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ML evaluation

Measuring success/failure in regression
Root mean squared error (RMSE)
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y

x

y1

ŷ1
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• Measures average error in the units compatible with the
outcome variable
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Measuring success/failure in regression
Coefficient determination
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ŷi

ȳ
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• r2 is a standardized measure in range [0, 1]

• Indicates the ratio of variance of y explained by x

• For single predictor it is the square of the correlation
coefficient r
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Measuring success in classification
Accuracy

• In classification, we do not care (much) about the average
of the error function

• We are interested in how many of our predictions are
correct

• Accuracy measures this directly

accuracy =
number of correct predictions
total number of predictions
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Accuracy may go wrong

• Think about a ‘dummy’ search engine that always returns
an empty document set (no results found)

• If we have
– 1 000 000 documents
– 1000 relevant documents (including the term in the query)

the accuracy is:

999 000

1 000 000
= 99.90%

• In general, if our class distribution is skewed accuracy will
be a bad indicator of success
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Measuring success in classification
Precision, recall, F-score

precision =
TP

TP + FP

recall = TP

TP + FN

F1-score =
2× precision × recall

precision + recall

true value

positive negative
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neg. FN TNpr
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Example: back to the search engine
• We had a ‘dummy’ search engine that returned false for all

queries
• For a query

– 1 000 000 documents
– 1000 relevant documents

accuracy =
999 000

1 000 000
= 99.90%

precision =
0

1 000 000
= 0%

recall = 0

1 000 000
= 0%

Precision and recall are asymmetric,
the choice of the ‘positive’ class is important.
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Classifier evaluation: another example

Consider the following two classifiers:

true value

positive negative

pos. 7 9

neg. 3 1

true value

positive negative

1 3

9 7pr
ed

ic
te

d

Accuracy both 8/20 = 0.4

Precision 7/16 = 0.44 and 1/4 = 0.25

Recall 7/10 = 0.7 and 1/10 = 0.1

F-score 0.54 and 0.14
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Multi-class evaluation

• For multi-class problems, it is common to report average
precision/recall/f-score

• For C classes, averaging can be done two ways:

precisionM =

∑C
i
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TPi+FPi

C
recallM =
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precisionµ =

∑C
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i TPi + FPi
recallµ =
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i TPi∑C

i TPi + FNi

(M = macro, µ = micro)
• The averaging can also be useful for binary classification, if

there is no natural positive class
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Confusion matrix
• A confusion matrix is often useful for multi-class

classification tasks

true class

a b c

a 10 3 4
b 2 12 8
c 0 7 7pr

ed
ic

te
d

• Are the classes balanced?
• What is the accuracy?
• What is per-class, and averaged precision/recall?
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Precision–recall trade-off

• Increasing precision (e.g.,
by changing a
hyperparameter) results in
decreasing recall

• Precision–recall graphs are
useful for picking the
correct models

• Area under the curve (AUC)
is another indication of
success of a classifier
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Performance metrics a summary

• Accuracy does not reflect the classifier performance when
class distribution is skewed

• Precision and recall are binary and asymmetric
• For multi-class problems, calculating accuracy is

straightforward, but others measures need averaging
• These are just the most common measures: there are more
• You should understand what these metrics measure, and

use/report the metric that is useful for the purpose
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Model selection/evaluation

• Our aim is to fit models that are (also) useful outside the
training data

• Evaluating a model on the training data is wrong: complex
models tend to fit to the noise in the training data

• The results should always be tested on a test set that does
not overlap with the training data

• Test set is ideally used only once - to evaluate the final
model

• Often, we also need to tune the model, e.g., to tune
hyperparameters (e.g., regularization constant)

• Tuning has to be done on a separate development set
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Back to polynomial regression
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Training/test error
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Bias and variance (revisited)
Bias of an estimate is the difference between the value

being estimated, and the expected value of the
estimate

B(ŵ) = E[ŵ] −w

• An unbiased estimator has 0 bias
Variance of an estimate is, simply its variance, the value of

the squared deviations from the mean estimate

var(ŵ) = E
[
(ŵ− E[ŵ])2

]
w is the parameters that define the model

Bias–variance relationship is a trade-off:
models with low bias result in high variance.
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Some issues with bias and variance

• Overfitting occurs when the model learns the
idiosyncrasies of the training data

• Underfitting occurs when the model is not flexible enough
for the data at hand

• Complex models tend to overfit – and exhibit high variance
• Simple models tend to show low variance, but likely to

have (high) bias
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Cross validation

• To avoid overfitting, we want to tune our models on a
development set

• But (labeled) data is valuable
• Cross validation is a technique that uses all the data, for

both training and tuning with some additional effort
• Besides tuning hyper-parameters, we may also want to get

‘average’ parameter estimates over multiple folds
• We may also use cross-validation during testing
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K-fold Cross validation

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Train Dev
Fold 1
Fold 2

• At each fold, we hold part of the data for testing, train the
model with the remaining data

• Typical values for k is 5 and 10
• In stratified cross validation each fold contains

(approximately) the same proportions of class labels.
• A special case, when k is equal to n (the number of data

points is called leave-one-out cross validation

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2017 18 / 20

ML evaluation

The choice of k in k-fold CV

• Increasing k

– reduces the bias: the estimates converge to true value of the
measure (e.g., accuracy) in the limit

– increases the variance: repeated samples produce different
parameter estimates

– is generally computationally expensive

• 5- or 10-fold cross validation is common practice (and
found to have a good balance between bias and variance)
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Summary

The first principle is that you must not fool yourself and you
are the easiest person to fool. – Richard P. Feynman

• The measures of success in ML systems include
– RMSE / r2

– Accuracy
– Precision / recall /

F-score

• We want models with low bias and low variance
• Evaluating ML system requires special care:

– Never use your test set during training / development
– Tuning your system on a development set
– Cross-validation allows efficient use of labeled data

Next:
Fri First graded assignment
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