ML evaluation

Measuring success/failure in regression Root mean squared error (RMSE)

Statistical Natural Language Processing Machine learning: evaluation

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2017

ML evaluation

Measures average error in the units compatible with the outcome variable

ML evaluation

Ç. Çöltekin, SfS / University of Tübingen

Measuring success/failure in regression Coefficient determination

- r² is a standardized measure in range [0, 1]
- Indicates the ratio of variance of y explained by ${\bf x}$

ML evaluation

- For single predictor it is the square of the correlation coefficient r
- Ç. Çöltekin, SfS / University of Tübingen

In classification, we do not care (much) about the average of the error function

Accuracy

- We are interested in how many of our predictions are correct
- · Accuracy measures this directly

Measuring success in classification

 $accuracy = \frac{number \text{ of correct predictions}}{\text{total number of predictions}}$

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 3 / 20

Summer Semester 2017 1 / 20

Measuring success in classification Precision, recall, F-score

TP				
$Precision = {TP + FP}$			true	value
$recall = \frac{TP}{TP + FN}$	p		positive	negative
$2 \times \text{precision} \times \text{recall}$	dicte	pos.	TP	FP
$1-\text{score} = \frac{1}{\text{precision} + \text{recall}}$	orec	neg.	FN	TN

ML evaluation

Ç. Çöltekin, SfS / University of Tübingen

F

Summer Semester 2017 5 / 20

Classifier evaluation: another example

Consider the following two classifiers:

	true value		true value		
ğ	positive	negative		positive	negative
pos.	7	9		1	3
neg.	3	1		9	7

ML evaluation

Accuracy both 8/20 = 0.4Precision 7/16 = 0.44 and 1/4 = 0.25Recall 7/10 = 0.7 and 1/10 = 0.1F-score 0.54 and 0.14

Accuracy may go wrong

- Think about a 'dummy' search engine that always returns an empty document set (no results found)
- If we have
 - 1000000 documents

 1000 relevant documents (including the term in the query) the accuracy is:

$$\frac{999\,000}{1\,000\,000} = 99.90\,\%$$

• In general, if our class distribution is *skewed* accuracy will be a bad indicator of success

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 4 / 20

Summer Semester 2017 2 / 20

C

- We had a 'dummy' search engine that returned false for all queries
- For a query
 - 1 000 000 documents
 - 1000 relevant documents

Example: back to the search engine

ML evaluation

accuracy = $\frac{999\,000}{1\,000\,000}$ = 99.90 % precision = $\frac{0}{1\,000\,000}$ = 0 % recall = $\frac{0}{1\,000\,000}$ = 0 %

Precision and recall are asymmetric, the choice of the 'positive' class is important.

Ç. Çöltekin, SfS / University of Tübingen

Multi-class evaluation

- For multi-class problems, it is common to report average precision/recall/f-score
- For C classes, averaging can be done two ways:

ML evaluation

$$\begin{split} \text{precision}_{M} &= \frac{\sum_{i}^{C} \frac{\text{TP}_{i}}{\text{TP}_{i} + \text{FP}_{i}}}{C} \qquad \text{recall}_{M} = \frac{\sum_{i}^{C} \frac{\text{TP}_{i}}{\text{TP}_{i} + \text{FN}_{i}}}{C} \\ \text{precision}_{\mu} &= \frac{\sum_{i}^{C} \text{TP}_{i}}{\sum_{i}^{C} \text{TP}_{i} + \text{FP}_{i}} \qquad \text{recall}_{\mu} = \frac{\sum_{i}^{C} \text{TP}_{i}}{\sum_{i}^{C} \text{TP}_{i} + \text{FN}_{i}} \end{split}$$

 $(M = macro, \mu = micro)$

• The averaging can also be useful for binary classification, if there is no natural positive class

Ç. Çöltekin, SfS / University of Tübingen

uation

Precision–recall trade-off

- Increasing precision (e.g., by changing a hyperparameter) results in decreasing recall
- Precision-recall graphs are useful for picking the correct models
- Area under the curve (AUC) is another indication of success of a classifier

ner Semester 2017

10 / 20

stor 2017

Ç. Çöltekin, SfS / University of Tübingen

Model selection/evaluation

- Our aim is to fit models that are (also) useful outside the training data
- Evaluating a model on the training data is wrong: complex models tend to fit to the noise in the training data
- The results should always be tested on a test set that does not overlap with the training data
- Test set is ideally used only once to evaluate the final model
- Often, we also need to tune the model, e.g., to tune *hyperparameters* (e.g., regularization constant)

ML evaluation

• Tuning has to be done on a separate development set

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 12 / 20

Training/test error

• A confusion matrix is often useful for multi-class classification tasks

		true		
		а	b	с
ted	а	10	3	4
dic	b	2	12	8
pre	с	0	7	7

Are the classes balanced?

- What is the accuracy?
- What is per-class, and averaged precision/recall?

ML evaluation

Ç. Çöltekin, SfS / University of Tübingen

Performance metrics a summary

- Accuracy does not reflect the classifier performance when class distribution is skewed
- Precision and recall are binary and asymmetric

ML evaluation

- For multi-class problems, calculating accuracy is straightforward, but others measures need averaging
- These are just the most common measures: there are more
- You should understand what these metrics measure, and use/report the metric that is useful for the purpose

Ç. Çöltekin, SfS / University of Tübinger

Summer Semester 2017 11 / 20

Summer Semester 2017 9 / 20

Back to polynomial regression

Ç. Çöltekin, SfS / University of Tübinger

Bias and variance (revisited)

Bias of an estimate is the difference between the value being estimated, and the expected value of the estimate

ML evaluation

$$\mathsf{B}(\hat{\boldsymbol{w}}) = \mathsf{E}[\hat{\boldsymbol{w}}] - \boldsymbol{w}$$

• An *unbiased* estimator has 0 bias Variance of an estimate is, simply its variance, the value of the squared deviations from the mean estimate

$$\operatorname{var}(\hat{\boldsymbol{w}}) = \operatorname{E}\left[(\hat{\boldsymbol{w}} - \operatorname{E}[\hat{\boldsymbol{w}}])^2\right]$$

w is the parameters that define the model

Bias-variance relationship is a trade-off: models with low bias result in high variance.

Some issues with bias and variance

Cross validation

• To avoid overfitting, we want to tune our models on a *development set*

ML evaluation

- But (labeled) data is valuable
- Cross validation is a technique that uses all the data, for both training and tuning with some additional effort
- Besides tuning hyper-parameters, we may also want to get 'average' parameter estimates over multiple folds
- · We may also use cross-validation during testing

ML evaluation

• *Overfitting* occurs when the model learns the idiosyncrasies of the training data

ML evaluation

- *Underfitting* occurs when the model is not flexible enough for the data at hand
- Complex models tend to overfit and exhibit high variance
- Simple models tend to show low variance, but likely to have (high) bias

Ç. Çöltekin, SfS / University of Tübingen

Ç. Çöltekin, SfS / University of Tübingen

K-fold Cross validation

Train		Dev
	Fold 1	
	Fold 2	
	Fold 3	
	Fold 4	
	Fold 5	

ML evaluation

- At each fold, we hold part of the data for testing, train the model with the remaining data
- Typical values for k is 5 and 10
- In *stratified* cross validation each fold contains (approximately) the same proportions of class labels.
- A special case, when k is equal to n (the number of data points is called *leave-one-out cross validation*

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 18 / 20

Summer Semester 2017 16 / 20

Summary

The first principle is that you must not fool yourself and you are the easiest person to fool. – Richard P. Feynman

• The measures of success in ML systems include

ML evaluation

- RMSE / r²
 Precision / recall /
 Accuracy
 F-score
- · We want models with low bias and low variance
- Evaluating ML system requires special care:
 - Never use your test set during training / development
 - Tuning your system on a development set
 - Cross-validation allows efficient use of labeled data

Next:

Fri First graded assignment

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 20 / 20

The choice of k in k-fold CV

Increasing k

- reduces the bias: the estimates converge to true value of the
- measure (e.g., accuracy) in the limit – increases the variance: repeated samples produce different parameter estimates
- is generally computationally expensive
- 5- or 10-fold cross validation is common practice (and found to have a good balance between bias and variance)

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 19 / 20

Summer Semester 2017 17 / 20