python intro exercises

kuan yu!

<2017-04-18 Tue>

Ykuan.yu@student.uni-tuebingen.de

1/8



exercise 1

ptb_tags = "CC CD DT EX FW IN JJ JJR JJS " \
"LS MD NN NNS NNP NNPS PDT POS PRP " \
"PRP$ RB RBR RBS RP SYM TO UH VB " \
"VBD VBG VBN VBP VBZ WDT WP WP$ WRB "

the variable ptb_tags is a single string (this is how you break a
string on multiple lines), containing 36 part-of-speech tags in the
penn-treebank tagset.

2/8



encode categorical values

a list represents a mapping from integers (the indices) to its

elements, and a dict represents a mapping from its keys to values.

exercise 1.1 idx2tag : int — str

create a lzst named idz2tag with the tags in ptb_tags, such
that:

assert 36 == len(idx2tag)

assert ’SYM’ == idx2tag[24]

assert 24 == idx2tag.index(’SYM’)

exercise 1.2 tag2idx : str — int

create a dict named tag2idz, which inverses 1dz2tag, such that:

assert all(idx == tag2idx[tag]
for idx, tag in enumerate(idx2tag))

3/8



exercise 2

sent = "DT NN PRP MD VBG VBZ RB DT JJ NN , " \
"CC PRP MD VB DT NN VBN IN NN ."

sent is a delexicalized sentence: the words are forgotten, and only
their postags remain.

encode sent

encode sent as a list of integers with tag2idz; beware that sent
may contain some tags not found in ptb_tags, in which case,
update 7dz2tag and tag2idz to accommodate the new tags.

4/8



exercise 3

learn about one-hot encoding:
https://en.wikipedia.org/wiki/One-hot

one_hot
define a function named one_hot which takes two integers idz and
dim as arguments, and returns a one-hot vector, such that:

vec = one_hot(idx, dim)

assert dim == len(vec)
assert 1 == vec[idx]
assert 1 == sum(vec)

5/8


https://en.wikipedia.org/wiki/One-hot

exercise 4

dim = len(tag2idx)
mat = [one_hot(tag2idx[tag], dim) for tag in sent]

mat is a matrix of len(sent) rows and dim columns. the rows
represent the words, and the columns represent the location of this
sentence in the hyperspace of postags.

transpose

transpose mat into a matrix of dimrows and len(sent) columns,
so that the meanings of its rows and its columns are exchanged.

6/8



exercise b

find out how to read & write files in python.

exercise 5.1: save_mat
define a function save_mat for saving matrics in csv format.

exercise 5.2: load_mat
define a function load_mat for loading matrics from csw files.

such that:
path = "mat.csv"
assert mat == load_mat(save_mat(mat, path))

7/8



exercise 60

count the frequencies of each tag in sent, store the results in a
dict named fregq, such that:

all(freqltag]l == sent.count(tag) for tag in sent)

this might help
https://docs.python.org/3/library/collections.html

8/8


https://docs.python.org/3/library/collections.html

	exercise 1
	exercise 2
	exercise 3
	exercise 4
	exercise 5
	exercise 6

