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Machine learning

(labeled) input

learning
algorithm

model
new
input

predicted
value

• Machine learning is
about making
predictions based on
past observations

• No explicit
programming, better
handling of uncertainty

• We do not want to
memorize, but
generalize
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Types of machine learning

Machine learning methods are roughly classified as

• Supervised learning requires a ‘labeled’ training data
• Unsupervised learning is about finding (latent) structure in

unlabeled data
• Various notions of the two of the above exists, known as

semi-supervised, self-supervised, …
• In reinforcement learning, the feedback to the system is

delayed

Boundaries can sometimes be difficult to draw.
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Regression – classification

We often distinguish the machine learning methods based on
what they predict

• For supervised methods,
– regression predicts a continuous value
– classification predicts a class label

• For unsupervised methods
– dimensionality reduction finds continuous latent variables
– clustering aims to discover (discrete) groups in the data
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Regression

x

y

yi = w0 +w1xi + ϵi
y = wx+ ϵ

Ç. Çöltekin, SfS / University of Tübingen July 19, 2016 4 / 33



Regression

x

y

yi = w0 +w1xi + ϵi
y = wx+ ϵ

Ç. Çöltekin, SfS / University of Tübingen July 19, 2016 4 / 33



Regression

x

y

yi = w0 +w1xi + ϵi
y = wx+ ϵ

Ç. Çöltekin, SfS / University of Tübingen July 19, 2016 4 / 33



Regression

x

y

yi = w0 +w1xi + ϵi

y = wx+ ϵ

Ç. Çöltekin, SfS / University of Tübingen July 19, 2016 4 / 33



Regression

x

y

yi = w0 +w1xi + ϵi
y = wx+ ϵ

Ç. Çöltekin, SfS / University of Tübingen July 19, 2016 4 / 33



Classification
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• The response (outcome) is
a label. In the example:
positive + or negative −

• Given the features (x1 and
x2), we want to predict the
label of an unknown
instance ?

• A classification algorithm
finds a function that
separates the classes

• Most classification
methods can easily be
extended to multi-class
problems
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Logistic regression
A basic classification algorithm is logistic regression. Logistic
regression is an extension of linear regression (a GLM)

g(p(y)) = Xw+ ϵ

• In logistic regression, we try to predict the probability of
the positive/target class given the predictors

• g() is the logit function, ϵ is distributed binomially
• Alternatively, we can write the prediction of the model as

p(y) =
1

1+ e−wx

Note: in this notation we assume a constant input +1, whose coefficient is the intercept (or bias)

Ç. Çöltekin, SfS / University of Tübingen July 19, 2016 6 / 33



Training a supervised model

• Learning in a supervised model means setting the model
parameters w

• Typically, training is formulated as an optimization
problem: we define an error function, and minimize it

• The error function is often derived such that it increases
the likelihood of the data given the model parameters

• For linear regression, this turns out to be the sum of the
squared error

• For logistic regression, cross entropy
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Minimizing the error function

Once we define an error function E(w), as a function of the
parameters,

• we may be able to find an unique analytic solution (linear
regression)

• if E(w) is convex, an iterative method can find the global
minimum (logistic regression)

• if E(w) is not convex, then find the global minimum is
often not possible, we try to find a ‘good enough’ local
minimum (neural networks)
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Evaluating supervised learning methods

• Our aim is to fit models that are (also) useful outside the
training data

• Evaluating a model on the training data is wrong: complex
models tend to learn idiosyncrasies of the training data
(e.g., noise)

• Success in training data does not necessarily transfer to the
out of training instances

• We always evaluate our models using data outside the
training set
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K-fold Cross validation

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Train Test
Fold 1
Fold 2

• At each fold, we hold part of the data for testing, train the
model with the remaining data

• Typical values for k is 5 and 10
• In stratified cross validation each fold contains

(approximately) the same proportions of class labels.
• A special case, when k is equal to n (the number of data

points is called leave-one-out cross validation
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Training/test error
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Overfitting and underfitting

• A model with high capacity can overfit the to the training
data: low training error, high test error

• An overfitted model finds a too specific solution
• A model with low capacity may underfit: the model

cannot approximate the target function well
• An underfitted model finds a too general solution

Simplicity is good for a model (prevents overfitting), but not
simpler than necessary.

Ç. Çöltekin, SfS / University of Tübingen July 19, 2016 12 / 33



Regularization

• A common solution to overfitting is to use a regularization
term in the objective function

• Common choices are minimizing L2 or L1 norm of the
parameters together with the error function

• Regularization prevents overfitting by constraining the
model

• The hyperparameter λ needs to be determined (best value is
found typically using grid search, on an additional partition
of the data often called development set)

• The regularization terms can be interpreted as priors in a
Bayesian setting

• Particularly, L2 regularization is equivalent to a normal
prior with zero mean
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L1 and L2 regularization

L1: J(w) = E(w) + λ∥w∥1

w1

w2

L2: J(w) = E(w) + λ∥w∥2

w1

w2
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Unsupervised learning

• In unsupervised learning, we do not have labels
• The aim is to discover structure in the data
• Clustering aims to find groups in the data
• Dimensionality reduction expresses a high-dimensional

data with a lower dimension while preserving most of the
information
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Clustering: hierarchical
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Clustering: k-means
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• The data
• Set cluster centroids

randomly
• Assign data points

to closest centroid
• Recalculate the

centroids
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Principal component analysis

x1

x2 PC1

PCA can be viewed as
• finding the direction of the

largest variance

• finding the projection with
the least reconstruction
error

• finding a lower
dimensional latent
Gaussian variable such
that the observed variable
is a mapping of the latent
variable to a higher
dimensional space (with
added noise).
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Non-linear relationships

In a linear model, y = w0 +w1x1 + . . .+wkxk

• The outcome is linearly-related to the predictors
• The effects of the inputs are additive

This is not always the case:
• Some predictors affect the outcome in a non-linear way

– The effect may be strong or positive only in a certain range
of the variable (e.g., age)

– Some effects are periodic (e.g., many measures of time)

• Some predictors interact
‘not bad’ is not ‘not’ + ‘bad’ (e.g., for sentiment analysis)
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Dealing with non-linearities

• Non-linear transformations, kernels, feature engineering
– Note that both

y = w0 +w1x1 +w2x
2
1

and
y = w0 +w1x1 +w2x2 +w3x1x2

are still linear in weights.

• Artificial neural networks
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Fully-connected feed-forward networks
Multi-layer perceptron

x1

x2

x3

x4

yyy

Input Hidden Output

• Multi-layer perceptron (a fully-connected network with a
single hidden layer) is a universal function approximator

• The network can be trained using backpropagation
algorithm
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Artificial neuron
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• Every unit in an ANN performs a
simple operation: apply a
activation function, f(), to
weighted sum of its inputs.

y = f(wx)

• Typical activation functions
include

– Logistic sigmoid
– Hyperbolic tangent (tanh)
– ReLU
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Activation functions in neural networks

• Output layer activation is determined based on the
function of the network

– linear functions for regression
– logistic sigmoid for binary classification
– softmax for multi-class classification

• Common hidden layer activation functions are

Logistic sigmoid 1
1+e−x

Hyperbolic tangent (tanh) ex−e−x

ex+e−x

ReLU max(0, x)
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Deep neural networks
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• x is the input vector
• y is the output vector
• h1 . . .hm are the hidden

layers (learned/useful
representations)

• Deep neural networks are
particularly useful if problem
can be solved by a hierarchy
of features

• Problems in learning:
vanishing or exploding
gradients
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Convolutional neural networks (CNNs)
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• Convolution transforms input by replacing each input unit
by a weighted some of its neighbors

• Typically it is followed by pooling
• CNNs are useful to detect local features with some amount

of location invariance
• Sparse connectivity makes CNNs computationally efficient
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Recurrent neural networks
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• Recurrent neural networks are similar to the standard
feed-forward networks

• But they include loops that feed the previous output (of
the hidden layers) back to the hidden layer

• Forward calculation is straightforward, learning becomes
somewhat tricky
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Unrolling a recurrent network
Back propagation through time (BPTT)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(0) y(1)

…
y(t−1) y(t)
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Gated recurrent neural networks

• Recurrent networks are suitable for sequence learning
• However, they cannot hold the information for long:

long-distance dependencies are difficult to capture
• Gated recurrent networks (e.g., LSTMs) keep solve this

problem by explicitly storing and removing information
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Unsupervised learning in ANNs
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• Autoencoders (figure) trained
to predict their input

• Another alternative is
Restricted Boltzmann
machines (RBMs)

• The aim is to learn useful
representations of input at the
hidden layer

• It is common to train multiple
hidden layers using
unsupervised methods, and
use them as features in a
classifier (layer-wise greedy
training)
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On variants of gradient descent

w← w− α

n∑
i

∇Ji(w)

• A more efficient approach is to use stochastic gradient
descent, updating weights for each training instance
(w← w− α∇J(w)))

• Often a compromise between to two (mini-batch) is used
• We often do not want to keep learning rate fixed, a (lenear)

decay
• There are some algorithms that update the learning rate

(α) update the learning rate in smarter ways (adagrad, adam,
rmsprop)

• Sometimes applying a momentum is useful, which uses a
weighted average of gradients, instead of the gradient
calculated at a single point
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Things we did not cover

• Many (classification) methods, notably
– Support vector machines
– Rule learning, decision trees, random forests
– Naive Bayes
– ...

• Probabilistic (Bayesian) inference and learning
• Sequence models (e.g., HMMs)
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Projects

• You are strongly encouraged to discuss your project with
me soon: please schedule an appointment

• Try simpler models first, add complexity if needed
• You do not have to produce state-of-the-art results,

however,
– make an effort to get good results
– use proper methodology, evaluation methods/metrics

• You can simplify the data/task if you do not have the
necessary computational resources

• Your results should be reproducible
• Use of a version management system (e.g., git) is strongly

recommended
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Term papers

• You are required to report your results in a term paper
• Make sure you reserve enough time for writing it
• Use ACL 2016 style files for your term papers

http://acl2016.org/files/acl2016.zip
• You paper should not be longer than 6 pages (excluding

references)
• No lower limit, but, make sure you sufficiently

– introduce the problem
– describe the model(s), data, evaluation procedure
– present and discuss your results

• If writing a paper is new for you, the Internet is full of
wisdom on how to write term papers, make use of them

• Submit your paper via email not later than Sept 15
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