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Practical matters Summary Introduction Clustering K-means Mixture densities Hierarchical clustering PCA

Homework 1

Common confusions (mainly about bigrams):
▶ Word ngrams (typically) do not cross sentence boundaries
▶ Order is important in a bigram
▶ While calculating conditional probabilities and PMI for

bigrams, you need to use probability of a word given it is the
first/second word in the bigram, not its unigram probability

▶ The base of logarithm does not matter for information
theoretic measures. Base only changes the ‘unit’. As long as
you are consistent, using any base is fine.
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Projects

▶ Please send me short project proposal document (about one
page) by June 13 with

▶ the list of the project members
▶ a title, brief description
▶ whether you have already obtained data for the project or not
▶ the methods you intend to apply

▶ and let me know as soon as you formed your project team
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Supervised learning

▶ The methods we studied so far are instances of supervised
learning

▶ In supervised learning, we have a set of predictors x, and want
to predict a response or outcome variable y

▶ During training we have access to both input and output
variables

▶ Typically, training consist of estimating parameters w of a
model

▶ During prediction, we are given x and make predictions based
on what we learned (e.g., parameter estimates) during training
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Supervised learning: regression

x

y

▶ The response (outcome)
variable (y) is a quantitative
variable.

▶ Given the features (x) we
want to predict the value of
y
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Supervised learning: classification

x1

x2
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?

▶ The response (outcome) is a
label. In the example:
positive + or negative −

▶ Given the features (x1 and
x2), we want to predict the
label of an unknown
instance ?
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Supervised learning: estimating parameters

▶ Most models/methods estimate a set of parameters w during
training

▶ Often we find the parameters that minimize a cost function
J(w)

▶ For least-squares regression

J(w) =
∑
i

(ŷi − yi)
2

▶ For logistic regression, the negative log likelihood

J(w) = −logL(w)

▶ If the cost function is convex we can find a global minimum
using analytic solutions, or search methods such as gradient
descent
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Regularization

▶ To counteract overfitting to the training data, we typically
modify the objective functions to restrict the space of the
parameters

▶ Common regularization methods are
▶ L1 regularization minimize

J(w) + λ∥w∥1

▶ L2 regularization minimize

J(w) + λ∥w∥
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Unsupervised learning

▶ In unsupervised learning, we do not have labels
▶ Our aim is to find useful patterns/structure in the data
▶ Typical unsupervised methods include

▶ Clustering: find related groups of instances
▶ Density estimation: find a probability distribution that explains

the data
▶ Dimensionality reduction: find a accurate/useful lower

dimensional representation of the data
▶ Evaluation is difficult: we do not have ‘true’ labels/values
▶ Sometimes unsupervised methods can be used in conjunction

with the supervised methods
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Clustering

▶ Our aim is to find groups of instances/items that are similar
to each other

▶ Clustering similar languages, dialects, documents,
users/authors …

▶ The distance measure is important (but also application
specific)

▶ Clustering can be hierarchical or non-hierarchical
▶ Clustering can be bottom-up (agglomerative) or top-down

(divisive)
▶ For most (useful) problems we cannot find globally optimum

solutions, we often rely on greedy algorithms finding local
optima.
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Clustering example in two dimensions

x1

x2

▶ Unlike classification we do
not have labels

▶ We want to find ‘natural’
groups in the data

▶ Intuitively, similar or closer
data points are grouped
together
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Similarity and distance

▶ The notion of distance (similarity) is very important in
clustering. A distance measure D,

▶ is symmetric: D(a,b) = D(b,a)
▶ non-negative: D(a,b) ⩾ 0 for all a,b, and it D(a,b) = 0 iff

a = b
▶ obeys triangle inequality: D(a,b) +D(b, c) ⩾ D(a, c)

▶ The choice of distance is application specific
▶ A few common choices:

▶ Euclidean distance: ∥a− b∥ =
√∑k

j=1(aj − bj)2

▶ Manhattan distance: ∥a− b∥1 =
∑k

j=1|aj − bj|

▶ We will often face with defining distance measures between
linguistic units (letters, words, sentences, documents, …)
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How to do clustering
Most clustering algorithms try to minimize the scatter within each
cluster. Which is equivalent to maximizing the scatter between
clusters

x1

x2

1

2

K∑
k=1

∑
C(a)=k

∑
C(b)=k

d(a,b)

▶

1

2

K∑
k=1

∑
C(a)=k

∑
C(b) ̸=k

d(a,b)

Exact solution (finding global optimum) is not possible for realistic
data. We use methods that find a local minimum.
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K-means clustering

K-means is a popular method for clustering.
1. Randomly choose centroids, m1, . . . ,mK, representing K

clusters
2. Repeat until convergence

▶ Assign each data point to the cluster of the nearest centroid
▶ Re-calculate the centroid locations based on the assignments

Effectively, we are finding a local minimum of the sum of squared
Euclidean distance within each cluster

1

2

K∑
k=1

∑
C(a)=k

∑
C(b)=k

∥a− b∥2
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K-means clustering: visualization

0 1 2 3 4 5

0
1

2
3

4
5

▶ The data
▶ Set cluster centroids

randomly
▶ Assign data points to

closest centroid
▶ Recalculate the

centroids
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K-means: issues

▶ K-means requires the data points to be on an Euclidean space
▶ K-means is sensitive to outliers
▶ The results are highly sensitive to initialization

▶ There are some smarter ways to select initial points
▶ One can do multiple initializations, and pick the best (with

lowest within-group squares)
▶ It works well with approximately equal sized round shaped

clusters
▶ We need to specify number of clusters in advance
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How many clusters?

▶ The number of clusters is defined for some problems, e.g.,
classifying news into a fixed set of topics/interests

▶ For others, there is no clear way to select the best number of
clusters

▶ The error (within cluster scatter) always decreases with
increasing number of clusters, using a test set or cross
validation is not useful either

▶ A common approach is clustering for multiple K values, and
picking where there is an ‘elbow’ in the graph against the
error function
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How many clusters?

K

J(w)

1 2 3 4 5 6 7 8 9

40

80

120

160
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K-medoids

▶ K-means requires the data to be on an Euclidean space
▶ Sometimes, we only have distances between the data points,

the features do not lie in an Euclidean space
▶ K-medoids algorithm is an alternation of K-means
▶ Instead of calculating centroids, we try to find most typical

data point at each iteration
▶ It is less sensitive to outliers
▶ It is computationally more expensive than K-means
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Density estimation

▶ K-means treats all data points in a cluster equally
▶ A ‘soft’ version of K-means is density estimation for Gaussian

mixtures, where
▶ We assume the data comes from a mixture of K Gaussian

distributions
▶ We try to find the parameters of each distribution that

maximizes the probability of the data
▶ Unlike K-means, mixture of Gaussians assigns probabilities for

each data point belonging to one of the clusters
▶ It is typically estimated using the expectation-maximization

(EM) algorithm
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Density estimation using the EM algorithm

▶ The EM algorithm (or its variations) is used in many
(unsupervised) learning models with latent/hidden variables

▶ It is closely related to the K-means algorithm

1. Randomly initialize the parameters of K Gaussian distributions
(µ,Σ)

2. Iterate until convergence:
E-step Compute probability of each data point belonging to each

cluster, given the parameters
M-step Re-estimate the mixture density parameters using the

probabilities estimated in the E-step

Ç. Çöltekin, SfS / University of Tübingen May 24, 2016 20 / 40



Practical matters Summary Introduction Clustering K-means Mixture densities Hierarchical clustering PCA

Hierarchical clustering
▶ Instead of flat division to clusters as in K-means, hierarchical

clustering builds a hierarchy based on similarity of the data
points

▶ There are two main ‘modes of operation’:
Bottom-up or agglomerative clustering starts with individual data points,

and merges until a single root node is reached
Top-down or divisive clustering starts with a single cluster, and splits until

all leaves are single data points
▶ Hierarchical clustering operates on differences
▶ The result is a binary tree called dendrogram
▶ Dendrogram are easy to interpret (especially if data is

hierarchical)
▶ The algorithm does not commit to the number of clusters K

from the start, dendrogram could be ‘cut’ at any height for a
particular number of clusters
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Agglomerative clustering

1. Compute the
similarity/distance matrix

2. Assign each data point to its
own cluster

3. Repeat until no cluster left
to merge

▶ Pick two clusters that are
most similar to each other

▶ Merge them into a single
cluster

1 2 3 4 5
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Agglomerative clustering demonstration

1 2 3 4 5
x1

x2

1 2

3

4

5
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How to calculate between cluster distances

Complete maximal inter-cluster
distance

Single minimal inter-cluster
distance

Average mean inter-cluster
distance

Centroid distance between the
centroids

x1

x2

1 2

3

4

5

Note: single linkage tends to produce unbalanced trees.
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Clustering: some closing notes

▶ We do not have proper evaluation procedures for clustering
results (for unsupervised learning in general)

▶ Clustering is typically unstable, slight changes in the data or
parameter choices may change the results drastically

▶ Approaches against instability include some validation
methods, or producing ‘probabilistic’ dendrograms by running
clustering with different options
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Principal component Analysis

▶ Principal component analysis (PCA) is a method for
dimensionality reduction

▶ PCA maps the original data into a lower dimensional space by
a linear transformation (rotation)

▶ The transformed variables retain most of the variation
(=information) in the input

▶ PCA can be used for
▶ visualization
▶ data compression
▶ reducing dimensionality of the input for use in supervised

methods
▶ eliminating noise
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PCA: A toy example

x1

x2

p1

p2

p3

-4

-4

-3

-3

-2

-2

-1

-1 00

1

1

2

2

3

3

4

4

Questions:
▶ How many dimensions do we

have?
▶ How many dimensions do we

need?

▶ Short divergence: calculate
the covariance matrix

Σ =
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PCA: A toy example (2)
x1

x2

p1

p2

p3

-4
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-1 00
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4What if we reduce the data to:

z1

z2
p1 p2 p3

-5 0 5

Going back to the original coordinates is easy, rotate using:

A =

[
cos θ − sin θ
sin θ cos θ

]
=

[
3
5

−4
5

4
5

3
5

]

p1 = A×
[
−5

0

]
=

[
−3

−4

]
p1 = A×

[
0

0

]
=

[
0

0

]
p1 = A×

[
5

0

]
=

[
3

4

]
We can recover the original points perfectly. In this example the
inherent dimensionality of the data is only 1.
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PCA: A toy example (2)
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A =

[
cos θ − sin θ
sin θ cos θ

]
=

[
3
5

−4
5

4
5

3
5

]

p1 = A×
[
−5

0

]
=

[
−3

−4

]
p1 = A×

[
0

0

]
=

[
0

0

]
p1 = A×

[
5

0

]
=

[
3

4

]
We can recover the original points perfectly. In this example the
inherent dimensionality of the data is only 1.
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PCA: A toy example (2)
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PCA: A toy example (2)
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We can recover the original points perfectly. In this example the
inherent dimensionality of the data is only 1.
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PCA: A toy example (3)
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▶ What if the variables were
not perfectly but strongly
correlated?

▶ We could still do a similar
transformation:

z1

z2
p1 p2 p3

-5 0 5

▶ Discarding z2 results in a
small reconstruction error:

p1 = A×
[
−5

0

]
=

[
−3

−4

]
▶ Note: z1 (also z2) is a linear

combination of original
variables
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Why do we want to reduce the dimensionality

▶ Visualizing high-dimensional data becomes possible
▶ If we use the data for supervised learning, we avoid ‘the curse

of dimensionality’
▶ Decorrelation is useful in some applications
▶ We compress the data (in a lossy way)
▶ We eliminate noise (assuming a high signal to noise ratio)
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Different views on PCA

x1

x2 PC1 ▶ Find the direction of the
largest variance

▶ Find the projection with the
least reconstruction error

▶ Find a lower dimensional
latent Gaussian variable
such that the observed
variable is a mapping of the
latent variable to a higher
dimensional space (with
added noise).
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How to find PCs

▶ When viewed as maximizing variance or reducing the
construction error, we can write the appropriate objective
function and find the vectors that minimize it

▶ In latent variable interpretation, we can use EM as in
estimating mixtures of Gaussians

▶ It turns out, the principle components are the eigenvectors of
the correlation matrix, where large eigenvalues correspond to
components with large variation

▶ A numerically stable way to obtain principal components is
doing singular value decomposition (SVD) on the input data
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PCA as matrix factorization (eigenvalue decomposition)
▶ One can compute PCA by decomposing the covariance matrix

as (note Σ = XTX)
Σ = UΛUT

▶ the columns of U are the principal components (eigenvectors)
▶ Λ is a diagonal matrix of eigenvalues

▶ Another option is SVD, which factorizes the input vector
(k variables × n data points) as

X = UDV∗

▶ U (k× k) contains the eigenvectors as before,
▶ D (k× k) diagonal matrix D2 = Λ
▶ V∗ is a k× n unitary matrix

* The above is correct for standardized variables, otherwise the formulas get slightly more complicated.
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A practical example
(with simplified/fake data)

▶ Our data consists of ‘measurements’ from speech signal of
instances of two vowels, we have 12 measurements for each
vowel instance


5.19 4.33 14.76 30.08 14.73 7.06 15.56 24.46 8.51 . . .
2.99 5.25 11.69 19.27 18.02 11.04 13.34 38.13 8.70 . . .
6.25 6.05 13.88 19.26 17.81 6.95 12.58 39.74 9.58 . . .
7.24 5.43 15.15 18.93 15.69 10.18 14.89 34.86 10.03 . . .
6.07 6.27 13.34 17.60 19.98 11.04 13.28 36.02 8.66 . . .

. . .


▶ How do we visualize this data?
▶ Are all 12 variables useful?

Ç. Çöltekin, SfS / University of Tübingen May 24, 2016 34 / 40



Practical matters Summary Introduction Clustering K-means Mixture densities Hierarchical clustering PCA

A practical example
Visualizing with pairwise scatter plots
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A practical example
Plotting the first two principal components
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A practical example
Biplot
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A practical example
How many components to keep? (scree plot)
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Some practical notes on PCA

▶ Variables need to be centered
▶ Scales of the variables matter, standardizing may be a good

idea depending on the units/scales of the individual variables
▶ The sign of the principal component (vector) is not important
▶ If there are more variables than the data points, we can still

calculate the principal components, but there will be at most
n− 1 PCs

▶ PCA will be successful if variables are linearly correlated, there
are extensions for dealing with nonlinearities (e.g., kernel
PCA, ICA)
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Unsupervised learning: a summary (so far)

▶ In unsupervised learning, we do not have labels. Our aim is to
find/exploit (latent) structure in the data

▶ We studied a number of related methods
Clustering finds groups in the data

Mixture densities are a ‘soft’ version of the clustering,
assuming data is generated by a number of
distributions

Dimensionality reduction methods try to summarize the data
with fewer variables/dimensions

▶ The evaluation of unsupervised methods are problematic,
without knowing what we should exactly find in the data
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Exercises with unsupervised learning

You can find the data set we will use on the course web page. The
data a matrix with a phoneme on each row, and a context on each
column. The cells are counts of the phoneme observed in the
indicated context.

▶ Try both k-means and hierarchical clustering on the data set
▶ You can use

▶ R: kmeans and hclust (you also need dist for calculating
distances)

▶ Python/sklearn: sklearn.cluster in python
▶ You may want to compare your results with IPA chart to see

the clustering you observe has any linguistic basis
▶ Try different hierarchical clustering methods
▶ Try with and without normalization of the counts
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Derivation of PCA by maximizing the variance

▶ We focus on the first PC (z1), which maximizes the variance
of the data onto itself

▶ We are interested only on the direction, so we choose z1 to be
a unit vector (∥z1∥ = 1)

▶ Remember that to project a vector onto another we simply
use dot product, So the projected data points are zxi for
i = 1, . . . ,N.

▶ The variance of the projected data points (that we want to
maximize) is,

σz1
=

1

N

N∑
i

(z1xi − z1x̄i)
2 = zT1Σz

where Σx is the covariance matrix of the unprojected data
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Derivation of PCA by maximizing the variance (cont.)
▶ The problem becomes maximize

zT1Σz

with the constraint ∥z1∥ = zT1z1 = 1

▶ Turning it into a unconstrained optimization problem with
Lagrange multipliers, we minimize

zT1Σz+ λ1(1− zT1z1)

▶ Taking the derivative and setting it to 0 gives us

Σz1 = λ1z1

Note: by definition, z1 is an eigenvector of Σ, and λ1 is the
corresponding eigenvalue

▶ z1 is the first principal component, we can now compute the
second principal component with the constraint that it has to
be orthogonal to the first one

Ç. Çöltekin, SfS / University of Tübingen May 24, 2016 A.3


	Machine Learning for Computational Linguistics
	Practical matters
	Homework 1
	Projects

	A short summary so far
	Supervised learning
	Supervised learning: regression
	Supervised learning: classification
	Supervised learning: estimating parameters
	Regularization

	Unsupervised learning
	Unsupervised learning

	Clustering
	Clustering
	Clustering example in two dimensions
	Clustering example in two dimensions
	Similarity and distance
	Similarity and distance
	How to do clustering
	How to do clustering
	How to do clustering

	K-means
	K-means clustering
	K-means clustering: visualization
	K-means clustering: visualization
	K-means clustering: visualization
	K-means clustering: visualization
	K-means clustering: visualization
	K-means clustering: visualization
	K-means clustering: visualization
	K-means clustering: visualization
	K-means: issues
	How many clusters?
	How many clusters?
	K-medoids

	Mixture densities and EM algorithm
	Density estimation
	Density estimation using the EM algorithm

	Hierarchical clustering
	Hierarchical clustering
	Agglomerative clustering
	Agglomerative clustering demonstration
	Agglomerative clustering demonstration
	Agglomerative clustering demonstration
	Agglomerative clustering demonstration
	Agglomerative clustering demonstration
	How to calculate between cluster distances
	How to calculate between cluster distances
	How to calculate between cluster distances
	How to calculate between cluster distances
	How to calculate between cluster distances
	How to calculate between cluster distances
	Clustering: some closing notes

	Principal Component Analysis
	Principal component Analysis
	PCA: A toy example
	PCA: A toy example
	PCA: A toy example
	PCA: A toy example
	PCA: A toy example (2)
	PCA: A toy example (2)
	PCA: A toy example (2)
	PCA: A toy example (2)
	PCA: A toy example (3)
	Why do we want to reduce the dimensionality 
	Different views on PCA
	Different views on PCA
	Different views on PCA
	How to find PCs
	PCA as matrix factorization (eigenvalue decomposition)
	A practical example
	A practical example
	A practical example
	A practical example
	A practical example
	Some practical notes on PCA
	Unsupervised learning: a summary (so far)


	Appendix
	Exercises with unsupervised learning
	Derivation of PCA by maximizing the variance
	Derivation of PCA by maximizing the variance



