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Ingredients of a (natural language) parser

• A grammar
• An algorithm for parsing
• A method for ambiguity resolution
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Context free grammars

• Context free grammars are adequate for expressing most
phenomena in natural language syntax

• Most of the parsing theory (and practice) is build on
parsing CF languages

• The context-free rules have the form

A → α

where A is a single non-terminal symbol and α is a
(possibly empty) sequence of terminal or non-terminal
symbols

• We will mainly focus with parsing with context-free
grammars for the rest of this lecture
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Parsing with context-free grammars

• Parsing can be
– top down: start from S, search for derivation that leads to

the input
– bottom up: start from input, try to reduce it to S

• Naive search for both recognition/parse is intractable
• Dynamic programming methods allow polynomial time

recognition
CKY bottom-up, requires Chomsky normal form

Earely top-down (with bottom-up filtering), works with
unrestricted grammars

– O(n3) time complexity (for recognition)
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Representations for a parse

A parse tree:
S

NP

Prn

I

VP

V

saw

NP

Prnp

her

N

duck

A history of derivations:

• S ⇒ NP VP
• NP ⇒ Prn
• Prn ⇒ I
• VP ⇒ V NP
• V ⇒ saw
• NP ⇒ Prnp N
• Prnp ⇒ her
• N ⇒ duck

A sequence with (labeled) brackets[
S

[
NP

[Prn I]
][

VP
[V saw]

[
NP

[
Prnp

her
]
[N duck]

]]]
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Chart parsing example (CKY recognition)

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

?S ?VP ?NP, S

?S ?VP

?S
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Chart parsing example (CKY parsing)

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP, VP

S, S
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CF chart parsing

• With chart parsing, we can get polynomial recognition
complexity (recovering all parses from the chart may still
require exponential time)

• The chart parser also store multiple parses (the resulting
parse forest) in an efficient way

• But the methods that we discussed so far cannot help us
resolve ambiguity
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Pretty little girl’s school (again)

Cartoon Theories of Linguistics, SpecGram Vol CLIII, No 4, 2008. http://specgram.com/CLIII.4/school.gif
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Some more examples

• Lexical ambiguity
– She is looking for a match
– We saw her duck

• Attachment ambiguity
– I saw the man with a telescope
– Panda eats bamboo shoots and leaves

• Local ambiguity (garden path sentences)
– The horse raced past the barn fell
– The old man the boats
– Fat people eat accumulates

• Anaphora resolution
– Every farmer who owns a donkey beats it.
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Even more examples
(newspaper headlines)

• FARMER BILL DIES IN HOUSE
• TEACHER STRIKES IDLE KIDS
• SQUAD HELPS DOG BITE VICTIM
• BAN ON NUDE DANCING ON GOVERNOR’S DESK
• PROSTITUTES APPEAL TO POPE
• KIDS MAKE NUTRITIOUS SNACKS
• DRUNK GETS NINE MONTHS IN VIOLIN CASE
• MINERS REFUSE TO WORK AFTER DEATH
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But humans do not recognize many ambiguities

• Time flies like an arrow; fruit flies like a banana
• Outside of a dog, a book is a man’s best friend; inside it’s

too hard to read
• One morning I shot an elephant in my pajamas. How he

got in my pajamas, I don’t know.
• Don’t eat the pizza with a knife and fork
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The task: choosing the most plausible parse

S

NP

We

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S

NP

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat
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Statistical parsing

• Find the most plausible parse of an input string given all
possible parses

• We need a scoring function, for each parse, given the input
• We typically use probabilities for scoring, task becomes

finding the parse (or tree), t, given the input string x

tbest = argmax
t

P(t|x)

• Note that some ambiguities need a larger context than the
sentence to be resolved correctly
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Probability refresher (1)

• Probability is a measure of (un)certainty of an event
• We quantify the probability of an event with a number

between 0 and 1
0 the event is impossible

0.5 the event is as likely to happen (or happened) as it is not
1 the event is certain

• All possible outcomes of a trial (experiment or
observation) is called the sample space (Ω)

Axioms of probability states that
1. P(E) ∈ R, P(E) ≥ 0

2. P(Ω) = 1

3. For disjoint events E1 and E2, P(E1 ∪ E2) = P(E1) + P(E2)
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Probability refresher (2)
Joint and conditional probabilities, chain rule

• Joint probability of two events is noted as P(x, y)
• The conditional probability is defined as

P(x|y) = P(x,y)
P(y) or P(x, y) = P(x|y)P(y)

• If the events x and x are independent,

P(x|y) = P(x), P(y|x) = p(y), P(x, y) = P(x)P(y)

• For more than two variables (chain rule):

P(x, y, z) = P(z|x, y)P(y|x)P(x) = P(x|y, z)P(y|z)P(z) = . . .

• If all are independent

P(x, y, z) = P(x)P(y)P(z)
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Probabilistic context free grammars (PCFG)
A probabilistic context free grammar is specified by,
Σ is a set of terminal symbols
N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol
R is a set of rules of the form

A → α [p]

where A is a non-terminal, α is string of terminals and
non-terminals, and p is the probability associated with the rule

• The grammar accepts a sentence if it can be derived from S

with rules R1 . . . Rk

• The probability of a parse t of input string x, P(t|x),
corresponding to the derivation R1 . . . Rk is

P(t|x) =
∏k

1 pi

where pi is the probability of the rule Ri
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PCFG example (1)
S

NP

We

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S → NP VP 1.0
NP → D N 0.7
NP → NP PP 0.2
NP → We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.9× 1.0× 0.2× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.000263424
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PCFG example (2)
S

NP

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S → NP VP 1.0
NP → D N 0.7
NP → NP PP 0.2
NP → We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.3× 0.7× 1.0× 0.1× 0.8× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.0001317120
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Where does the rule probabilities come from?

• Supervised: estimate from a treebank, e.g., using
maximum likelihood estimation

• Unsupervised: expectation-maximization (EM)
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PCFGs - an interim summary

• PCFGs assign probabilities to parses based on CFG rules
used during the parse

• PCFGs assume that the rules are independent
• PCFGs are generative models, they assign probabilities to
P(t, x), we can calcuate the probability of a sentence by

P(x) =
∑
t

P(t, x) =
∑
t

P(t)
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What makes the difference in PCFG probabilities?
S ⇒ NP VP 1.0
NP ⇒ We 0.1
VP ⇒ VP PP 0.1
VP ⇒ V NP 0.8
V ⇒ saw 1.0
NP ⇒ D N 0.7
D ⇒ the 0.4
N ⇒ man 0.8
PP ⇒ P NP 1.0
P ⇒ with 1.0
NP ⇒ D N 0.7
D ⇒ a 0.6
N ⇒ hat 0.2

S ⇒ NP VP 1.0
NP ⇒ We 0.1
VP ⇒ V NP 0.7
V ⇒ saw 1.0
NP ⇒ NP PP 0.2
NP ⇒ D N 0.7
D ⇒ the 0.4
N ⇒ man 0.8
PP ⇒ P NP 1.0
P ⇒ with 1.0
NP ⇒ D N 0.7
D ⇒ a 0.6
N ⇒ hat 0.2

The parser’s choice would not be affected by lexical items!
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What is wrong with PCFGs?

• In general: the assumption of independence
• The parents affect the correct choice for children, for

example, in English NP → Prn is more likely in the subject
position

• The lexical units affect the correct choice decision, for
example:

– We eat the pizza with hands
– We eat the pizza with mushrooms

• Additionally: PCFGs use local context, difficult to
incorporate arbitrary/global features for disambiguation
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Solutions to PCFG problems

• Independence assumptions can be relaxed by either
– Parent annotation
– Lexicalization - Collins (1999)

• To condition on arbitrary/global information:
disciriminative models - Charniak and Johnson (2005)
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Evaluating the parser output

• A parser can be evaluated
extrinsically based on it’s effect on a task (e.g., machine

translation) where it is used
intrinsically based on the match with ideal parsing

• The typically evaluation (intrinsic) based on a gold standard
(GS)

• Exact match is often
– very difficult to achieve (think about a 50-word newspaper

sentence)
– not strictly necessary (recovering parts of the parse can be

useful for many purposes)
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Parser evaluation metrics

• Common evaluation metrics are (PARSEVAL):
precision the ratio of correctly predicted nodes

recall the nodes (in GS) that are predicted correctly
f-measure harmonic mean of precision and recall(

2×precision×recall
precision+recall

)
• The measures can be

unlabled the spans of the nodes are expected to match
recall the node label should also match

• Crossing brackets (or average non-crossing brackets)
( We ( saw ( them ( with binoculars ))))
( We (( saw them ) ( with binoculars )))

• Measures can be averaged per constituent (micro average),
or over sentences (macro average)
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Training, test, development sets

You already know it, but to be sure …
• Testing a statistical (machine learning) model on the

training set is cheating (or fooling yourself)
• The systems has to be tested on a separate test set
• We often need to fine-tune the model, adjust parameters

based on its performance on a development set
• Actual training is carried over on a training set
• One should also follow the same ideas when using

cross-validation
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PARSEVAL example

Gold standard:
S

NP

N

We

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

Parser output:
S

NP

N

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

precision =
6

7
recall = 6

7
f-measure =

6

7
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Problems with PARSEVAL metrics

• PARSEVAL metrics favor certain type of structures
– You can surprisingly do well for flat tree structures (e.g.,

Penn treebank)
– Results of some mistakes are catastrophic (e.g., low

attachment)

• Not all mistakes are equally important for semantic
distinctions

• Some alternatives:
– Extrinsic evaluation
– Evaluation based on extracted dependencies
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Summary

• PCFGs are a good first start for statistical parsing
• But they are limited (mainly due to independence

assumption)

Next week: (statistical) dependency parsing
Please read: Joakim Nivre (n.d.). Dependency grammar and
dependency parsing. Unpublished notes. url:
http://stp.lingfil.uu.se/~nivre/docs/05133.pdf
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