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Machine learning Regression

Why machine learning?

• Majority of the modern computational linguistic tasks and
applications are based on machine learning

– Tokenization
– Part of speech tagging
– Parsing
– …
– Speech recognition
– Named Entity recognition
– Document classification
– Question answering
– Machine translation
– …
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Machine learning Regression

Machine learning is …

The field of machine learning is concerned with the question of how to
construct computer programs that automatically improve with
experience. —Mitchell (1997)

Machine Learning is the study of data-driven methods capable of
mimicking, understanding and aiding human and biological
information processing tasks. —Barber (2012)

Statistical learning refers to a vast set of tools for understanding data.
—James et al. (2013)
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Machine learning Regression

Supervised or unsupervised

• Machine learning methods are often divided into two
broad categories: supervised and unsupervised

• Supervised methods rely on labeled (or annotated) data
• Unsupervised methods try to find regularities in the data

without any (direct) supervision
• Some methods do not fit any (or fit both):

– Semi-supervised methods use a mixture of both
– Reinforcement learning refers to the methods where

supervision is indirect and/or delayed

In this course, we will mostly discuss/use supervised methods.
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Supervised learning
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Machine learning Regression

Unsupervised learning

• In unsupervised learning we do
not have any labels

• The aim is discovering some
‘latent’ structure in the data

• Common examples include
– Clustering
– Density estimation
– Dimensionality reduction

• In NLP, methods that do not
require (manual) annotation are
sometimes called unsupervised
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Machine learning Regression

Supervised learning
two common settings

An ML algorithm is called
regression if the outcome to be predicted is a numeric
(continuous) variable
classification if the outcome to be predicted is a categorical
variable
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Regression
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Machine learning Regression

ML topics we will cover in this course

• (Linear) Regression (today)
• Classification / logistic regression (next week)
• Evaluation ML methods / algorithms
• Unsupervised learning
• Neural networks / deep learning
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Machine learning Regression

Regression

• Regression is a (supervised) method for predicting the
value of a continuous response variable based on a number
of predictors

• We estimate the conditional expectation of the outcome
variable given the predictor(s)

• It is the foundation of many models in statistics and
machine learning

• If the outcome is a label, the problem is called classification
• Sometimes, the border between the two is not clear
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Machine learning Regression

The linear equation: a reminder

y = a+ bx

a (intercept) is
where the line
crosses the y axis.

b (slope) is the
change in y as x
is increased one
unit.

x

y
y
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1
−
x

y =
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y = −1
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Machine learning Regression

The simple linear model

yi = a+ bxi + ϵi

y is the outcome (or response, or dependent) variable. The
index i represents each unit observation/measurement
(sometimes called a ‘case’)

x is the predictor (or explanatory, or independent) variable
a is the intercept (called bias in the NN literature)
b is the slope of the regression line.

a and b are called coefficients or parameters
a+ bx is the deterministic part of the model. It is the model’s

prediction of y (ŷ), given x

ϵ is the residual, error, or the variation that is not accounted
for by the model. Assumed to be normally distributed
with 0 mean
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Machine learning Regression

Notation differences for the regression equation

yi = a+ bxi + ϵi

• Sometimes, Greek letters α and β are used for intercept
and the slope, respectively

• Another common notation to use only b, β, θ or w, but use
subscripts, 0 indicating the intercept and 1 indicating the
slope

• In machine learning it is common to use w for all
coefficients (sometimes you may see b used instead of w0)

• Sometimes coefficients wear hats, to emphasize that they
are estimates

• Often, we use the vector notation for both input(s) and
coefficients: w = (w0,w1) and xi = (1, xi)
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Notation differences for the regression equation

yi = β0 + β1xi + ϵi

• Sometimes, Greek letters α and β are used for intercept
and the slope, respectively

• Another common notation to use only b, β, θ or w, but use
subscripts, 0 indicating the intercept and 1 indicating the
slope

• In machine learning it is common to use w for all
coefficients (sometimes you may see b used instead of w0)

• Sometimes coefficients wear hats, to emphasize that they
are estimates

• Often, we use the vector notation for both input(s) and
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Notation differences for the regression equation

yi = ŵ0 + ŵ1xi + ϵi

• Sometimes, Greek letters α and β are used for intercept
and the slope, respectively

• Another common notation to use only b, β, θ or w, but use
subscripts, 0 indicating the intercept and 1 indicating the
slope

• In machine learning it is common to use w for all
coefficients (sometimes you may see b used instead of w0)

• Sometimes coefficients wear hats, to emphasize that they
are estimates

• Often, we use the vector notation for both input(s) and
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Machine learning Regression

Estimating model parameters: reminder

In least-squares regression, we find

ŵ = argmin
w

∑
i

(yi − ŷi)
2

In general, we define an objective (or loss) function J(w) (e.g.,
negative log likelihood), and minimize it with respect to the
parameters

ŵ = argmin
w

J(w)

Then,
• take the derivative of J(w)

• set it to 0

• solve the resulting equation(s)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2017 14 / 35



Machine learning Regression

Least-squares regression

yi = w0 +w1xi︸ ︷︷ ︸
ŷi

+ϵi

• Find w0 and w2, that minimize the prediction error:

J(w) =
∑
i

ϵ2i =
∑
i

(yi − ŷi)
2 =

∑
i

(yi − (w0 +w1xi))
2

• We can minimize J(w) analytically

w1 = r
sdy

sdx
w0 = ȳ−w1x̄

* See appendix for the derivation.
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Machine learning Regression

Visualization of least-squares regression
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Machine learning Regression

What is special about least-squares?

• Minimizing MSE (or SSR) is equivalent to MLE estimate
under the assumption ϵ ∼ N(0,σ2)

• Working with ‘minus log likelihood’ is more convenient

J(w) = − logL(w) = − log
∏
i

e
−

(yi−ŷi)
2

2σ2

σ
√
2π

ŵ = argmin
w

(− logL(w)) = argmin
w

∑
i

(yi − ŷi)
2

• There are other error functions, e.g., absolute value of the
errors, that can be used (and used in practice)

• One can also estimate regression parameters using
Bayesian estimation
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Machine learning Regression

Short digression: minimizing functions
In least squares regression, we want to find w0 and w1 values
that minimize

J(w) =
∑
i

(yi − (w0 +w1xi))
2

• Note that J(w) is a quadratic function of w = (w0,w1)

• As a result, J(w) is convex and have a single extreme value
– there is a unique solution for our minimization problem

• In case of least squares regression, there is an analytic
solution

• Even if we do not have an analytic solution, if our error
function is convex, a search procedure like gradient descent
can still find the global minimum
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Machine learning Regression

Measuring success in Regression

• Root-mean-square error (RMSE)

RMSE =

√√√√ 1

n

n∑
i

(yi − ŷi)2

measures average error in the units compatible with the
outcome variable.

• Another well-known measure is the coefficient of
determination

R2 =

∑n
i (ŷi − ȳ)2∑n
i (yi − ȳ)2

= 1−

(
RMSE

σy

)2
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Machine learning Regression

Assessing the model fit: r2

We can express the variation explained by a regression model
as:

Explained variation
Total variation =

∑n
i (ŷi − ȳ)2∑n
i (yi − ȳ)2

• This value is the square of the correlation coefficient
• The range of r2 is [0, 1]
• 100× r2 is interpreted as ‘the percentage of variance

explained by the model’
• r2 shows how well the model fits to the data: closer the

data points to the regression line, higher the value of r2
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Explained variation

ȳ

y

ŷ

x

Total variation
Unexplained variation

Explained variation

Total variation = Unexplained variation + Explained variation
y− ȳ = y− ŷ + ŷ− ȳ
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Machine learning Regression

Regression with multiple predictors

yi =w0 +w1xi,1+w2xi,2 + . . .+wkxi,k︸ ︷︷ ︸
ŷ

+ϵi = wxi + ϵi

w0 is the intercept (as before).
w1..k are the coefficients of the respective predictors.

ϵ is the error term (residual).
• using vector notation the equation becomes:

yi = wxi + ϵi

where w = (w0,w1, . . . ,wk) and xi =
(
1, xi,1, . . . , xi,k

)
It is a generalization of simple regression with some additional
power and complexity.
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Visualizing regression with two predictors
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Machine learning Regression

Input/output of liner regression: some notation

A regression with k input variables and n instances can be
described as:

y1

y2

...
yn


︸ ︷︷ ︸

y

=


1 x1,1 x1,2 . . . x1,k
1 x2,1 x2,2 . . . x2,k

1
...

... . . . ...
1 xn,1 xn,2 . . . xn,k


︸ ︷︷ ︸

X

×


w0

w1

...
wk


︸ ︷︷ ︸

w

+


ϵ0
ϵ1
...
ϵn


︸ ︷︷ ︸

ϵ

y = Xw+ ϵ
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Machine learning Regression

Estimation in multiple regression

y = Xw+ ϵ

We want to minimize the error (as a function of w):

ϵ2 = J(w) = (y− Xw)2

= ∥y− Xw∥2

Our least-squares estimate is:

ŵ = argmin
w

J(w)

= (XTX)−1XT

Note: the least-squares estimate is also the maximum likelihood
estimate under the assumption of normal distribution of errors.
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Machine learning Regression

Categorical predictors
• Categorical predictors are represented as multiple binary

coded input variables
• For a binary predictor, we use a single binary input. For

example, (1 for one of the values, and 0 for the other)

x =

{
0 for male
1 for female

• For a categorical predictor with k values, we use k− 1

predictors (various coding schemes are possible). For
example, for 3-values

x =


(0, 0) for neutral
(0, 1) for negative
(1, 0) for positive
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Machine learning Regression

Dealing with non-linearity

• Least squares works, because the loss function is linear
with respect to parameter w

• Introducing non-linear combinations of inputs does not
affect the estimation procedure. The following are still
linear models

yi = w0 +w1x
2
i + ϵi

yi = w0 +w1log(xi) + ϵi

yi = w0 +w1xi,1 +w2xi,2 +w3xi,1xi,2 + ϵi

• These transformations allow linear models to deal with
some non-linearities

• In general, we can replace input x by a function of the
input(s) Φ(x). Φ() is called a basis function
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Example: polynomial basis functions
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Example: polynomial basis functions

2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

x

y

y = −221.3+ 109.9x
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Example: polynomial basis functions
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Example: polynomial basis functions
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y = −221.3+ 109.9x
y = 45.50− 3.52x+ 12.13x2

y = 1445.80− 3189.13x +2604.21x2

− 1026.76x3 +218.40x4

− 25.52x5 +1.54x6
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Regularized parameter estimation
• To avoid overfitting and high variance, one of the common

methods is regularization
• With regularization, in addition of minimizing the cost

function, we simultaneously constrain the possible
parameter values

• For example, the regression estimation becomes:

ŵ = argmin
w

∑
i

(yi − ŷi)
2

• The new part is called the regularization term, where λ is a
hyperparameter that determines the effect of the
regularization.

• In effect, we are preferring small values for the coefficients
• Note that we do not include w0 in the regularization term
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Machine learning Regression

L2 regularization

The form of regularization, where we minimize the regularized
cost function,

J(w) + λ∥w∥

is called L2 regularization.
• Note that we are minimizing the L2-norm of the weight

vector
• In statistic literature this L2-regularized regression is called

ridge regression
• The method is general: it can be applied to other ML

methods as well
• The choice of λ is important
• Note that the scale of the input becomes important
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L1 regularization

In L1 regularization we minimize

J(w) + λ

k∑
j=1

|wj|

• The additional term is the L1-norm of the weight vector
(excluding w0)

• In statistic literature the L1-regularized regression is called
lasso

• The main difference from L2 regularization is that L1
regularization forces some values to be 0 – the resulting
model is said to be ‘sparse’
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Regularization as constrained optimization

L1 and L2 regularization can be viewed as minimization with
constraints

L2 regularization

Minimize J(w) with constraint ∥w∥ < s

L1 regularization

Minimize J(w) with constraint ∥w∥1 < s
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Visualization of regularization constraints

L1 regularization
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Regularization: some remarks

• Regularization prevents overfitting and reduces variance
• The hyperparameter λ needs to be determined

– best value is found typically using a grid search, or a random
search

– it is tuned on an additional partition of the data,
development set

– development set cannot overlap with training or test set

• The regularization terms can be interpreted as priors in a
Bayesian setting

• Particularly, L2 regularization is equivalent to a normal
prior with zero mean
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Summary
What to remember:

• Supervised vs.
unsupervised learning

• Regression vs. classification
• Linear regression equation
• Least-square estimate

• MSE, r2

• non-linearity & basis
functions

• L1 & L2 regularization

Next:

Wed n-gram language models (continued)

Fri exercises

Mon exercises (again)

Wed logistic regression
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Additional reading, references, credits

• Hastie, Tibshirani, and Friedman (2009) discuss
introductory bits in chapter 1, and regression on chapter 3
(sections 3.2 and 3.4 are most relevant to this lecture)

• Jurafsky and Martin (2009) has a short section (6.6.1) on
regression

• You can also consult any machine learning book (including
the ones listed below)

Barber, David (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press. isbn: 9780521518147.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Second. Springer series in statistics. Springer-Verlag New York. isbn: 9780387848587.
url: http://web.stanford.edu/~hastie/ElemStatLearn/.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2013). An Introduction to Statistical Learning: with Applications in R.
Springer Texts in Statistics. Springer New York. isbn: 9781461471387. url:
http://www-bcf.usc.edu/~gareth/ISL/.
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Additional reading, references, credits (cont.)

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition. second. Pearson Prentice Hall. isbn:
978-0-13-504196-3.

Mitchell, Thomas (1997). Machine Learning. 1st. McGraw Hill Higher Education. isbn:
0071154671,0070428077,9780071154673,9780070428072.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2017 A.2


	Statistical Natural Language Processing
	Machine learning
	Why machine learning?
	Machine learning is …
	Machine learning is …
	Machine learning is …
	Supervised or unsupervised
	Supervised learning
	Unsupervised learning
	Unsupervised learning
	Supervised learning
	Regression
	Classification
	Classification
	Classification
	Overview
	ML topics we will cover in this course

	Regression
	Regression
	The linear equation: a reminder
	The simple linear model
	Notation differences for the regression equation
	Notation differences for the regression equation
	Notation differences for the regression equation
	Notation differences for the regression equation
	Notation differences for the regression equation
	Notation differences for the regression equation
	Estimating model parameters: reminder
	Least-squares regression
	Least-squares regression
	Visualization of least-squares regression
	Visualization of least-squares regression
	Visualization of least-squares regression
	What is special about least-squares?
	Short digression: minimizing functions
	Measuring success in Regression
	Assessing the model fit: r2
	Explained variation
	Regression with multiple predictors
	Visualizing regression with two predictors
	Input/output of liner regression: some notation
	Estimation in multiple regression
	Categorical predictors
	Dealing with non-linearity
	Example: polynomial basis functions
	Example: polynomial basis functions
	Example: polynomial basis functions
	Example: polynomial basis functions
	Regularized parameter estimation
	Regularized parameter estimation
	L2 regularization
	L1 regularization
	Regularization as constrained optimization
	Visualization of regularization constraints
	Regularization: some remarks
	Summary


	Appendix
	Additional reading, references, credits
	Additional reading, references, credits



