Statistical Natural Language Processing

A refresher on probability theory

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2017

Probability theory Some probability distributions Summ

What is probability?

- Probability is a measure of (un)certainty
- We quantify the probability of an event with a number between 0 and 1
 - $0 \ \ \text{the event is impossible}$
 - 0.5 the event is as likely to happen as it is not
 - 1 the event is certain
- The set of all possible outcomes of a trial is called sample space (Ω)
- · An event (E) is a set of outcomes

Axioms of probability state that

- 1. $P(E) \in \mathbb{R}$, $P(E) \geqslant 0$
- 2. $P(\Omega) = 1$
- 3. For disjoint events E_1 and E_2 , $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Ç. Çöltekin, SfS / University of Tübingen

Probability theory Some probability distributions Summary

Where do probabilities come from

Axioms of probability do not specify how to assign probabilities to events.

Two major (rival) ways of assigning probabilities to events are

- Frequentist (objective) probabilities: probability of an event is its relative frequency (in the limit)
- · Bayesian (subjective) probabilities: probabilities are degrees of belief

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 2 / 59

Probability theory Some probability distributions Summary

Random variables

mapping outcomes to real numbers

- Continuous
 - frequency of a sound signal: 100.5, 220.3, 4321.3 ...
- Discrete
 - Number of words in a sentence: 2, 5, 10, ...
 - Whether a review is negative or positive:

Outcome	Negative	Positive		
Value	0	1		

- The POS tag of a word:

Outcome	Noun	Verb	Adj	Adv	
Value	1	2	3	4	
or	10000	01000	00100	00010	

Why probability theory?

But it must be recognized that the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term. — Chomsky (1968)

Probability theory Some probability distributions Summary

Short answer: practice proved otherwise.

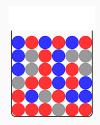
Slightly long answer

- · Many linguistic phenomena are better explained as tendencies, rather than fixed rules
- · Probability theory captures many characteristics of (human) cognition, language is not an exception

Probability theory Some probability distributions Summary

Ç. Çöltekin, SfS / University of Tübingen

What you should already know



- P(•) = ?
- $P(\bullet) = ?$
- P({●, ●}) = ?

P({●, ●, ●}) = ?

Ç. Çöltekin, SfS / University of Tübing

Random variables

- A random variable is a variable whose value is subject to uncertainties
- A random variable is always a number
- Think of a random variable as mapping between the outcomes of a trial to (a vector of) real numbers (a real valued function on the sample space)
- Example outcomes of uncertain experiments
 - height or weight of a person
 - length of a word randomly chosen from a corpus
 - whether an email is spam or not
 - the first word of a book, or first word uttered by a baby

Note: not all of these are numbers

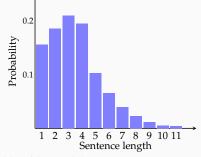
Ç. Çöltekin, SfS / University of Tübingen

Probability theory Some probability distributions Summary

Probability mass function

Example: probabilities for sentence length in words

• Probability mass function (PMF) of a discrete random variable (X) maps every possible (x) value to its probability (P(X = x)).



P(X = x)0.155 0.185 0.210 0.194 0.102 0.066 0.039 0.023 0.012 10 0.005 0.004

Ç. Çöltekin, SfS / University of Tübin

C. Cöltekin, SfS / University of Tübingen

Cumulative distribution function

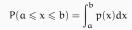
• $F_X(x) = P(X \leqslant x)$

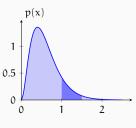
1.0,

Cumulative Probability

Probability density function (PDF)

- · Continuous variables have probability density functions
- p(x) is not a probability (note the notation: we use lowercase p for PDF)
- Area under p(x) sums to 1
- P(X = x) = 0
- Non zero probabilities are possible for ranges:





C. Cöltekin, SfS / University of Tübingen

0.91 0.07 0.04 0.95 0.97 0.02 0.99 0.01 0.99 0.01 1.00

Prob.

0.16

0.18

0.21

0.19

0.10

C. Prob.

0.16

0.34

0.55 0.74

0.85

Length

3 4

5

Probability theory Some probability distributions Summary

4 5 6 7 8 9 10 11 Sentence length

Variance and standard deviation

• Variance of a random variable X is,

$$Var(X) = \sigma^2 = \sum_{i=1}^{n} P(x_i)(x_i - \mu)^2 = E[X^2] - (E[X])^2$$

- It is a measure of spread, divergence from the central
- The square root of variance is called standard deviation

$$\sigma = \sqrt{\left(\sum_{i=1}^{n} P(x_i) x_i^2\right) - \mu^2}$$

- · Standard deviation is in the same units as the values of the random variable
- Variance is not linear: $\sigma_{X+Y}^2 \neq \sigma_X^2 + \sigma_Y^2$ (neither the σ)

Probability theory Some probability distributions Summary

 $P(|x - \mu| > k\sigma) \leq \frac{1}{1.2}$

3σ

0.25 0.11 0.04 0.01

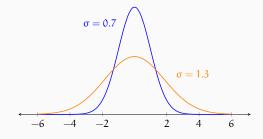
5σ

10σ

Short divergence: Chebyshev's inequality For any probability distribution, and k > 1,

Summer Semester 2017 11 / 59

Example: two distributions with different variances



Ç. Çöltekin, SfS / University of Tübingen

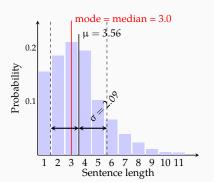
100σ

0.0001

Probability theory Some probability distributions Sum

Mode, median, mean, standard deviation

Visualization on sentence length example



• Mode of 1, 4, 4, 8, 10 is 4

• Median of 1, 4, 5, 8, 10 is 5 • Median of 1, 4, 5, 7, 8, 10 is 6

Modes of 1, 4, 4, 8, 9, 9 are 4 and 9

Mode is the value that occurs most often in the data.

Median and mode of a random variable

Median is the mid-point of a distribution. Median of a random

variable is defined as the number m that satisfies

 $P(X \leqslant m) \geqslant \frac{1}{2} \text{ and } P(X \geqslant m) \geqslant \frac{1}{2}$

• Modes appear as peaks in probability mass (or density)

C. Cöltekin, SfS / University of Tübingen

C. Cöltekin, SfS / University of Tübingen

Expected value

• Expected value (mean) of a random variable X is,

$$E[X] = \mu = \sum_{i=1}^{n} P(x_i) x_i = P(x_1) x_1 + P(x_2) x_2 + \ldots + P(x_n) x_n$$

• More generally, expected value of a function of X is

$$E[f(X)] = \sum_{x} P(x)f(x)$$

- Expected value is an important measure of central tendency
- Note: it is not the 'most likely' value
- Expected value is linear

Ç. Çöltekin, SfS / University of Tübing

 $E[\alpha X + bY] = \alpha E[X] + bE[Y]$

This also shows why standardizing values of random variables,

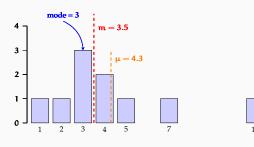
makes sense (the normalized quantity is often called the z-score).

Distance from μ

Probability

Mode, median, mean

sensitivity to extreme values



C. Cöltekin, SfS / University of Tübinger

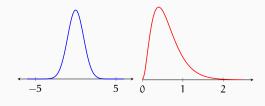
Summer Semester 2017

16 / 59

Probability theory Some probability distributions Summary

Skew

- Another important property of a probability distribution is its skew
- symmetric distributions have no skew
- positively skewed distributions have a long tail on the right
- · negatively skewed distributions have a long left tail



Ç. Çöltekin, SfS / University of Tübingen

Semester 2017

18 / 5

Probability theory Some probability distributions Summary

Joint and marginal probability

Two random variables form a joint probability distribution.

An example: consider the letter bigrams.

	a	b	c	d	e	f	g	h	
a	0.04	0.02	0.02	0.03	0.05	0.01	0.02	0.06	0.23
b	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.04
c	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.05
d	0.02	0.00	0.00	0.01	0.02	0.00	0.01	0.02	0.08
e	0.06	0.02	0.01	0.03	0.08	0.01	0.01	0.07	0.29
f	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.02
g	0.01	0.00	0.00	0.01	0.02	0.00	0.01	0.02	0.07
h	0.08	0.00	0.00	0.01	0.10	0.00	0.01	0.02	0.22
	0.23	0.04	0.05	0.08	0.29	0.02	0.07	0.22	

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017

20 / 59

Probability theory Some probability distributions Summary

Variances of joint distributions

$$\sigma_X^2 = \sum_{x} \sum_{y} P(x, y)(x - \mu_X)^2$$

$$\sigma_Y^2 = \sum_{x} \sum_{y} P(x, y)(y - \mu_Y)^2$$

$$x = \sum_{y} \sum_{y} P(x, y)(x - \mu_Y)(y - \mu_Y)^2$$

 $\sigma_{XY} = \sum_x \sum_y P(x,y) (x-\mu_X) (y-\mu_Y)$

The last quantity is called *covariance* which indicates whether the two variables vary together or not

Again, using vector/matrix notation we can define the covariance matrix (Σ) as

$$\Sigma = E[(x - \mu)^2]$$

Multimodal distributions

- A distribution is multimodal if it has multiple modes
- Multimodal distributions often indicate confounding variables

C. Cöltekin, SfS / University of Tübinger

Summer Semester 20

17 / 5

Another example

A probability distribution over letters

 We have a hypothetical language with 8 letters with the following probabilities

Prob	. 0.23	0.04	0.05	0.08	0.29	0.02	0.07	0.22	
1									
E									
bability 5.0									

a b

Probability theory Some probability distributions Summary

Letter

Expected values of joint distributions

$$\begin{split} E[f(X,Y)] &= \sum_{x} \sum_{y} P(x,y) f(x,y) \\ \mu_{X} &= E[X] = \sum_{x} \sum_{y} P(x,y) x \\ \mu_{Y} &= E[Y] = \sum_{x} \sum_{y} P(x,y) y \end{split}$$

We can simplify the notation by vector notation, for $\boldsymbol{\mu}=(\mu_x,\mu_y),$

$$\mu = \sum_{\mathbf{x} \in XY} \mathbf{x} P(\mathbf{x})$$

where vector \mathbf{x} ranges over all possible combinations of the values of random variables X and Y.

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017

Probability theory Some probability distributions Summary

Covariance and the covariance matrix

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{YX} & \sigma_Y^2 \end{bmatrix}$$

- The diagonal of the covariance matrix contains the variances of the individual variables
- Non-diagonal entries are the covariances of the corresponding variables
- \bullet Covariance matrix is symmetric ($\sigma_{XY} = \sigma_{YX})$
- For a joint distribution of k variables we have a covariance matrix of size $k\times k$

 $\sigma_{XY} = 19.61$

r = 0.96

Correlation: visualization (1)

Correlation

Correlation is a normalized version of covariance

$$r = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$$

Correlation coefficient (r) takes values between -1 and 1

- 1 Perfect positive correlation.
- (0,1) positive correlation: x increases as y increases.
 - 0 No correlation, variables are independent.
- (-1,0) negative correlation: x decreases as y increases.
 - -1 Perfect negative correlation.

Correlation: visualization (2)

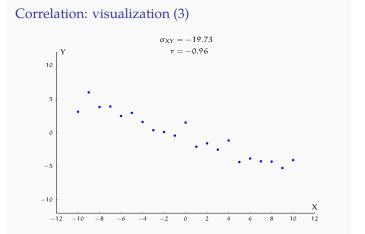
Note: like covariance, correlation is a symmetric measure.

Probability theory Some probability distributions Summ

r = 0.48

Ç. Çöltekin, SfS / University of Tübin

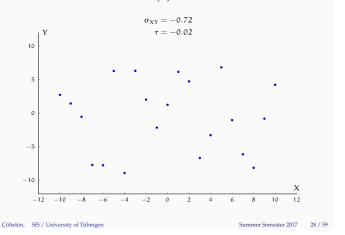
Ç. Çöltekin, SfS / University of Tübi



Correlation: visualization (5)

Correlation: visualization (4)

Ç. Çöltekin, SfS / University of Tübin



Probability theory Some probability distributions Summ

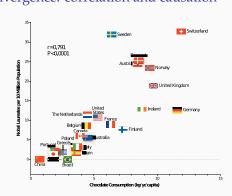
Correlation and independence

- Statistical (in)dependence is an important concept (in ML)
- The covariance (or correlation) of independent random variables is 0
- $\bullet\,$ The reverse is not true: 0 correlation does not imply independence
- Correlation measures a linear dependence (relationship) between two variables, non-linear dependence may not be measured by covariance

r = 0.01

Probability theory Some probability distributions

Short divergence: correlation and causation



From Messerli (2012)

Ç. Çöltekin, SfS / University of Tübin

C. Cöltekin, SfS / University of Tübinger

C. Cöltekin, SfS / University of Tübingen

Conditional probability

In our letter bigram example, given that we know that the first letter is e, what is the probability of second letter being d?

1000	C1 10 C)		, erre p.		,	ccorre	iciter c		•
	a	ь	c	d	e	f	g	h	
a	0.04	0.02	0.02	0.03	0.05	0.01	0.02	0.06	0.23
b	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.04
c	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.05
d	0.02	0.00	0.00	0.01	0.02	0.00	0.01	0.02	0.08
e	0.06	0.02	0.01	0.03	0.08	0.01	0.01	0.07	0.29
f	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.02
g	0.01	0.00	0.00	0.01	0.02	0.00	0.01	0.02	0.07
h	0.08	0.00	0.00	0.01	0.10	0.00	0.01	0.02	0.22
	0.23	0.04	0.05	0.08	0.29	0.02	0.07	0.22	

 $P(L_1 = e, L_2 = d) = 0.025940365$ $P(L_1 = e) = 0.28605090$

$$P(L_2 = d | L_1 = e) = \frac{P(L_1 = e, L_2 = d)}{P(L_1 = e)}$$

Probability theory Some probability distributions Summary

Bayes' rule

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

- · This is a direct result of rules of probability
- It is often useful as it 'inverts' the conditional probabilities
- The term P(X), is called prior
- The term P(Y|X), is called likelihood
- The term P(X|Y), is called posterior

Ç. Çöltekin, SfS / University of Tübingen

Probability theory Some probability distributions Summary

Chain rule

We rewrite the relation between the joint and the conditional probability as

$$P(X,Y) = P(X|Y)P(Y)$$

We can also write the same quantity as,

$$P(X,Y) = P(Y|X)P(X)$$

For more than two variables, one can write

$$P(X,Y,Z) = P(Z|X,Y)P(Y|X)P(X) = P(X|Y,Z)P(Y|Z)P(Z) = \dots$$

In general, for any number of random variables, we can write

$$P(X_1,X_2,\ldots,X_n)=P(X_1|X_2,\ldots,X_n)P(X_2,\ldots,X_n)$$

Probability theory Some probability distributions Summary

Continuous random variables

The rules and quantities we discussed above apply to continuous random variables with some differences

- For continuous variables, P(X = x) = 0
- We cannot talk about probability of the variable being equal to a single real number
- But we can define probabilities of ranges
- For all formulas we have seen so far, replace summation with integrals

Conditional probability (2)

In terms of probability mass (or density) functions,

$$P(X|Y) = \frac{P(X,Y)}{P(Y)}$$

If two variables are independent, knowing the outcome of one does not affect the probability of the other variable:

$$P(X|Y) = P(X) \qquad \qquad P(X,Y) = P(X)P(Y)$$

More notes on notation/interpretation:

P(X = x, Y = y) Probability that X = x and Y = y at the same time (joint probability)

$$P(Y = y)$$
 Probability of $Y = y$, for any value of X $(\sum_{x \in X} P(X = x, Y = y))$ (marginal probability)

$$(\sum_{x \in X} P(X = x, Y = y))$$
 (marginal probability)
 $P(X = x|Y = y)$ Knowing that we $Y = y$, $P(X = x)$ (conditional probability)

Probability theory Some probability distributions Summary

Example application of Bayes' rule

We use a test t to determine whether a patient has condition/illness c

- If a patient has c test is positive 99% of the time: P(t|c) = 0.99
- What is the probability that a patient has c given t?
- ...or more correctly, can you calculate this probability?
- We need to know two more quantities. Let's assume P(c) = 0.00001 and $P(t|\neg c)) = 0.02$

$$P(c|t) = \frac{P(t|c)P(c)}{P(t)} = \frac{P(t|c)P(c)}{P(t|c)P(c) + P(t|\neg c)P(\neg c)} = 0.0005$$

C. Cöltekin, SfS / University of Tübinger

Probability theory Some probability distributions Summary

Conditional independence

If two random variables are conditionally independent:

$$P(X,Y|Z) = P(X|Z)P(Y|Z) \\$$

This is often used for simplifying the statistical models. For example in spam filtering with Naive Bayes classifier, we are interested in

$$\begin{split} P(w_1,w_2,w_3|spam) = \\ P(w_1|w_2,w_3,spam)P(w_2|w_3,spam)P(w_3|spam) \end{split}$$

with the assumption that occurrences of words are independent of each other given we know the email is spam or not,

 $P(w_1, w_2, w_3 | spam) = P(w_1 | spam)P(w_2 | spam)P(w_3 | spam)$

Continuous random variables: some definitions

• Probability of a range:

$$P(a < X < b) = \int_{a}^{b} p(x) dx$$

• Joint probability density

$$p(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X) \\$$

· Marginal probability

$$P(X) = \int_{-\infty}^{\infty} p(x, y) dy$$

C. Cöltekin. SfS / University of Tübingen

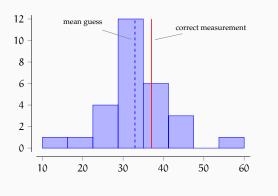
C. Cöltekin. SfS / University of Tübingen

- Outcome, event, sample space
- Random variables: discrete and continuous
- Probability mass function
- Probability density function
- Cumulative distribution function
- Expected value

- · Variance / standard deviation
- Median and mode
- Skewness of a distribution
- Joint and marginal probabilities
- Covariance, correlation
- Conditional probability
- Bayes' rule
- Chain rule

Probability theory Some probability distributions Summary

Your guesses of paper length



Ç. Çöltekin, SfS / University of Tübin

Probability theory Some probability distributions Summ

Probability distributions (cont)

- A probability distribution is called univariate if it was defined on real numbers,
- multivariate probability distributions are defined on vectors
- Probability distributions are abstract mathematical objects (functions that map events/outcomes to probabilities)
- In real life, we often deal with samples
- A probability distribution is generate device: it can generate samples
- Finding most likely probability distribution from a sample is called *inference* (next week)

Ç. Çöltekin, SfS / University of Tübingen

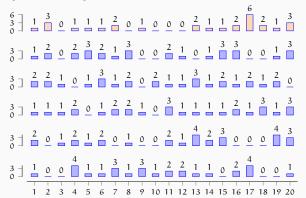
Ç. Çöltekin, SfS / University of Tübinger

 $x \sim Unif(a, b)$

Probability theory Some probability distributions Summary

Samples from a uniform distribution

in comparison to human-generated random numbers



Probability theory Some probability distributions Summary

• Do the numbers really look random?

Probability distributions

Your random numbers

- Some random variables (approximately) follow a distribution that can be parametrized with a number of
- For example, Gaussian (or normal) distribution is conventionally parametrized by its mean (µ) and variance
- Common notation we use for indicating that a variable X follows a particular distribution is

$$X \sim Normal(\mu, \sigma^2) \quad \text{or} \quad X \sim \mathcal{N}(\mu, \sigma^2).$$

• For the rest of this lecture, we will revise some of the important probability distributions

Ç. Çöltekin, SfS / University of Tübinge

Probability theory Some probability distributions Summary

Uniform distribution (discrete)

- A uniform distribution assigns equal probabilities to all values in range [a, b], where a and b are the parameters of the distribution
- Probabilities of the values outside range is 0
- $\sigma_2 = \frac{(b-a+1)^2-1}{12}$
- There is also an analogous continuous uniform distribution

Probability theory Some probability distributions Summary

Bernoulli distribution

Bernoulli distribution characterizes simple random experiments with two outcomes

- Coin flip: heads or tails
- Spam detection: spam or not
- · Predicting gender: female or male

We denote (arbitrarily) one of the possible values with 1 (often called a success), the other with 0 (often called a failure)

$$\begin{split} P(X = 1) &= p \\ P(X = 0) &= 1 - p \\ P(X = k) &= p^k (1 - p)^{1 - k} \\ \mu_X &= p \\ \sigma_X^2 &= p (1 - p) \end{split}$$

• Extension of Bernoulli to k mutually exclusive outcomes

parameters p_1, \dots, p_k (k – 1 independent parameters)

 $Var(x_i) = p_i(1 - p_i)$

• Similar to Bernoulli-binomial generalization, multinomial distribution is the generalization of categorical distribution

• For any k-way event, distribution is parametrized by k

Binomial distribution

Binomial distribution is a generalization of Bernoulli distribution to n trials, the value of the random variable is the number of 'successes' in the experiment

$$\begin{split} P(X=k) &= \binom{n}{k} p^k (1-p)^{n-k} \\ \mu_X &= np \\ \sigma_X^2 &= np(1-p) \end{split}$$

Remember that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

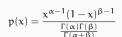
C. Cöltekin, SfS / University of Tübingen

to n trials

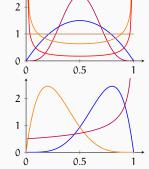
Categorical distribution

Beta distribution

- Beta distribution is defined in range [0, 1]
- It is characterized by two parameters α and β



Gaussian (normal) distribution



Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 51 / 59

Probability theory Some probability distributions Summary

where do we use it

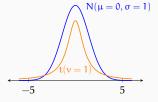
- Particularly important in Bayesian methods as a conjugate
- Dirichlet distribution generalizes Beta to k-dimensional vectors whose components are in range (0,1) and $||x||_1 = 1$.
- Dirichlet distribution is also used often in NLP, e.g., latent Dirichlet allocation is a well know method for topic modeling

Probability theory Some probability distributions Summary

Probability theory Some probability distributions Summary

Student's t-distribution

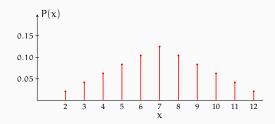
- T-distribution is another important distribution
- It is similar to normal distribution, but it has heavier tails
- It has one parameter: degree of freedom (v)



Probability theory Some probability distributions Summary

Categorical distribution example

sum of the outcomes from roll of two fair dice



Ç. Çöltekin, SfS / University of Tübinger

Beta distribution

- A common use is the random variables whose values are probabilities
- prior of Bernoulli and Binomial distributions

Probability theory Some probability distributions Summary

Short detour: central limit theorem

Central limit theorem (CLT) states that the sum of a large number of independent and identically distributed variables (i.i.d.)is normally distributed.

- · Expected value (average) of means of samples from any distribution will be distributed normally
- Many (inference) methods in statistics and machine learning works because of this fact

Probability theory Some probability distributions Summary

Summary: some keywords

Ç. Çöltekin, SfS / University of Tübinge

- Probability, sample space, outcome, event
- Outcome, event, sample space
- Random variables: discrete and continuous
- Probability mass function
- Probability density function
- Cumulative distribution function
- Expected value
- Variance / standard deviation
- Median and mode

- Skewness of a distribution
- Joint and marginal probabilities
- Covariance, correlation
- Conditional probability
- Bayes' rule
- Chain rule
- Some well-known probability distributions: Bernoulli binomial categorical multinomial beta Dirichlet Gaussian Student's t

Ç. Çöltekin, SfS / University of Tübinge

Further reading

- MacKay (2003) covers most of the topics discussed, in a way quite relevant to machine learning. The complete book is available freely online (see the link below)
- See Grinstead and Snell (2012) a more conventional introduction to probability theory. This book is also freely
- For an influential, but not quite conventional approach, see Jaynes (2007)

Chomsky, Noam (1968). "Quine's empirical assumptions". In: Synthese 19.1, pp. 53–68. DOI: 10.1007/BF00568049.

ISBN: 9780821894149. URL: http://www.dartmouth.edu/-chance/teaching_aids/books_articles/probability_book/book.html.

Jaynes, Edwin T (2007). Probability Theory: The Logic of Science. Ed. by G. Larry Bretthorst. Camb Press. ISBN: 978-05-2159-271-0.

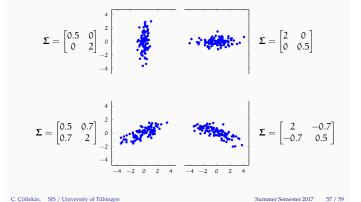
Ç. Çöltekin, SfS / University of Tübingen

Your random numbers

mean and standard deviation $\mu = 12.46$ $\sigma = 6.48$

Probability theory Some probability distributions Summary

Samples from bi-variate normal distributions



Probability theory Some probability distributions Summary

Next

Fri Python / numpy exercises

Mon No class

Wed Information theory

Ç. Çöltekin, SfS / University of Tübinger

Further reading (cont.)

MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Pt 978-05-2164-298-9. URL: http://www.inference.phy.cam.ac.uk/itprnn/book.html.

Messerli, Franz H (2012). "Chocolate consumption, cognitive function, and Nobel laureates". In: The New England journal of medicine 367.16, pp. 1562–1564.

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 A.2