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Probability theory Some probability distributions Summary

Why probability theory?

But it must be recognized that the notion ’probability of a
sentence’ is an entirely useless one, under any known
interpretation of this term. — Chomsky (1968)

Short answer: practice proved otherwise.

Slightly long answer
• Many linguistic phenomena are better explained as

tendencies, rather than fixed rules
• Probability theory captures many characteristics of

(human) cognition, language is not an exception
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Probability theory Some probability distributions Summary

What is probability?

• Probability is a measure of (un)certainty
• We quantify the probability of an event with a number

between 0 and 1
0 the event is impossible

0.5 the event is as likely to happen as it is not
1 the event is certain

• The set of all possible outcomes of a trial is called sample
space (Ω)

• An event (E) is a set of outcomes

Axioms of probability state that
1. P(E) ∈ R, P(E) ⩾ 0

2. P(Ω) = 1

3. For disjoint events E1 and E2, P(E1 ∪ E2) = P(E1) + P(E2)
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Probability theory Some probability distributions Summary

What you should already know

• P( ) = ?
• P( ) = ?
• P( ) = ?
• P({ , }) = ?
• P({ , , }) = ?
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Where do probabilities come from

Axioms of probability do not specify how to assign
probabilities to events.

Two major (rival) ways of assigning probabilities to events are
• Frequentist (objective) probabilities: probability of an

event is its relative frequency (in the limit)
• Bayesian (subjective) probabilities: probabilities are

degrees of belief
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Probability theory Some probability distributions Summary

Random variables

• A random variable is a variable whose value is subject to
uncertainties

• A random variable is always a number
• Think of a random variable as mapping between the

outcomes of a trial to (a vector of) real numbers (a real
valued function on the sample space)

• Example outcomes of uncertain experiments
– height or weight of a person
– length of a word randomly chosen from a corpus
– whether an email is spam or not
– the first word of a book, or first word uttered by a baby

Note: not all of these are numbers
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Random variables
mapping outcomes to real numbers

• Continuous
– frequency of a sound signal: 100.5, 220.3, 4321.3 …

• Discrete
– Number of words in a sentence: 2, 5, 10, …
– Whether a review is negative or positive:

Outcome Negative Positive

Value 0 1

– The POS tag of a word:

Outcome Noun Verb Adj Adv …

Value 1 2 3 4 …
…or 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 …
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Probability mass function
Example: probabilities for sentence length in words

• Probability mass function (PMF) of a discrete random variable
(X) maps every possible (x) value to its probability
(P(X = x)).

Pr
ob

ab
ili

ty

Sentence length

0.1

0.2

1 2 3 4 5 6 7 8 9 10 11

x P(X = x)

1 0.155
2 0.185
3 0.210
4 0.194
5 0.102
6 0.066
7 0.039
8 0.023
9 0.012
10 0.005
11 0.004
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Probability density function (PDF)

• Continuous variables have
probability density functions

• p(x) is not a probability
(note the notation: we use
lowercase p for PDF)

• Area under p(x) sums to 1

• P(X = x) = 0

• Non zero probabilities are
possible for ranges:

P(a ⩽ x ⩽ b) =

∫b
a

p(x)dx

0 1 2
0

0.5

1

p(x)
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Cumulative distribution function

• FX(x) = P(X ⩽ x)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Sentence length

0.5

1.0

1 2 3 4 5 6 7 8 9 10 11

Length Prob. C. Prob.

1 0.16 0.16
2 0.18 0.34
3 0.21 0.55
4 0.19 0.74
5 0.10 0.85
6 0.07 0.91
7 0.04 0.95
8 0.02 0.97
9 0.01 0.99
10 0.01 0.99
11 0.00 1.00
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Expected value
• Expected value (mean) of a random variable X is,

E[X] = µ =

n∑
i=1

P(xi)xi = P(x1)x1+P(x2)x2+ . . .+P(xn)xn

• More generally, expected value of a function of X is

E[f(X)] =
∑
x

P(x)f(x)

• Expected value is an important measure of central
tendency

• Note: it is not the ‘most likely’ value
• Expected value is linear

E[aX+ bY] = aE[X] + bE[Y]
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Variance and standard deviation
• Variance of a random variable X is,

Var(X) = σ2 =

n∑
i=1

P(xi)(xi − µ)2 = E[X2] − (E[X])2

• It is a measure of spread, divergence from the central
tendency

• The square root of variance is called standard deviation

σ =

√√√√( n∑
i=1

P(xi)x
2
i

)
− µ2

• Standard deviation is in the same units as the values of the
random variable

• Variance is not linear: σ2
X+Y ̸= σ2

X + σ2
Y (neither the σ)
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Example: two distributions with different variances

−6 −4 −2 2 4 6

σ = 0.7

σ = 1.3
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Short divergence: Chebyshev’s inequality

For any probability distribution, and k > 1,

P(|x− µ| > kσ) ⩽ 1

k2

Distance from µ 2σ 3σ 5σ 10σ 100σ

Probability 0.25 0.11 0.04 0.01 0.0001

This also shows why standardizing values of random variables,

z =
x− µ

σ

makes sense (the normalized quantity is often called the
z-score).
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Median and mode of a random variable

Median is the mid-point of a distribution. Median of a random
variable is defined as the number m that satisfies

P(X ⩽ m) ⩾ 1

2
and P(X ⩾ m) ⩾ 1

2

• Median of 1, 4, 5, 8, 10 is 5
• Median of 1, 4, 5, 7, 8, 10 is 6

Mode is the value that occurs most often in the data.
• Modes appear as peaks in probability mass (or density)

functions
• Mode of 1, 4, 4, 8, 10 is 4
• Modes of 1, 4, 4, 8, 9, 9 are 4 and 9
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Mode, median, mean, standard deviation
Visualization on sentence length example

Pr
ob

ab
ili

ty

Sentence length

0.1

0.2

1 2 3 4 5 6 7 8 9 10 11

mode = median = 3.0
µ = 3.56

σ
=
2.
09
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Mode, median, mean
sensitivity to extreme values

1
0

1

2

3

4

µ = 4.3

m = 3.5

mode = 3

2
0

1

2

3

4

µ = 4.3

m = 3.5

mode = 3

3
0

1

2

3

4

µ = 4.3

m = 3.5

mode = 3

4
0

1

2

3

4

µ = 4.3

m = 3.5

mode = 3

5
0

1

2

3

4

µ = 4.3

m = 3.5

mode = 3

7
0

1

2

3

4

µ = 4.3

m = 3.5

mode = 3

11
0

1

2

3

4

µ = 4.3

m = 3.5

mode = 3
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Multimodal distributions

−6 −4 −2 2 4 6

• A distribution is multimodal if it has multiple modes
• Multimodal distributions often indicate confounding

variables
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Probability theory Some probability distributions Summary

Skew

• Another important property of a probability distribution is
its skew

• symmetric distributions have no skew
• positively skewed distributions have a long tail on the right
• negatively skewed distributions have a long left tail

−5 5 0 1 2
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Another example
A probability distribution over letters

• We have a hypothetical language with 8 letters with the
following probabilities

Lett. a b c d e f g h
Prob. 0.23 0.04 0.05 0.08 0.29 0.02 0.07 0.22

Pr
ob

ab
ili

ty

Letter

0.1

0.2

a b c d e f g h
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Joint and marginal probability

Two random variables form a joint probability distribution.

An example: consider the letter bigrams.
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Joint and marginal probability

Two random variables form a joint probability distribution.

An example: consider the letter bigrams.
a b c d e f g h

a 0.04 0.02 0.02 0.03 0.05 0.01 0.02 0.06
b 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01
c 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.01
d 0.02 0.00 0.00 0.01 0.02 0.00 0.01 0.02
e 0.06 0.02 0.01 0.03 0.08 0.01 0.01 0.07
f 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
g 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.02
h 0.08 0.00 0.00 0.01 0.10 0.00 0.01 0.02
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Joint and marginal probability

Two random variables form a joint probability distribution.

An example: consider the letter bigrams.
a b c d e f g h

a 0.04 0.02 0.02 0.03 0.05 0.01 0.02 0.06 0.23
b 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.04
c 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.05
d 0.02 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.08
e 0.06 0.02 0.01 0.03 0.08 0.01 0.01 0.07 0.29
f 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02
g 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.07
h 0.08 0.00 0.00 0.01 0.10 0.00 0.01 0.02 0.22

0.23 0.04 0.05 0.08 0.29 0.02 0.07 0.22
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Expected values of joint distributions

E[f(X, Y)] =
∑
x

∑
y

P(x,y)f(x,y)

µX = E[X] =
∑
x

∑
y

P(x,y)x

µY = E[Y] =
∑
x

∑
y

P(x,y)y

We can simplify the notation by vector notation, for
µ = (µx,µy),

µ =
∑

x∈XY

xP(x)

where vector x ranges over all possible combinations of the
values of random variables X and Y.
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Variances of joint distributions

σ2
X =

∑
x

∑
y

P(x,y)(x− µX)
2

σ2
Y =

∑
x

∑
y

P(x,y)(y− µY)
2

σXY =
∑
x

∑
y

P(x,y)(x− µX)(y− µY)

• The last quantity is called covariance which indicates
whether the two variables vary together or not

Again, using vector/matrix notation we can define the
covariance matrix (Σ) as

Σ = E[(x− µ)2]
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Covariance and the covariance matrix

Σ =

[
σ2
X σXY

σYX σ2
Y

]

• The diagonal of the covariance matrix contains the
variances of the individual variables

• Non-diagonal entries are the covariances of the
corresponding variables

• Covariance matrix is symmetric (σXY = σYX)
• For a joint distribution of k variables we have a covariance

matrix of size k× k
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Correlation

Correlation is a normalized version of covariance

r =
σXY

σXσY

Correlation coefficient (r) takes values between −1 and 1

1 Perfect positive correlation.
(0, 1) positive correlation: x increases as y increases.

0 No correlation, variables are independent.
(−1, 0) negative correlation: x decreases as y increases.

−1 Perfect negative correlation.
Note: like covariance, correlation is a symmetric measure.
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Correlation: visualization (1)

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

−10

−5

0

5

10

X

Y

σXY = 19.61

r = 0.96
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Correlation: visualization (2)

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

−10

−5

0

5

10

X

Y

σXY = 25.03

r = 0.48
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Correlation: visualization (3)

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

−10
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Correlation: visualization (4)

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12
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r = −0.02
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Correlation: visualization (5)
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Correlation and independence

• Statistical (in)dependence is an important concept (in ML)
• The covariance (or correlation) of independent random

variables is 0
• The reverse is not true: 0 correlation does not imply

independence
• Correlation measures a linear dependence (relationship)

between two variables, non-linear dependence may not be
measured by covariance
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Short divergence: correlation and causation

From Messerli (2012).
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Conditional probability
In our letter bigram example, given that we know that the first
letter is e, what is the probability of second letter being d?

a b c d e f g h

a 0.04 0.02 0.02 0.03 0.05 0.01 0.02 0.06 0.23
b 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.04
c 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.05
d 0.02 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.08
e 0.06 0.02 0.01 0.03 0.08 0.01 0.01 0.07 0.29
f 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02
g 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.07
h 0.08 0.00 0.00 0.01 0.10 0.00 0.01 0.02 0.22

0.23 0.04 0.05 0.08 0.29 0.02 0.07 0.22

P(L1 = e,L2 = d) = 0.025940365 P(L1 = e) = 0.28605090

P(L2 = d|L1 = e) =
P(L1 = e,L2 = d)

P(L1 = e)
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Conditional probability (2)
In terms of probability mass (or density) functions,

P(X|Y) =
P(X, Y)

P(Y)

If two variables are independent, knowing the outcome of one
does not affect the probability of the other variable:

P(X|Y) = P(X) P(X, Y) = P(X)P(Y)

More notes on notation/interpretation:
P(X = x, Y = y) Probability that X = x and Y = y at the same

time (joint probability)
P(Y = y) Probability of Y = y, for any value of X

(
∑

x∈X P(X = x, Y = y)) (marginal probability)
P(X = x|Y = y) Knowing that we Y = y, P(X = x) (conditional

probability)
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Bayes’ rule

P(X|Y) =
P(Y|X)P(X)

P(Y)

• This is a direct result of rules of probability
• It is often useful as it ‘inverts’ the conditional probabilities
• The term P(X), is called prior
• The term P(Y|X), is called likelihood
• The term P(X|Y), is called posterior
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Example application of Bayes’ rule

We use a test t to determine whether a patient has
condition/illness c

• If a patient has c test is positive 99% of the time:
P(t|c) = 0.99

• What is the probability that a patient has c given t?
• …or more correctly, can you calculate this probability?
• We need to know two more quantities. Let’s assume
P(c) = 0.00001 and P(t|¬c)) = 0.02

P(c|t) =
P(t|c)P(c)

P(t)

=
P(t|c)P(c)

P(t|c)P(c) + P(t|¬c)P(¬c)
= 0.0005
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Chain rule

We rewrite the relation between the joint and the conditional
probability as

P(X, Y) = P(X|Y)P(Y)

We can also write the same quantity as,

P(X, Y) = P(Y|X)P(X)

For more than two variables, one can write

P(X, Y,Z) = P(Z|X, Y)P(Y|X)P(X) = P(X|Y,Z)P(Y|Z)P(Z) = . . .

In general, for any number of random variables, we can write

P(X1,X2, . . . ,Xn) = P(X1|X2, . . . ,Xn)P(X2, . . . ,Xn)
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Conditional independence
If two random variables are conditionally independent:

P(X, Y|Z) = P(X|Z)P(Y|Z)

This is often used for simplifying the statistical models. For
example in spam filtering with Naive Bayes classifier, we are
interested in

P(w1,w2,w3|spam) =

P(w1|w2,w3, spam)P(w2|w3, spam)P(w3|spam)

with the assumption that occurrences of words are independent
of each other given we know the email is spam or not,

P(w1,w2,w3|spam) = P(w1|spam)P(w2|spam)P(w3|spam)
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Continuous random variables

The rules and quantities we discussed above apply to
continuous random variables with some differences

• For continuous variables, P(X = x) = 0

• We cannot talk about probability of the variable being
equal to a single real number

• But we can define probabilities of ranges
• For all formulas we have seen so far, replace summation

with integrals
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Continuous random variables: some definitions

• Probability of a range:

P(a < X < b) =

∫b
a

p(x)dx

• Joint probability density

p(X, Y) = P(X|Y)P(Y) = P(Y|X)P(X)

• Marginal probability

P(X) =

∫∞
−∞ p(x,y)dy
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An interim summary

• Outcome, event, sample
space

• Random variables:
discrete and continuous

• Probability mass function
• Probability density

function
• Cumulative distribution

function
• Expected value

• Variance / standard
deviation

• Median and mode
• Skewness of a distribution
• Joint and marginal

probabilities
• Covariance, correlation
• Conditional probability
• Bayes’ rule
• Chain rule
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Your random numbers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0
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1

3

0

1 1 1

2

0

1

0 0 0

2

1 1

2

6

2

1

3

• Do the numbers really look random?
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Your guesses of paper length

10 20 30 40 50 60

0
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12
correct measurement

mean guess
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Probability distributions

• Some random variables (approximately) follow a
distribution that can be parametrized with a number of
parameters

• For example, Gaussian (or normal) distribution is
conventionally parametrized by its mean (µ) and variance
(σ2)

• Common notation we use for indicating that a variable X

follows a particular distribution is

X ∼ Normal(µ,σ2) or X ∼ N(µ,σ2).

• For the rest of this lecture, we will revise some of the
important probability distributions
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Probability distributions (cont)

• A probability distribution is called univariate if it was
defined on real numbers,

• multivariate probability distributions are defined on vectors
• Probability distributions are abstract mathematical objects

(functions that map events/outcomes to probabilities)
• In real life, we often deal with samples
• A probability distribution is generate device: it can

generate samples
• Finding most likely probability distribution from a sample

is called inference (next week)
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Uniform distribution (discrete)

• A uniform distribution
assigns equal probabilities
to all values in range [a,b],
where a and b are the
parameters of the
distribution

• Probabilities of the values
outside range is 0

• µ = 1
b−a+1

• σ2 =
(b−a+1)2−1

12

• There is also an analogous
continuous uniform
distribution

x ∼ Unif(a,b)

n = b− a+ 1
1
n

…
a b
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Samples from a uniform distribution
in comparison to human-generated random numbers
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Bernoulli distribution
Bernoulli distribution characterizes simple random
experiments with two outcomes

• Coin flip: heads or tails
• Spam detection: spam or not
• Predicting gender: female or male

We denote (arbitrarily) one of the possible values with 1 (often
called a success), the other with 0 (often called a failure)

P(X = 1) = p

P(X = 0) = 1− p

P(X = k) = pk(1− p)1−k

µX = p

σ2
X = p(1− p)
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Binomial distribution

Binomial distribution is a generalization of Bernoulli
distribution to n trials, the value of the random variable is the
number of ‘successes’ in the experiment

P(X = k) =

(
n

k

)
pk(1− p)n−k

µX = np

σ2
X = np(1− p)

Remember that
(
n
k

)
= n!

k!(n−k)! .
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Categorical distribution

• Extension of Bernoulli to k mutually exclusive outcomes
• For any k-way event, distribution is parametrized by k

parameters p1, . . . ,pk (k− 1 independent parameters)
where

k∑
i=1

pi = 1

E[xi] = pi

Var(xi) = pi(1− pi)

• Similar to Bernoulli–binomial generalization, multinomial
distribution is the generalization of categorical distribution
to n trials
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Categorical distribution example
sum of the outcomes from roll of two fair dice

P(x)

x

0.05

0.10

0.15

2 3 4 5 6 7 8 9 10 11 12
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Beta distribution

• Beta distribution is defined
in range [0, 1]

• It is characterized by two
parameters α and β

p(x) =
xα−1(1− x)β−1

Γ(α)Γ(β)
Γ(α+β)

0 0.5 1
0

1

2

0 0.5 1
0

1

2
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Beta distribution
where do we use it

• A common use is the random variables whose values are
probabilities

• Particularly important in Bayesian methods as a conjugate
prior of Bernoulli and Binomial distributions

• Dirichlet distribution generalizes Beta to k-dimensional
vectors whose components are in range (0, 1) and ∥x∥1 = 1.

• Dirichlet distribution is also used often in NLP, e.g., latent
Dirichlet allocation is a well know method for topic
modeling
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Gaussian (normal) distribution

µ

µ
−
σ

µ
+
σ

µ
−
2
σ

µ
+
2
σ

p(x) = 1

σ
√
2π

e
−

(x−µ)2

2σ2
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Short detour: central limit theorem

Central limit theorem (CLT) states that the sum of a large
number of independent and identically distributed variables
(i.i.d.)is normally distributed.

• Expected value (average) of means of samples from any
distribution will be distributed normally

• Many (inference) methods in statistics and machine
learning works because of this fact
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Student’s t-distribution

• T-distribution is another
important distribution

• It is similar to normal
distribution, but it has
heavier tails

• It has one parameter:
degree of freedom (v) −5 5

t(v = 1)

N(µ = 0,σ = 1)
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Multivariate Gaussian distribution
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Samples from bi-variate normal distributions
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Summary: some keywords

• Probability, sample space,
outcome, event

• Outcome, event, sample
space

• Random variables: discrete
and continuous

• Probability mass function
• Probability density function
• Cumulative distribution

function
• Expected value
• Variance / standard

deviation
• Median and mode

• Skewness of a distribution
• Joint and marginal

probabilities
• Covariance, correlation
• Conditional probability
• Bayes’ rule
• Chain rule
• Some well-known

probability distributions:
Bernoulli binomial
categorical multinomial
beta Dirichlet
Gaussian Student’s t
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Next

Fri Python / numpy exercises
Mon No class
Wed Information theory
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Further reading

• MacKay (2003) covers most of the topics discussed, in a
way quite relevant to machine learning. The complete
book is available freely online (see the link below)

• See Grinstead and Snell (2012) a more conventional
introduction to probability theory. This book is also freely
available

• For an influential, but not quite conventional approach, see
Jaynes (2007)

Chomsky, Noam (1968). “Quine’s empirical assumptions”. In: Synthese 19.1, pp. 53–68. doi: 10.1007/BF00568049.

Grinstead, Charles Miller and James Laurie Snell (2012). Introduction to probability. American Mathematical Society.
isbn: 9780821894149. url:
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html.

Jaynes, Edwin T (2007). Probability Theory: The Logic of Science. Ed. by G. Larry Bretthorst. Cambridge University
Press. isbn: 978-05-2159-271-0.
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Further reading (cont.)

MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press. isbn:
978-05-2164-298-9. url: http://www.inference.phy.cam.ac.uk/itprnn/book.html.
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Your random numbers
mean and standard deviation
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