
Statistical Natural Language Processing Part of speech tagging

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2017

Part of speech tagging

- Part of speech (POS or PoS) tags are morphosyntactic classes of words
- The words belonging to the same POS class share some syntactic and morphological properties

Traditional POS tags

what you learn in (primary?) school

noun apple, chair, book verb go, read, eat adjective blue, happy, nice adverb well, fast, nicely pronoun I, they, mine determiner a, the, some prepositon in, since, past, ago (?) conjunction and, or, since interjection uh, ouch, hey

With minor differences, this list of categories has been around for a long time.

POS tags and tagsets POS tagging

When we say 'traditional' ...

© by Thaves. Distributed from www.thecomics.com.

- The POS tags were around for thousands of years
- POS tags in modern linguistics are based on Greek/Latin linguistic traditions
- But others, e.g., Sanskrit linguists, also proposed POS tags
- The choice POS tags are often language dependent

What are the POS tags good for

- Linguistic theory
- Parsing
- Speech synthesis: pronounce *lead*, *wind*, *object*, *insult* differently based on their POS tag
- The same goes for machine translation
- Information retrieval: if *wug* is a noun, also search for *wugs*
- Text classification: improves many tasks

Open vs. closed class words

Open class words (e.g., nouns) are productive

- new words coined are often in these classes
- we often cannot rely on a fixed lexicon
- they are typically 'content' words

Closed class words (e.g., determiners) are generally static

- the lexicon does not grow
- they are typically 'function' words
- This distinction is often language dependent

Some issues with traditional POS tags

- Not all POS tags are observed in (or theorized for) all languages
- Often finer granularity is necessary
 - book, water and Marry are all nouns, but
 - The book is here
 - * The Marry is here We have water
 - * We have book

POS tagsets in practice

example: Penn treebank tagset

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	"	Left quote	(' or '')
POS	Possessive ending	's	"	Right quote	(' or '')
PRP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),},>)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ; – -)
RP	Particle	up, off			

POS tagsets in practice example 2: STTS tagset

POS	description	examples
KOUI	subordinating conjunction	um [zu leben], anstatt [zu fragen]
KOUS	subordinating conjunction	weil, daß, damit, wenn, ob
KON	coordinative conjunction	und, oder, aber
KOKOM	particle of comparison, no clause	als, wie
NN	noun	Tisch, Herr, [das] Reisen
NE	proper noun	Hans, Hamburg, HSV
PDS	substituting demonstrative	dieser, jener
PIS	substituting indefinite pronoun	keiner, viele, man, niemand
PIAT	attributive indefinite	kein [Mensch], irgendein [Glas]
PIDAT	attributive indefinite	[ein] wenig [Wasser],
PPER	irreflexive personal pronoun	ich, er, ihm, mich, dir
PPOSS	substituting possessive pronoun	meins, deiner
PPOSAT	attributive possessive pronoun	mein [Buch], deine [Mutter]
PRELS	substituting relative pronoun	[der Hund,] der
PRELAT	attributive relative pronoun	[der Mann ,] dessen [Hund]

POS tagset choices

- The choice tagsets depends on the language and application
- Example tag set sizes (for English)
 - Brown corpus, 87 tags
 - Penn treebank 45 tags
 - BNC, 61 tags
- Differences can be large, for Chinese Penn treebank has 34 tags, but tagsets with about 300 tags exist
- For other languages, the choice varies roughly between about 10 to a few hundred

Shift towards more 'universal' tag sets

- The variation in POS tagset choices often makes it difficult to
 - compare alternative approaches
 - use the same tools on different languages of data sets
- There has been a recent trend for 'universal' tag sets
- The result is a smaller POS tag set (back to the tradition)
- But often supplemented with morphological features

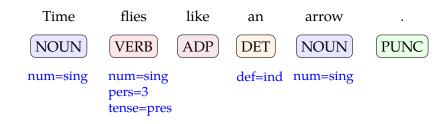
POS tags and tagsets POS tagging

POS tagsets in recent practice

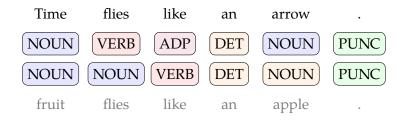
example: Universal Dependencies tag set

ADJ adjective ADP adposition ADV adverb AUX auxiliary CCONJ coordinating conjunction DET determiner INTJ interjection NOUN noun NUM numeral

PART particle PRON pronoun PROPN proper noun PUNCT punctuation SCONJ subordinating conjunction SYM symbol VERB verb X other


Morphological features

- Annotating words with morphological features has been common in (non-English) NLP
- Morphological features give additional sub-categorization information for the word
- For example


nouns typically have a *number* feature verbs typically have *tense*, *aspect*, *modality voice* features adjectives typically have *degree*

• Morphological feature sets change depending on the language (typology)

Morphological features an example

POS tags are ambiguous

POS tagging is essentially an ambiguity resolution problem.

POS tag ambiguity More examples

- Some words are highly ambiguous
- ADJ the back door
- NOUN on our back
 - ADV take it back
 - VERB we will back them
 - The garden-path sentences are often POS ambiguities
 - The old man the boats
 - The horse *raced passed* the barn fell
 - The complex *houses* married and single soldiers and their families

POS tagging: strategies

POS tagging can be solved in a number of different methods

- Rule-based methods: 'constraint grammar' (CG)
- Transformation based: Brill tagger
- Machine-learning approaches Typical statistical approaches involve *sequence learning* methods:
 - Hidden Markov models
 - Conditional random fields
 - (Recurrent) neural networks

Rule-based POS tagging typical approach

- Using a tag lexicon, start with assigning all possible tags to each word
- Eliminate tags based on hand-crafted rules
- Rules typically rely on the words and (potential) tags of the words in the context
- Result is not always full disambiguation, some ambiguity may remain
- Some probabilistic constraints may also be applied

Rule-based POS tagging

an example

1

2

3

4

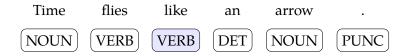
5

• Among others, the word *that* can be SCONJ we know *that* it is bad ADV it is not *that* bad

An example rule for disambiguation (very simplified):

```
if the next word is ADJ, ADV
and the following word is at the sentence boundary
and the previous word is not a verb like 'consider'
then eliminate SCONJ
else eliminate ADV
```

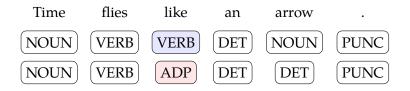
- 2 eliminates non-sentence final ADV
- 3 eliminates cases like I consider that funny.


Transformation based tagging

- The idea:
 - Start with assigning the most probably POS tag to all words
 - Apply a set of rules (similar to CG) from more specific to less specific
- The rules are learned

POS tags and tagsets POS tagging

Transformation based learning


An example

• Start with most likely POS tags: 'like' is more likely to be a VERB than ADP POS tags and tagsets POS tagging

Transformation based learning

An example

- Start with most likely POS tags: 'like' is more likely to be a VERB than ADP
- Apply rule: change VERB to ADP if preceding word is tagged as VERB

Learning in TBL

- 1. Start with most likely tags for each word
- 2. Find the best rule that improves the tagging accuracy,
- 3. Repeat 2 for all possible rules
 - Rules need to be restricted, often templates are used. For example: Change tag x to tag y if
 - the preceding/following word is tagged z
 - the preceding word tagged v and the following word is tagged z
 - the preceding word tagged v and the following word is tagged z and two words before is tagged t

POS tags and tagsets POS tagging

POS tagging using Hidden Markov models (HMM)

- HMMs are probabilistic models
- The probability of a sequence of words, *w* is given the HMM model M

$$P(\boldsymbol{w}|M) = P(\mathbf{t})P(\boldsymbol{w}|\mathbf{t})$$

where t is the tag sequence

- We assume given the tag t, the word is independent of the other words in the sequence
- P(t) follows the Markov assumption
- Most state-of-the-art models are based on HMMs (or similar sequence learning models)
- More on HMMs on Wednesday

POS tagging accuracy

- Tagging each word with the most probable tag gives around 90 % accuracy
- + State-of-the art POS taggers (for English) achieve 95 % –97 %
- Human agreement on annotation also seems to be around 97 %: not a lot of space for improvement
 - at least for well-studied resource-rich languages

Summary

- POS is an old idea in linguistics
- POS tags have uses in both linguistics, and practical applications
- Common methods for automatic POS tagging include
 - rule-based
 - transformation-based
 - statistical (more on this next week)

methods

Next:

- Wed Sequence learning
 - Fri Exercises: classification