### Statistical Natural Language Processing

A refresher on probability theory

### Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2017

Probability theory Some probability distributions Summ

### What is probability?

- Probability is a measure of (un)certainty
- We quantify the probability of an event with a number between 0 and 1
  - $0 \ \ \text{the event is impossible}$
  - 0.5 the event is as likely to happen as it is not
  - 1 the event is certain
- The set of all possible outcomes of a trial is called sample space  $(\Omega)$
- · An event (E) is a set of outcomes

Axioms of probability state that

- 1.  $P(E) \in \mathbb{R}$ ,  $P(E) \geqslant 0$
- 2.  $P(\Omega) = 1$
- 3. For disjoint events  $E_1$  and  $E_2$ ,  $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Ç. Çöltekin, SfS / University of Tübingen

Probability theory Some probability distributions Summary

### Where do probabilities come from

Axioms of probability do not specify how to assign probabilities to events.

Two major (rival) ways of assigning probabilities to events are

- Frequentist (objective) probabilities: probability of an event is its relative frequency (in the limit)
- · Bayesian (subjective) probabilities: probabilities are degrees of belief

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 2 / 59

Probability theory Some probability distributions Summary

### Random variables

mapping outcomes to real numbers

- Continuous
  - frequency of a sound signal: 100.5, 220.3, 4321.3 ...
- Discrete
  - Number of words in a sentence: 2, 5, 10, ...
  - Whether a review is negative or positive:

| Outcome | Negative | Positive |  |  |
|---------|----------|----------|--|--|
| Value   | 0        | 1        |  |  |

- The POS tag of a word:

| Outcome | Noun  | Verb  | Adj   | Adv   |  |
|---------|-------|-------|-------|-------|--|
| Value   | 1     | 2     | 3     | 4     |  |
| or      | 10000 | 01000 | 00100 | 00010 |  |

### Why probability theory?

But it must be recognized that the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term. — Chomsky (1968)

Probability theory Some probability distributions Summary

Short answer: practice proved otherwise.

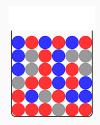
### Slightly long answer

- · Many linguistic phenomena are better explained as tendencies, rather than fixed rules
- · Probability theory captures many characteristics of (human) cognition, language is not an exception

Probability theory Some probability distributions Summary

Ç. Çöltekin, SfS / University of Tübingen

### What you should already know



- P(•) = ?
- $P(\bullet) = ?$
- P({●, ●}) = ?

P({●, ●, ●}) = ?

Ç. Çöltekin, SfS / University of Tübing

### Random variables

- A random variable is a variable whose value is subject to uncertainties
- A random variable is always a number
- Think of a random variable as mapping between the outcomes of a trial to (a vector of) real numbers (a real valued function on the sample space)
- Example outcomes of uncertain experiments
  - height or weight of a person
  - length of a word randomly chosen from a corpus
  - whether an email is spam or not
  - the first word of a book, or first word uttered by a baby

Note: not all of these are numbers

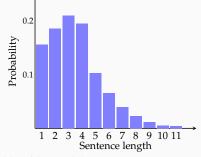
Ç. Çöltekin, SfS / University of Tübingen

Probability theory Some probability distributions Summary

### Probability mass function

Example: probabilities for sentence length in words

• Probability mass function (PMF) of a discrete random variable (X) maps every possible (x) value to its probability (P(X = x)).



P(X = x)0.155 0.185 0.210 0.194 0.102 0.066 0.039 0.023 0.012 10 0.005 0.004

Ç. Çöltekin, SfS / University of Tübin

C. Cöltekin, SfS / University of Tübingen

Cumulative distribution function

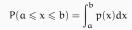
•  $F_X(x) = P(X \leqslant x)$ 

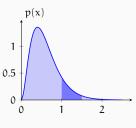
1.0,

Cumulative Probability

### Probability density function (PDF)

- · Continuous variables have probability density functions
- p(x) is not a probability (note the notation: we use lowercase p for PDF)
- Area under p(x) sums to 1
- P(X = x) = 0
- Non zero probabilities are possible for ranges:





C. Cöltekin, SfS / University of Tübingen

0.91 0.07 0.04 0.95 0.97 0.02 0.99 0.01 0.99 0.01 1.00

Prob.

0.16

0.18

0.21

0.19

0.10

C. Prob.

0.16

0.34

0.55 0.74

0.85

Length

3 4

5

Probability theory Some probability distributions Summary

4 5 6 7 8 9 10 11 Sentence length

### Variance and standard deviation

• Variance of a random variable X is,

$$Var(X) = \sigma^2 = \sum_{i=1}^{n} P(x_i)(x_i - \mu)^2 = E[X^2] - (E[X])^2$$

- It is a measure of spread, divergence from the central
- The square root of variance is called standard deviation

$$\sigma = \sqrt{\left(\sum_{i=1}^{n} P(x_i) x_i^2\right) - \mu^2}$$

- · Standard deviation is in the same units as the values of the random variable
- Variance is not linear:  $\sigma_{X+Y}^2 \neq \sigma_X^2 + \sigma_Y^2$  (neither the  $\sigma$ )

Probability theory Some probability distributions Summary

 $P(|x - \mu| > k\sigma) \leq \frac{1}{1.2}$ 

3σ

0.25 0.11 0.04 0.01

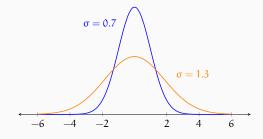
5σ

10σ

Short divergence: Chebyshev's inequality For any probability distribution, and k > 1,

Summer Semester 2017 11 / 59

### Example: two distributions with different variances



Ç. Çöltekin, SfS / University of Tübingen

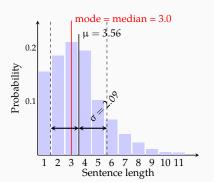
100σ

0.0001

Probability theory Some probability distributions Sum

### Mode, median, mean, standard deviation

Visualization on sentence length example



• Mode of 1, 4, 4, 8, 10 is 4

• Median of 1, 4, 5, 8, 10 is 5 • Median of 1, 4, 5, 7, 8, 10 is 6

Modes of 1, 4, 4, 8, 9, 9 are 4 and 9

Mode is the value that occurs most often in the data.

Median and mode of a random variable

Median is the mid-point of a distribution. Median of a random

variable is defined as the number m that satisfies

 $P(X \leqslant m) \geqslant \frac{1}{2} \text{ and } P(X \geqslant m) \geqslant \frac{1}{2}$ 

• Modes appear as peaks in probability mass (or density)

C. Cöltekin, SfS / University of Tübingen

C. Cöltekin, SfS / University of Tübingen

### Expected value

• Expected value (mean) of a random variable X is,

$$E[X] = \mu = \sum_{i=1}^{n} P(x_i) x_i = P(x_1) x_1 + P(x_2) x_2 + \ldots + P(x_n) x_n$$

• More generally, expected value of a function of X is

$$E[f(X)] = \sum_{x} P(x)f(x)$$

- Expected value is an important measure of central tendency
- Note: it is not the 'most likely' value
- Expected value is linear

Ç. Çöltekin, SfS / University of Tübing

 $E[\alpha X + bY] = \alpha E[X] + bE[Y]$ 

This also shows why standardizing values of random variables,

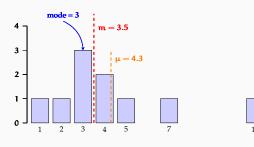
makes sense (the normalized quantity is often called the z-score).

Distance from  $\mu$ 

Probability

### Mode, median, mean

sensitivity to extreme values



C. Cöltekin, SfS / University of Tübinger

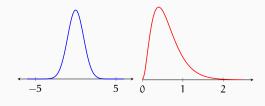
Summer Semester 2017

16 / 59

Probability theory Some probability distributions Summary

### Skew

- Another important property of a probability distribution is its skew
- symmetric distributions have no skew
- positively skewed distributions have a long tail on the right
- · negatively skewed distributions have a long left tail



Ç. Çöltekin, SfS / University of Tübingen

Semester 2017

18 / 5

Probability theory Some probability distributions Summary

### Joint and marginal probability

Two random variables form a joint probability distribution.

An example: consider the letter bigrams.

|   | a    | b    | c    | d    | e    | f    | g    | h    |      |
|---|------|------|------|------|------|------|------|------|------|
| a | 0.04 | 0.02 | 0.02 | 0.03 | 0.05 | 0.01 | 0.02 | 0.06 | 0.23 |
| b | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.04 |
| c | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.05 |
| d | 0.02 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.01 | 0.02 | 0.08 |
| e | 0.06 | 0.02 | 0.01 | 0.03 | 0.08 | 0.01 | 0.01 | 0.07 | 0.29 |
| f | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 |
| g | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.01 | 0.02 | 0.07 |
| h | 0.08 | 0.00 | 0.00 | 0.01 | 0.10 | 0.00 | 0.01 | 0.02 | 0.22 |
|   | 0.23 | 0.04 | 0.05 | 0.08 | 0.29 | 0.02 | 0.07 | 0.22 |      |

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017

20 / 59

Probability theory Some probability distributions Summary

### Variances of joint distributions

$$\sigma_X^2 = \sum_{x} \sum_{y} P(x, y)(x - \mu_X)^2$$

$$\sigma_Y^2 = \sum_{x} \sum_{y} P(x, y)(y - \mu_Y)^2$$

$$x = \sum_{y} \sum_{y} P(x, y)(x - \mu_Y)(y - \mu_Y)^2$$

 $\sigma_{XY} = \sum_x \sum_y P(x,y) (x-\mu_X) (y-\mu_Y)$ 

The last quantity is called *covariance* which indicates whether the two variables vary together or not

Again, using vector/matrix notation we can define the covariance matrix  $(\Sigma)$  as

$$\Sigma = E[(x - \mu)^2]$$

### Multimodal distributions

## 

- A distribution is multimodal if it has multiple modes
- Multimodal distributions often indicate confounding variables

C. Cöltekin, SfS / University of Tübinger

Summer Semester 20

17 / 5

### Another example

A probability distribution over letters

 We have a hypothetical language with 8 letters with the following probabilities

| Prob            | . 0.23 | 0.04 | 0.05 | 0.08 | 0.29 | 0.02 | 0.07 | 0.22 |  |
|-----------------|--------|------|------|------|------|------|------|------|--|
| 1               |        |      |      |      |      |      |      |      |  |
| E               |        |      |      |      |      |      |      |      |  |
| bability<br>5.0 |        |      |      |      |      |      |      |      |  |

a b

Probability theory Some probability distributions Summary

Letter

### Expected values of joint distributions

$$\begin{split} E[f(X,Y)] &= \sum_{x} \sum_{y} P(x,y) f(x,y) \\ \mu_{X} &= E[X] = \sum_{x} \sum_{y} P(x,y) x \\ \mu_{Y} &= E[Y] = \sum_{x} \sum_{y} P(x,y) y \end{split}$$

We can simplify the notation by vector notation, for  $\boldsymbol{\mu}=(\mu_x,\mu_y),$ 

$$\mu = \sum_{\mathbf{x} \in XY} \mathbf{x} P(\mathbf{x})$$

where vector  $\mathbf{x}$  ranges over all possible combinations of the values of random variables X and Y.

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017

Probability theory Some probability distributions Summary

### Covariance and the covariance matrix

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{YX} & \sigma_Y^2 \end{bmatrix}$$

- The diagonal of the covariance matrix contains the variances of the individual variables
- Non-diagonal entries are the covariances of the corresponding variables
- $\bullet$  Covariance matrix is symmetric (  $\sigma_{XY} = \sigma_{YX})$
- For a joint distribution of k variables we have a covariance matrix of size  $k\times k$

 $\sigma_{XY} = 19.61$ 

r = 0.96

Correlation: visualization (1)

### Correlation

Correlation is a normalized version of covariance

$$r = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$$

Correlation coefficient (r) takes values between -1 and 1

- 1 Perfect positive correlation.
- (0,1) positive correlation: x increases as y increases.
  - 0 No correlation, variables are independent.
- (-1,0) negative correlation: x decreases as y increases.
  - -1 Perfect negative correlation.

Correlation: visualization (2)

Note: like covariance, correlation is a symmetric measure.

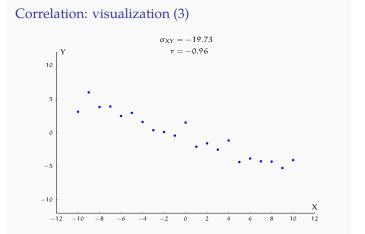
Probability theory Some probability distributions Summ

r = 0.48



Ç. Çöltekin, SfS / University of Tübin

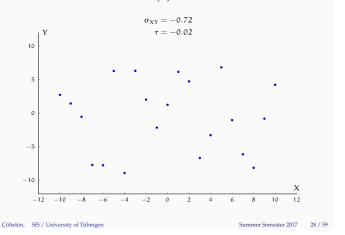
Ç. Çöltekin, SfS / University of Tübi



Correlation: visualization (5)

### Correlation: visualization (4)

Ç. Çöltekin, SfS / University of Tübin



Probability theory Some probability distributions Summ

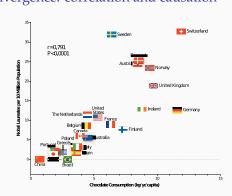
### Correlation and independence

- Statistical (in)dependence is an important concept (in ML)
- The covariance (or correlation) of independent random variables is 0
- $\bullet\,$  The reverse is not true: 0 correlation does not imply independence
- Correlation measures a linear dependence (relationship) between two variables, non-linear dependence may not be measured by covariance

# r = 0.01

Probability theory Some probability distributions

### Short divergence: correlation and causation



From Messerli (2012)

Ç. Çöltekin, SfS / University of Tübin

C. Cöltekin, SfS / University of Tübinger

C. Cöltekin, SfS / University of Tübingen

### Conditional probability

In our letter bigram example, given that we know that the first letter is e, what is the probability of second letter being d?

| 1000 | C1 10 C) |      | , erre p. |      | ,    | ccorre | iciter c |      | •    |
|------|----------|------|-----------|------|------|--------|----------|------|------|
|      | a        | ь    | c         | d    | e    | f      | g        | h    |      |
| a    | 0.04     | 0.02 | 0.02      | 0.03 | 0.05 | 0.01   | 0.02     | 0.06 | 0.23 |
| b    | 0.01     | 0.00 | 0.00      | 0.00 | 0.01 | 0.00   | 0.00     | 0.01 | 0.04 |
| c    | 0.02     | 0.00 | 0.00      | 0.00 | 0.01 | 0.00   | 0.00     | 0.01 | 0.05 |
| d    | 0.02     | 0.00 | 0.00      | 0.01 | 0.02 | 0.00   | 0.01     | 0.02 | 0.08 |
| e    | 0.06     | 0.02 | 0.01      | 0.03 | 0.08 | 0.01   | 0.01     | 0.07 | 0.29 |
| f    | 0.00     | 0.00 | 0.00      | 0.00 | 0.01 | 0.00   | 0.00     | 0.01 | 0.02 |
| g    | 0.01     | 0.00 | 0.00      | 0.01 | 0.02 | 0.00   | 0.01     | 0.02 | 0.07 |
| h    | 0.08     | 0.00 | 0.00      | 0.01 | 0.10 | 0.00   | 0.01     | 0.02 | 0.22 |
|      | 0.23     | 0.04 | 0.05      | 0.08 | 0.29 | 0.02   | 0.07     | 0.22 |      |

 $P(L_1 = e, L_2 = d) = 0.025940365$   $P(L_1 = e) = 0.28605090$ 

$$P(L_2 = d | L_1 = e) = \frac{P(L_1 = e, L_2 = d)}{P(L_1 = e)}$$

Probability theory Some probability distributions Summary

### Bayes' rule

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

- · This is a direct result of rules of probability
- It is often useful as it 'inverts' the conditional probabilities
- The term P(X), is called prior
- The term P(Y|X), is called likelihood
- The term P(X|Y), is called posterior

Ç. Çöltekin, SfS / University of Tübingen

Probability theory Some probability distributions Summary

### Chain rule

We rewrite the relation between the joint and the conditional probability as

$$P(X,Y) = P(X|Y)P(Y)$$

We can also write the same quantity as,

$$P(X,Y) = P(Y|X)P(X)$$

For more than two variables, one can write

$$P(X,Y,Z) = P(Z|X,Y)P(Y|X)P(X) = P(X|Y,Z)P(Y|Z)P(Z) = \dots$$

In general, for any number of random variables, we can write

$$P(X_1,X_2,\ldots,X_n)=P(X_1|X_2,\ldots,X_n)P(X_2,\ldots,X_n)$$

Probability theory Some probability distributions Summary

### Continuous random variables

The rules and quantities we discussed above apply to continuous random variables with some differences

- For continuous variables, P(X = x) = 0
- We cannot talk about probability of the variable being equal to a single real number
- But we can define probabilities of ranges
- For all formulas we have seen so far, replace summation with integrals

### Conditional probability (2)

In terms of probability mass (or density) functions,

$$P(X|Y) = \frac{P(X,Y)}{P(Y)}$$

If two variables are independent, knowing the outcome of one does not affect the probability of the other variable:

$$P(X|Y) = P(X) \qquad \qquad P(X,Y) = P(X)P(Y)$$

More notes on notation/interpretation:

P(X = x, Y = y) Probability that X = x and Y = y at the same time (joint probability)

$$P(Y = y)$$
 Probability of  $Y = y$ , for any value of  $X$   $(\sum_{x \in X} P(X = x, Y = y))$  (marginal probability)

$$(\sum_{x \in X} P(X = x, Y = y))$$
 (marginal probability)  
  $P(X = x|Y = y)$  Knowing that we  $Y = y$ ,  $P(X = x)$  (conditional probability)

Probability theory Some probability distributions Summary

### Example application of Bayes' rule

We use a test t to determine whether a patient has condition/illness c

- If a patient has c test is positive 99% of the time: P(t|c) = 0.99
- What is the probability that a patient has c given t?
- ...or more correctly, can you calculate this probability?
- We need to know two more quantities. Let's assume P(c) = 0.00001 and  $P(t|\neg c)) = 0.02$

$$P(c|t) = \frac{P(t|c)P(c)}{P(t)} = \frac{P(t|c)P(c)}{P(t|c)P(c) + P(t|\neg c)P(\neg c)} = 0.0005$$

C. Cöltekin, SfS / University of Tübinger

Probability theory Some probability distributions Summary

### Conditional independence

If two random variables are conditionally independent:

$$P(X,Y|Z) = P(X|Z)P(Y|Z) \\$$

This is often used for simplifying the statistical models. For example in spam filtering with Naive Bayes classifier, we are interested in

$$\begin{split} P(w_1,w_2,w_3|spam) = \\ P(w_1|w_2,w_3,spam)P(w_2|w_3,spam)P(w_3|spam) \end{split}$$

with the assumption that occurrences of words are independent of each other given we know the email is spam or not,

 $P(w_1, w_2, w_3 | spam) = P(w_1 | spam)P(w_2 | spam)P(w_3 | spam)$ 

### Continuous random variables: some definitions

• Probability of a range:

$$P(a < X < b) = \int_{a}^{b} p(x) dx$$

• Joint probability density

$$p(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X) \\$$

· Marginal probability

$$P(X) = \int_{-\infty}^{\infty} p(x, y) dy$$

C. Cöltekin. SfS / University of Tübingen

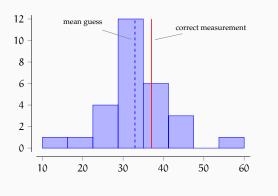
C. Cöltekin. SfS / University of Tübingen

- Outcome, event, sample space
- Random variables: discrete and continuous
- Probability mass function
- Probability density function
- Cumulative distribution function
- Expected value

- · Variance / standard deviation
- Median and mode
- Skewness of a distribution
- Joint and marginal probabilities
- Covariance, correlation
- Conditional probability
- Bayes' rule
- Chain rule

### Probability theory Some probability distributions Summary

### Your guesses of paper length



Ç. Çöltekin, SfS / University of Tübin

Probability theory Some probability distributions Summ

### Probability distributions (cont)

- A probability distribution is called univariate if it was defined on real numbers,
- multivariate probability distributions are defined on vectors
- Probability distributions are abstract mathematical objects (functions that map events/outcomes to probabilities)
- In real life, we often deal with samples
- A probability distribution is generate device: it can generate samples
- Finding most likely probability distribution from a sample is called *inference* (next week)

Ç. Çöltekin, SfS / University of Tübingen

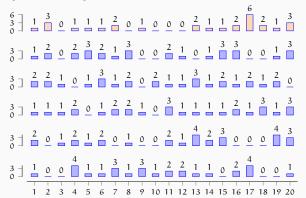
Ç. Çöltekin, SfS / University of Tübinger

 $x \sim Unif(a, b)$ 

### Probability theory Some probability distributions Summary

### Samples from a uniform distribution

in comparison to human-generated random numbers



### Probability theory Some probability distributions Summary

• Do the numbers really look random?

### Probability distributions

Your random numbers

- Some random variables (approximately) follow a distribution that can be parametrized with a number of
- For example, Gaussian (or normal) distribution is conventionally parametrized by its mean (µ) and variance
- Common notation we use for indicating that a variable X follows a particular distribution is

$$X \sim Normal(\mu, \sigma^2) \quad \text{or} \quad X \sim \mathcal{N}(\mu, \sigma^2).$$

• For the rest of this lecture, we will revise some of the important probability distributions

Ç. Çöltekin, SfS / University of Tübinge

Probability theory Some probability distributions Summary

### Uniform distribution (discrete)

- A uniform distribution assigns equal probabilities to all values in range [a, b], where a and b are the parameters of the distribution
- Probabilities of the values outside range is 0
- $\sigma_2 = \frac{(b-a+1)^2-1}{12}$
- There is also an analogous continuous uniform distribution



Probability theory Some probability distributions Summary

### Bernoulli distribution

Bernoulli distribution characterizes simple random experiments with two outcomes

- Coin flip: heads or tails
- Spam detection: spam or not
- · Predicting gender: female or male

We denote (arbitrarily) one of the possible values with 1 (often called a success), the other with 0 (often called a failure)

$$\begin{split} P(X = 1) &= p \\ P(X = 0) &= 1 - p \\ P(X = k) &= p^k (1 - p)^{1 - k} \\ \mu_X &= p \\ \sigma_X^2 &= p (1 - p) \end{split}$$

• Extension of Bernoulli to k mutually exclusive outcomes

parameters  $p_1, \dots, p_k$  (k – 1 independent parameters)

 $Var(x_i) = p_i(1 - p_i)$ 

• Similar to Bernoulli-binomial generalization, multinomial distribution is the generalization of categorical distribution

• For any k-way event, distribution is parametrized by k

### Binomial distribution

Binomial distribution is a generalization of Bernoulli distribution to n trials, the value of the random variable is the number of 'successes' in the experiment

$$\begin{split} P(X=k) &= \binom{n}{k} p^k (1-p)^{n-k} \\ \mu_X &= np \\ \sigma_X^2 &= np(1-p) \end{split}$$

Remember that  $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ .

C. Cöltekin, SfS / University of Tübingen

to n trials

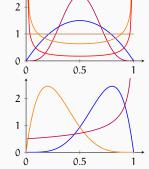
Categorical distribution

### Beta distribution

- Beta distribution is defined in range [0, 1]
- It is characterized by two parameters  $\alpha$  and  $\beta$



Gaussian (normal) distribution



Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 51 / 59

Probability theory Some probability distributions Summary

where do we use it

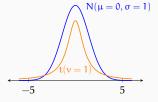
- Particularly important in Bayesian methods as a conjugate
- Dirichlet distribution generalizes Beta to k-dimensional vectors whose components are in range (0,1) and  $||x||_1 = 1$ .
- Dirichlet distribution is also used often in NLP, e.g., latent Dirichlet allocation is a well know method for topic modeling

Probability theory Some probability distributions Summary

Probability theory Some probability distributions Summary

### Student's t-distribution

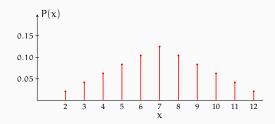
- T-distribution is another important distribution
- It is similar to normal distribution, but it has heavier tails
- It has one parameter: degree of freedom (v)



Probability theory Some probability distributions Summary

### Categorical distribution example

sum of the outcomes from roll of two fair dice



Ç. Çöltekin, SfS / University of Tübinger

### Beta distribution

- A common use is the random variables whose values are probabilities
- prior of Bernoulli and Binomial distributions

Probability theory Some probability distributions Summary

### Short detour: central limit theorem

Central limit theorem (CLT) states that the sum of a large number of independent and identically distributed variables (i.i.d.)is normally distributed.

- · Expected value (average) of means of samples from any distribution will be distributed normally
- Many (inference) methods in statistics and machine learning works because of this fact

Probability theory Some probability distributions Summary



### Summary: some keywords

Ç. Çöltekin, SfS / University of Tübinge

- Probability, sample space, outcome, event
- Outcome, event, sample space
- Random variables: discrete and continuous
- Probability mass function
- Probability density function
- Cumulative distribution function
- Expected value
- Variance / standard deviation
- Median and mode

- Skewness of a distribution
- Joint and marginal probabilities
- Covariance, correlation
- Conditional probability
- Bayes' rule
- Chain rule
- Some well-known probability distributions: Bernoulli binomial categorical multinomial beta Dirichlet Gaussian Student's t

Ç. Çöltekin, SfS / University of Tübinge

### Further reading

- MacKay (2003) covers most of the topics discussed, in a way quite relevant to machine learning. The complete book is available freely online (see the link below)
- See Grinstead and Snell (2012) a more conventional introduction to probability theory. This book is also freely
- For an influential, but not quite conventional approach, see Jaynes (2007)

Chomsky, Noam (1968). "Quine's empirical assumptions". In: Synthese 19.1, pp. 53–68. DOI: 10.1007/BF00568049.



ISBN: 9780821894149. URL: http://www.dartmouth.edu/-chance/teaching\_aids/books\_articles/probability\_book/book.html.

Jaynes, Edwin T (2007). Probability Theory: The Logic of Science. Ed. by G. Larry Bretthorst. Camb Press. ISBN: 978-05-2159-271-0.

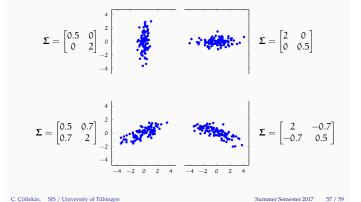
Ç. Çöltekin, SfS / University of Tübingen

Your random numbers

### mean and standard deviation $\mu = 12.46$ $\sigma = 6.48$

### Probability theory Some probability distributions Summary

### Samples from bi-variate normal distributions



Probability theory Some probability distributions Summary

### Next

Fri Python / numpy exercises

Mon No class

Wed Information theory

Ç. Çöltekin, SfS / University of Tübinger

### Further reading (cont.)

MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Pt 978-05-2164-298-9. URL: http://www.inference.phy.cam.ac.uk/itprnn/book.html.



Messerli, Franz H (2012). "Chocolate consumption, cognitive function, and Nobel laureates". In: The New England journal of medicine 367.16, pp. 1562–1564.

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2017 A.2