x1,3 . . . x1,m
x2,1 x2,2 x2,3 . . . x2,m
x3,1 x3,2 x3,3 . . . x3,m

... ... ... . . . ...
xn,1 xn,2 xn,3 . . . xn,m


=


u1,1 . . . u1,k

u2,1 . . . u2,k

u3,1 . . . u3,k
... . . . ...

un,1 . . . un,k

×
σ1 . . . 0

... . . . ...
0 . . . σk

×
u1,1 u1,2 . . . u1,m

... ... . . . ...
uk,1 uk,2 . . . un,m


The term1 can be represented using the first row of Uk
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Truncated SVD (2)



x1,1 x1,2 x1,3 . . . x1,m
x1,1 x1,2 x1,3 . . . x1,m
x2,1 x2,2 x2,3 . . . x2,m
x3,1 x3,2 x3,3 . . . x3,m

... ... ... . . . ...
xn,1 xn,2 xn,3 . . . xn,m


=


u1,1 . . . u1,k

u2,1 . . . u2,k

u3,1 . . . u3,k
... . . . ...

un,1 . . . un,k

×
σ1 . . . 0

... . . . ...
0 . . . σk

×
u1,1 u1,2 . . . u1,m

... ... . . . ...
uk,1 uk,2 . . . un,m


The document1 can be represented using the first column of VT

k
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Truncated SVD example
The corpus:
(S1) She likes cats and dogs
(S2) He likes dogs and cats
(S3) She likes books
(S4) He reads books

S1 S2 S3 S4
she 1 0 1 0
he 0 1 0 1
likes 1 1 1 0
reads 0 0 0 1
cats 1 1 0 0
dogs 1 1 0 0
books 0 0 1 1
and 1 1 0 0

Truncated SVD (k = 2)

U =



−0.30 0.28
−0.24 −0.63
−0.52 0.15
−0.03 −0.49
−0.43 0.01
−0.43 0.01
−0.03 −0.49
−0.43 0.01


Σ =

[
3.11 0

0 1.81

]

VT =

 S1 S2 S3 S4

−0.68 0.26 −0.11 −0.66
−0.66 −0.23 0.48 0.50


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Truncated SVD (with BOW sentence context)

she

he

likes

reads

catsdogs

books

and

The corpus:
(S1) She likes cats and dogs
(S2) He likes dogs and cats
(S3) She likes books
(S4) He reads books
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Truncated SVD (with single word context)

she

he

likesreads

catsdogs

books

and

The corpus:
(S1) She likes cats and dogs
(S2) He likes dogs and cats
(S3) She likes books
(S4) He reads books
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SVD: LSI/LSA

▶ SVD applied to term-document matrices are called
▶ Latent semantic analysis (LSA) if the aim is constructing term

vectors
▶ Latent semantic indexing (LSI) if the aim is constructing

document vectors
▶ The well known Google PageRank algorithm is a variation of

the SVD
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SVD based vectors: practical concerns

▶ In practice, instead of raw counts of terms within contexts,
the term-document matrices typically contain

▶ pointwise mutual information
▶ tf-idf

values.
▶ If the aim is finding latent (semantic) topics,

frequent/syntactic words (stopwords) are often removed
▶ Depending on the measure used, it may also be important to

normalize for the document length
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SVD-based vectors: applications

▶ The SVD-based methods is commonly used in information
retrieval

▶ The system builds document vectors using SVD
▶ The search terms are also considered as a ‘document’
▶ System retrieves the documents whose vectors are similar to

the search term
▶ The SVD-based methods for semantic similarity is also

common
▶ It was shown that the vector space models outperform humans

in TOEFL synonym questions and SAT analogy questions
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Predictive models

▶ Instead of dimensionality reduction through SVD, we try to
predict

▶ either the target word from the context
▶ or the context given the target word

▶ We assign each word to a fixed-size random vector
▶ We use a standard ML model and try to reduce the prediction

error with a method like gradient descent
▶ During learning, the algorithm optimizes the vectors as well as

the model paramters

▶ In this context, the word-vectors are called embeddings
▶ This types of models has been very popular during the last

few years

Ç. Çöltekin, SfS / University of Tübingen June 14, 2016 18 / 24

Introduction SVD Embeddings Summary

word2vec
▶ word2vec is a popular algorithm and open source application

for training word vectors (Mikolov et al. 2013)
▶ It has two modes of operation
CBOW or continuous bag of words predict the word using a window

around the word
Skip-gram does the reverse, it predicts the words in the context of the

target word using the target word as the predictor
▶ The algorithm learns two sets of embeddings (one for context,

one for target)
▶ The learning method is simply logistic regression, where word

vectors are also updated (besides model parameters)
▶ Negative examples are sampled from the larger corpus
▶ It preforms well, and it is much faster than earlier (more

complex) ANN architectures developed for this task
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GloVe

▶ GloVe is another popular method for obtaining word vectors
(Pennington, Socher, and Manning 2014)

▶ It tries to combine intuitions from both SVD-like ‘counting’
methods, and prediction-based methods

▶ It typically performs better on smaller data sets as well
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Word vectors and syntactic/semantic relations

Word vectors map some
syntactic/semantic relations to
vector operations

▶ Paris - France + Italy = Rome
▶ king - man + woman = queen
▶ duck - ducks + mouse = mice

Paris

France

Rome

Italy
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Using vector representations

▶ Dense vector representations are useful for many ML methods
▶ They are particularly suitable for neural network models
▶ ‘General purpose’ vectors can be trained on unlabeled data
▶ They can also be trained for a particular purpose, resulting in

‘task specific’ vectors
▶ Dense vector representations are not specific to words, they

can be obtained and used for any (linguistic) object of interest
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Evaluating vector representations

▶ Like other unsupervised methods, there are no ‘correct’ labels
▶ Evaluation can be based on

▶ Intrinsic evaluation based on success on finding
analogy/synonymy

▶ Extrinsic evaluation, based on whether they improve a
particular task (e.g., parsing, sentiment analysis) or not

▶ Correlation with human judgments
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Summary

▶ Dense vector representations of linguistic units (as opposed to
symbolic representations) allow calculating
similarity/difference between the units

▶ They can be either based on counting (SVD), or predicting
(word2vec, GloVe)

▶ They are particularly suitable for ANNs, deep learning
architectures

Next: practical exercises with word vectors. Make sure you have
word2vec and/or GloVe installed by Thursday.
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