Combining Graph and Transition-based parsers J

Nora Kumpikova

20. December

Combining Graph and Transition-based parser 20. December 1/23

Table of contents

@ Introduction

© Graph-based Parser
@ Perceptron Learning Algorithm
@ Beam-search decoder
@ Features
© Transition-based Parser
@ Processing
o Features
@ Error reduction
@ Beam-search
o Features

@ Combined Parser

© Evaluation
@ Experiments

@ Conclusion
Combining Graph and Transition-based parser 20. December 2/23

Introduction

o Classification criteria:

Combining Graph and Transition-based parser 20. December 3/23

Introduction

o Classification criteria:
@ explicit transition-actions - "Shift” ; "Reduce”

Combining Graph and Transition-based parser 20. December 3/23

Introduction

o Classification criteria:

@ explicit transition-actions - "Shift” ; "Reduce”
@ assign scores - dependency graphs/transition actions

Combining Graph and Transition-based parser

20. December

3/23

Introduction

o Classification criteria:

@ explicit transition-actions - "Shift” ; "Reduce”
@ assign scores - dependency graphs/transition actions

@ Graph-based parsers - find highest scoring parse tree

@ Transition-based parsers - build parse from sequence of actions

Combining Graph and Transition-based parser 20. December

3/23

Introduction

o Classification criteria:

@ explicit transition-actions - "Shift” ; "Reduce”
@ assign scores - dependency graphs/transition actions

Graph-based parsers - find highest scoring parse tree

Transition-based parsers - build parse from sequence of actions

@ Beam-search framework:

@ high accuracy
@ wider range of features

Combining Graph and Transition-based parser 20. December

3/23

Introduction

Classification criteria:

@ explicit transition-actions - "Shift” ; "Reduce”
@ assign scores - dependency graphs/transition actions

Graph-based parsers - find highest scoring parse tree

Transition-based parsers - build parse from sequence of actions
Beam-search framework:

@ high accuracy
@ wider range of features

o Data:
English and Chinese PennTreebank

Combining Graph and Transition-based parser 20. December 3/23

MSTParser and MaltParser

MSTParser MaltParser

Combining Graph and Transition-based parser 20. December 4 /23

MSTParser and MaltParser

MSTParser MaltParser

@ exact inference @ deterministic

Combining Graph and Transition-based parser 20. December

4/ 23

MSTParser and MaltParser

MSTParser MaltParser
@ exact inference @ deterministic
@ constrained features o large feature range

Combining Graph and Transition-based parser 20. December

4/ 23

MSTParser and MaltParser

MSTParser MaltParser
@ exact inference @ deterministic
@ constrained features o large feature range
@ Research:

Combining Graph and Transition-based parser 20. December

4/ 23

MSTParser and MaltParser

MSTParser MaltParser
@ exact inference @ deterministic
@ constrained features o large feature range
@ Research:

@ defining features for graph-based parsing
@ add search to transition-based parsing
© combine both to utilize strengths

Combining Graph and Transition-based parser 20. December 4 /23

Graph-based Parser

- uses same features as MSTParser

- Problem:

F(x) = arg max Score(y)
yeGEN(x)

- Score of output(linear model):
Score(y) = O(y) - w

Combining Graph and Transition-based parser 20. December 5/23

bl Rl
Perceptron Algorithm

Inputs: training examples (i, i)
Initialization: set w = ()
Algorithm:
/I R training iterations; N examples
fort=1.R,i=1.N:

Zj = arg Max,cgen(s,) Ply) - W

if z; £ y;:

w =+ Ply;) — Dlz)

Outputs:

@ train values of the weight vector

o O(y), ®(z) - global feature vector

Combining Graph and Transition-based parser 20. December

6 /23

Graph-based Parser Beam-search decoder

Summary

@ for each POS-tagged input sentence — loop through partial parse tree
@ works incrementally

© build parse tree - word by word, adding links inbetween
current/predecessors

@ stores best items for each processing stage
© after processing - pick best output from storage

@ uses "early update” strategy

Notes:

- improve learning by avoiding irrelevant information

Combining Graph and Transition-based parser 20. December 7/23

Graph-based Parser Features

w - word
t - POS tag
1 | leftmost (CLC) and PtCtCLCt;
rightmost (CRC) PtCtCRCt

=]

children of C
left (la) and right (ra)
arity of P

Ptla; Ptra;
Pwtla; Pwtra

Nora Kumpikova [Combining Graph and Transition-based parser

Parent word (P)
Child word (C)
Pand C

A tag Bt

between P, C
Neighbour words
of P.C,

left (PL/CL)

and right (PR/CR)

sibling (S)of C

Pw: Pr; Pwt

Cw: Ct; Cwt
PwiCwt; PwtCw;
PwCwt; PwiCt;
PtCwt; PwCw; PtCt
PtBtCt

PtPLICtCLL:
PtPLICICRY;
PtPRICtCLt;
PIPRICICRY;
PtPLICLt; PIPLICRt:
PtPRICLt; PIPRICRL;
PLICtCLt; PLICtCRt;
PRUCtCLt: PRICICRL;
PtCtCLt; PtCtCRy;
PtPLICt; PIPRiCt
CwSw; Ci1St;

CwSt; CtSw;

PtCiSt

20. December

8 /23

Transition-based Parser

uses the transition model of MaltParser
deterministic - choses transition action for each step
stack, 4 transition actions: Shift, ArcRight, ArcLeft, Reduce

builds tree through repeated application of transition actions

Combining Graph and Transition-based parser 20. December 9 /23

Transition-based Parser Processing

Processing

© input - processed left to right, word index maintained

@ stack - stores unfinished words

© Shift - pushes current word to the stack

@ ArcRight - adds a dependency link from the stack top to the current
word

© Arcleft action adds a dependency link from the current word to the
stack top

@ Reduce - pops the stack

Notes:

- Shift and ArcRight - push a word on to the stack; read the next input
word

- ArcLeft and Reduce - pop the stack

- ArcLeft and ArcRight - add a link to the output

- Major drawback - error propagation

Combining Graph and Transition-based parser 20. December 10 / 23

Transition-based Parser Features

i ¥
STP ST NO N1 N2 N3 ...

The stack / L The input
STLC STRC NOLC

(ST) - top of stack

(STP) - parent

(STLC) - left most child

(STRC) - right most child

NO - current word; (N1,N2...) - next words from input
NOLC - left most child of current word

Combining Graph and Transition-based parser 20. December 11 /23

Transition-based Parser Features

T(s)= argmax Score(T, s)
TeACTION

@ s - context

@ T - action
o ACTION = Shift, ArcRight, ArcLeft,Reduce

Combining Graph and Transition-based parser

20. December

12 /23

Transition-based Parser Error reduction

Error reduction:

- keep track of multiple candidate outputs
- avoid making decisions too early

F(r) = arg max ZT-,,_,__“C[(”J Score(T", s7+)

y=GEN{z)
GEN(x) - set of candidates
X - input
F(x) - best output
T' - one action

act(y) - sequence

ST/ - context

Combining Graph and Transition-based parser 20. December 13 /23

Transition-based Parser Beam-search

@ state item - contains a partial parse tree, a stack configuration
@ apply all possible actions to each existing state item
© generate new items

@ store item with the highest overall score

Final state items: Requirements

- have fully built parse trees
- have only one root word left of the stack

Combining Graph and Transition-based parser 20. December

14 / 23

Transition-based Parser Features

Features

1 | stack top

2 | current word
3 | next word

4 | ST and N0

5 | POS bigram
6 | POS trigrams

7 | NO word

STwt; STw: STt

NOwt: NOw; Nt

Nlwt: Nlw; N1t

STwiNOwr; STwiNOw;
STwNOwt; STwiNOt;
STINOwt; STwNOw:; STtNOt
NOtN 1t

NOINTIN2t; STINOIN 1t
STPSTINOt; STISTLCINOL;
STISTRCINOU; STINOINOLCt
NOwNIIN2t; STINOWN It
STPISTINOw; STISTLCINOw;
STISTRCINOw; STINOwNOLCt

Combining Graph and Transition-based parser

20. December

15 / 23

Combined Parser

Graph/Transition-based parsers

Goal:

Improve parsing accuracy — combination of graph/transition-based parser
Similarities:

- build parse tree incrementally

- keep memory of comparable state items

- rank state items by score

- use the averaged perceptron

- "early update” training

The parser:

@ global linear model
@ union of feature templates

@ decoder from the transition-based parser

Combining Graph and Transition-based parser 20. December 16 / 23

Combined Parser

Score model

Seorec(y) = Scoreg(y) + Seorep(y)
=Pgly) - wg + Pry) - wr
- concatenating feature vectors ®¢(y) and ®7(y) — global vector ®¢(y)

- concatenating weight vectors wWa and wr — weight vector we
Secorec(y) = Dely) - e

Combining Graph and Transition-based parser 20. December 17 / 23

Combined Parser

Score model

Seorec(y) = Scoreg(y) + Seorep(y)
=Pgly) - wg + Pry) - wr

- concatenating feature vectors ®¢(y) and ®7(y) — global vector ®¢(y)
- concatenating weight vectors wWa and wr — weight vector we
Secorec(y) = Dely) - e

@ linear model

Combining Graph and Transition-based parser 20. December 17 / 23

Combined Parser

Score model

Seorec(y) = Scoreg(y) + Seorep(y)
=Pgly) - wg + Pry) - wr
- concatenating feature vectors ®¢(y) and ®7(y) — global vector ®¢(y)
- concatenating weight vectors wWa and wr — weight vector we
Secorec(y) = Dely) - e
Q linear model

@ trained on perceptron algorithm

Combining Graph and Transition-based parser 20. December 17 / 23

Evaluation

Sections | Sentences | Words
Training | 2-21 39,832 950,028
Dev 22 1,700 40,117
Test 23 2,416 56,684

Accuracy:
- precision of lexical heads
- percentage of complete matches

Combining Graph and Transition-based parser 20. December 18 / 23

Beam size

gz

e PPN
...._‘,_.o—y-
v v ¥
v v v v
7 v
v
< B=64
*B=G2
4 B=16
b H—W— B=D
e % B=d
¥ B=2
086 Hp=1
v
oe7 - [
J.l’

1 2 3 4 5 6 7 B 9 10 11 12 13 14 15

@ X-axis: number of training iterations

@ Y-axis: precision of lexical heads

Combining Graph and Transition-based parser 20. December

19 /23

Evaluation

Accuracy comparison

Experiments

Word | Complete
MSTParser 1 90.7 | 36.7
Graph [M] 01.2 | 40.8
Transition 01.4 | 41.8
Graph [MA] 91.4 | 42.5
MSTParser 2 91.5 | 42.1
Combined [TM] 92.0 | 45.0
Combined [TMA] | 92.1 [454

word - precision of lexical head; complete - complete matches
MSTParser 1/2 - first/second order MSTParsers

Graph[M/MA] - graph-based parser
Transition - transition-based parser
Combined[TM/TMA] - combined parser

Combining Graph and Transition-based parser 20. December

20 / 23

Words

Sections Sentences
Training | 001-815;
1001-1136
Dev 886-931; 804
1148-1151
Test 816-885; 1,915

1137-1147

16,118

437.859

20453

50,319

Table 6: Training, development and test data from CTB

Non-root | Root | Comp.
Graph [MA] 83.86 71.38 | 29.82
Duan 2007 84.36 73.70 | 32.70
Transition 84.69 76.73 | 32.79
Combined [TM] 86.13 77.04 | 35.25
Combined [TMA] | 86.21 76.26 | 34.41

Table 7: Test accuracies with CTB 5 data

Accuracy:

- percentage of non-root words with assigned correct head
- percentage of correctly identified root words
- percentage of complete matches

Combining Graph and Transition-based parser 20. December

21 /23

Conclusion

- successfully develop combined parser
- discriminative perceptron training and beam-search decoding

- significantly increased accuracy

Combining Graph and Transition-based parser 20. December 22 /23

References

@ A Tale of Two Parsers: investigating and combining graph-based and
transition-based dependency parsing using beam-search (Yue Zhang,
Stephen Clark)

@ Characterizing the errors of data-driven dependency parsing models
(Ryan McDonald, Joakim Nivre)

Combining Graph and Transition-based parser 20. December 23 /23

	Introduction
	Graph-based Parser
	Perceptron Learning Algorithm
	Beam-search decoder
	Features

	Transition-based Parser
	Processing
	Features
	Error reduction
	Beam-search
	Features

	Combined Parser
	Evaluation
	Experiments

	Conclusion

