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Recap/background Dependency grammar Dependency parsing Evaluation Summary

Ingredients of a parser

• A grammar - useful and easy to process representations
• A parsing algorithm - efficient enumeration of possible

representations
• A disambiguation method - finding most likely analyses
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Context-free parsing: grammars

A phrase structure grammar is a tuple (Σ,
N, S, R)
Σ is a set of terminal symbols

N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol
R is a set of rules of the form

A→ α for A ∈ N α ∈ Σ ∪N

S → NP VP VP → V NP
NP → John | Marry V → saw

S

NP

John

VP

V

saw

NP

Marry
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Context-free parsing: parsing algorithms

• Top-down parsers start with S, and try to derive the input
• Bottom-up parsers start with the input, and try to reduce it

to S

• Naive search (in both directions) has exponential time
complexity in the length of the input

• Chart parsing methods (CKY, Earley) do recognition in
polynomial time

• Chart parsers also represent ambiguity in a space efficient
manner (but recovering all parses can require exponential
time complexity)
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Context-free parsing: disambiguation

• PCFGs provide a first approximation to finding most likely
parse

• But their independence assumptions are too strong:
– They cannot model structural or lexical

preferences/constraints
– It is also difficult to incorporate arbitrary/global features

• Lexicalized grammars (or parent annotation) may help
with the independence assumption

• Discriminative (re-ranking) models can incorporate richer
set of (global) features
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Short divergence: deterministic parsing

• Unlike natural languages, programming languages are
designed not to be ambiguous

• Every programming language sentence (program) has to
have a single (semantic) interpretation

• Local ambiguity may happen, but deterministic (without
backtracking) parsing is possible with a short lookahead
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LR(k) grammars and shift-reduce parsing

• Shift-reduce parsers are bottom-up, table-based,
deterministic parsers used in compilers

• For the classes of grammar LR(k) grammars can be parsed
by such parsers

L means left-to-right
R means rightmost derivation
k is the number of lookahead symbols needed (typically 1)

• Constructing an LR(k) grammar tables by hand is difficult,
often parser-generators (e.g., yacc) are used for converting
appropriate CFG grammars written by hand
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Shift-reduce parsing

• A shift-reduce parser does a single pass over the input
string

• It makes use of a stack, the lookahead and a buffer of unseen
tokens

• It deterministically applies two operations:
Shift the input symbol from the buffer to the stack

Reduce if the symbols on top of the stack match the RHS of a rule,
pop them and push the LHS

• Accepts the input, if the buffer is empty, and S is on top of
the stack
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Shift-reduce parsing example

Input: 2 * 3

stack buffer action

[ 2 * 3 ] shift

[ 2 * 3 ] reduce
[ factor * 3 ] reduce
[ term * 3 ] shift

(?)

[ term * 3 ] shift
[ term * 3 ] reduce
[ term * factor ] reduce
[ term ] reduce
[ exp ] accept

Grammar:
exp → exp + term

exp → term

term → term * factor
term → factor
factor → ( exp )

factor → [0-9]+
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Shift-reduce parsing: summary
• Deterministic parsing is possible for programming

languages
• The potential non-determinism (conflicts during

shift-reduce parsing) can be avoided
– by converting the hand-written grammars to LR(k)

grammars
– by heuristics strategies or disambiguation during

post-processing

A well-known ambiguity (just for fun):

int t, x;
t = 1;
if (t = 0) x = 0;
else if (t = 1) x = 1;
else x = 2;

• What is the value of x?
• How to resolve the ambiguity?
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Shift-reduce parsing and natural languages
…or why we did went through all these

• Natural languages have global ambiguity, standard
shift-reduce parsing will not work

• But there are some greedy parsers that follow the same
principles (also think about the similarity with Earley
parsing)

• Generalized LR (GLR) methods are also suggested for
natural language parsing
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Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words

• The structure of the sentence is represented by asymmetric
binary relations between syntactic units

• The links (relations) have labels (dependency types)
• Each relation defines one of the words as the head and the

other as dependent
• Often an artificial root node is used for computational

convenience
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Dependency grammars: notational variation

I

saw

her

duck

root

su
bj

dobj

nm
od

pron

verb

pron

noun

root

I saw her duck

su
bj dobj

nm
od
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Dependency grammar: definition

A dependency grammar is a tuple (V,A)

V is a set of nodes corresponding to the (syntactic) words (we
implicitly assume that words have indexes)

A is a set of arcs of the form (wi, r,wj) where
wi ∈ V is the head
r is the type of the relation (arc label)

wj ∈ V is the dependent

This defines a directed graph.
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Dependency grammars: common assumptions

• Every word has a single head
• The dependency graphs are acyclic
• The graph is connected
• With these assumptions, the representation is a tree
• Note that these assumptions are not universal but common

for dependency parsing
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Dependency grammars: projectivity

A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD

• If a dependency graph has no crossing edges, it is said to
be projective, otherwise non-projective

• Non-projectivity stem from long-distance dependencies
and free word order

• Projective dependency trees can be represented with
context-free grammars

• In general, projective dependencies are parsable more
efficiently

(tree reproduced from McDonald and Satta 2007)
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Dependency grammars: some variation

• Choice of dependency types (edge labels) may differ
– Semantic roles
– Grammatical/syntactic functions

• The assumption about syntactic units
• Formal properties of dependency structures

– Projective or non-projective
– Mono-stratal or multi-stratal
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Some tricky constructions

• Coordination

John and Marry work

subj

cc
conj

John and Marry work

subj

cc conj

John and Marry work

subj
conj conj

• Prepositional phrases

…works from home

vcompl pcompl

…works from home

nmod

case

• Subordinate clauses

think that they can…
obj

sbar
subj

think that they can…

obj
mark

subj

• Auxiliaries vs. main verbs

…will work

root
aux

…will work

root
aux
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CONLL-X/U format for dependency annotation
Single-head assumption allows flat representation of dependency trees� �

1 Read read VERB VB Mood=Imp|VerbForm=Fin 0 root
2 on on ADV RB _ 1 advmod
3 to to PART TO _ 4 mark
4 learn learn VERB VB VerbForm=Inf 1 xcomp
5 the the DET DT Definite=Def 6 det
6 facts fact NOUN NNS Number=Plur 4 dobj
7 . . PUNCT . _ 1 punct� �

Read on to learn the facts .

advmod mark
xcomp

det

dobj

punct

example from English Universal Dependencies treebank
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Dependency parsing

• Dependency parsing has many similarities with
context-free parsing (e.g., trees)

• They also have some different properties (e.g., number of
edges and depth of trees are limited)

• Dependency parsing can be
– grammar-driven (hand drafted rules or constraints)
– data-driven (rules/model is learned from a treebank)

• There are two main approaches:
Graph-based similar to context-free parsing, search for the

best tree structure
Transition-based similar to shift-reduce parsing, greedily

search for the best transition sequence
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Grammar-driven dependency parsing

• Grammar-driven dependency parsers typically based on
– lexicalized CF parsing
– constraint satisfaction problem

• start from fully connected graph, eliminate trees that do not
satisfy the constraints

• exact solution is intractable, often employ heuristics,
approximate methods

• sometime ‘soft’, or weighted, constraints are used
– Practical implementations exist

• Our focus will be data-driven methods
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Transition based parsing

• Inspired by shift-reduce parsing, single pass over the input
• Use a stack and a buffer of unprocessed words
• Parsing as predicting a sequence of transitions like

Left-Arc: similar to Reduce, mark current word the
head of the word on top of the stack

Right-Arc: similar to Reduce, mark current word a
dependent of the word on top of the stack

Shift: push the current word to the stack
• Algorithm terminates when all words in the input are

processed
• The transitions are not naturally deterministic, best

transition is predicted using a machine learning method

(Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004)
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A typical transition system

(σ |

stack top
wi

stack

,
next word

wj | β

buffer

, A

arcs
)

Left-Arcr: (σ|wi, wj|β,A)⇒ (σ ,wj|β,A ∪ {(wj, r,wi)})

• pop wi,
• add arc (wj, r,wi) to A (keep wj in the buffer)

Right-Arcr: (σ|wi, wj|β,A)⇒ (σ ,wi|β,A ∪ {(wi, r,wj)})

• pop wi,
• add arc (wi, r,wj) to A,
• move wi to the buffer

Shift: (σ ,wj|β,A)⇒ (σ|wj, β,A)

• push wj to the stack
• remove it from the buffer

(Kübler, McDonald, and Nivre 2009, p.23)
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Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj dobj

nmod

case
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Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Right-Arc(dobj)

Note: we need Shift for NP attachment.Note: We need Shift for NP attachment.

root

nsubj

dobj

nmod

case
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Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Left-Arc(case)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj dobj

nmod

case
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Transition based parsing: example

Root We saw her with binoculars

st
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k
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ffe
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Right-Arc(root)

Note: we need Shift for NP attachment.
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Making transition decisions

• In classical shift-reduce parsing the actions are
deterministic

• In transition-based dependency parsing we need to choose
among all possible transitions

• The typical method is to train a (discriminative) classifier
trained on features extracted from gold-standard transition
sequences

• Almost any machine learning method method is
applicable. Common choices include

– Memory-based learning
– Support vector machines
– (Deep) neural networks
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Features for transition-based parsing

• The features come from the parser configuration, for
example

– The word at the top of the stack, (peeking towards the
bottom of the stack is also fine)

– The first/second word on the buffer
– Right/left dependents of the word on top of the

stack/buffer
• For each possible ‘address’, we can make use of features

like
– Word form, lemma, POS tag, morphological features, word

embedding
– Dependency relations – (wi, r,wj) triples

• Note that for some ‘address’–‘feature’ combinations and in
some configurations the values may be missing
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The training data

• The features for transition-based parsing have to be
extracted from parser configurations

• The data (treebanks) need to be preprocessed for obtaining
the training data

• Construct a transition sequence by parsing the sentences,
and using treebank annotations (the set A) as an ‘oracle’

• Decide for
Left-Arcr if (β[0], r, σ[0]) ∈ A

Right-Arcr if (σ[0], r, β[0]) ∈ A

and all dependents of β[0] are attached
Right-Arcr otherwise

• There may be multiple sequences that yield to the same
dependency tree, the above defines a ‘canonical’ transition
sequence
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Alternative transition systems

• A common alternative to the transition system we defined
(known as arc-standard) is the arc-eager transitions system

Left-Arcr: (σ|wi, wj|β,A)⇒ (σ ,wj|β,A∪ {(wj, r,wi)})
if (wk, r

′, wi) ̸∈ A

Right-Arcr: (σ|wi, wj|β,A)⇒ (σ|wi|wj, β,A∪{(wi, r,wj)})

Reduce: (σ|wi , β,A)⇒ (σ, β,A)
if (wk, r

′, wi) ̸∈ A

Shift: (σ ,wj|β,A)⇒ (σ|wj, β,A)

• This system does not have to wait until all dependents of
β[0] to be attached before a Right-Arc

(Kübler, McDonald, and Nivre 2009, p.34)
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Non-projective parsing

• The transition-based parsing we defined so far works only
for projective dependencies

• One way to achieve (limited) non-projective parsing is to
add special Left-Arc and Right-Arc transitions to/from
non-top words from the stack

• Another method is pseudo-projective parsing:
– preprocessing to ‘projectivize’ the trees before training

• The idea is to attach the dependents to a higher level head
that preserves projectivity, while marking it on the change
on the new dependency

– postprocessing for restoring the projectivity after parsing
• Re-introduce projectivity for the marked dependencies

Ç. Çöltekin, SfS / University of Tübingen November 2016 28 / 45



Recap/background Dependency grammar Dependency parsing Evaluation Summary

Pseudo-projective parsing

Non-projective tree:

A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD

Pseudo-projective tree:

A hearing is scheduled on the issue today .

ROOT

VC

VC:TMP

SJ:PP

PUNC

SBJNMOD
NP
NMOD
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Transition based parsing: summary/notes

• Linear time, greedy parsing
• Can be extended to non-projective dependencies
• One can use arbitrary features,
• We need some extra work for generating gold-standard

transition sequences from treebanks
• Early errors propagate, transition-based parsers make

more mistakes on long-distance dependencies
• The greedy algorithm can be extended to beam search for

better accuracy (still linear time complexity)
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Graph-based parsing: preliminaries

• Enumerate all possible dependency trees
• Pick the best scoring tree
• Features are based on limited parse history (like CFG

parsing)
• Two well-known flavors:

– Maximum (weight) spanning tree (MST)
– Chart-parsing based methods

J. M. Eisner 1996; McDonald et al. 2005
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MST parsing: preliminaries
Spanning tree of a graph

• Spanning tree of a connected graph is a
sub-graph which is a tree and traverses
all the nodes

• For fully-connected graphs, the number
of spanning trees are exponential in the
size of the graph

• The problem is well studied
• There are efficient algorithms for

enumerating, and finding the optimum
spanning tree on weighted graphs
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MST algorithm for dependency parsing

• For directed graphs, there is a polynomial time algorithm
that finds the minimum/maximum spanning tree (MST) of
a fully connected graph (Chu-Liu-Edmonds algorithm)

• The algorithm starts with a dense/fully connected graph
• Removes edges until the resulting graph is a tree

Ç. Çöltekin, SfS / University of Tübingen November 2016 33 / 45



Recap/background Dependency grammar Dependency parsing Evaluation Summary

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

11

1

For each node select the incoming arc with highest weight
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MST example
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Detect the cycles, contract them to a ‘single node’
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MST example

I saw
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Pick the best arc into the combined node, break the cycle
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MST example
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Once all cycles are eliminated, the result is the MST
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Properties of the MST parser

• The MST parser is non-projective
• There is an alrgorithm with O(n2) time complexity (Tarjan 1977)

• The time complexity increases with typed dependencies
(but still close to quadratic)

• The weights/parameters are associated with edges (often
called ‘arc-factored’)

• We can learn the arc weights directly from a treebank
• However, it is difficult to incorporate non-local features
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CKY reminder

function CKY(words, grammar)
for j ← 1 to Length(words) do

table[j− 1, j]← {A|A→ words[j] ∈ grammar}

for i ← j− 1 downto 0 do
for k ← i+ 1 to j− 1 do

table[i, j]← table[i, j] ∪
{A|A→ BC ∈ grammar and

B ∈ table[i, k] and
C ∈ table[k, j]}

return table
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CKY for dependency parsing

• The CKY algorithm can be adopted to projective
dependency parsing

• For a naive implementation the complexity increases
drastically O(n6)

– Any of the words within the span can be the head
– Inner loop has to consider all possible splits

• For projective parsing, the observation that the left and
right dependents of a head are independently generated
reduces the comlexity to O(n3)

(J. Eisner 1997)

Ç. Çöltekin, SfS / University of Tübingen November 2016 37 / 45



Recap/background Dependency grammar Dependency parsing Evaluation Summary

Non-local features

• The graph-based dependency parsers use edge-based
features

• This limits the use of more global features
• Some extensions for using ‘more’ global features are

possible
• This often leads non-projective parsing to become

intractable
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External features

• For both type of parsers, one can obtain features that are
based on unsupervised methods such as

– clustering
– dense vector representations
– alignment/transfer from bilingual corpora/treebanks

(Koo, Carreras, and Collins 2008)
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Errors from different parsers

• Different parsers make different errors
– Transition based parser do well on local arcs, worse on

long-distance arcs
– Graph based parser tend to do better on long-disntance

dependencies
• Parser combination is a good way to comibine the powers

of different models. Two common methods
– Mojority voting: train parsers separately, use the weighted

combination of their results
– Stacking: use the output of a parser as features for another

(McDonald and Satta 2007; Sagae and Lavie 2006; Nivre and McDonald 2008)
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Dependency parsing: summary

• Two general methods:
transition based greedy search, non-local features, fast,

less accurate
graph based exact search, local features, slower, accurate

(within model limitations)
• Combination of different methods often result in better

performance
• Non-projective parsing is more difficult
• Most of the recent parsing research has focused on better

machine learning methods (mainly using neural networks)
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Evaluation metrics for dependency parsers

• Like CF parsing, exact match is often too strict
• Attachment score is the ratio of words whose heads are

identified correctly.
– Labeled attachment score (LAS) requires the dependency type

to match
– Unlabeled attachment score (UAS) disregards the dependency

type
• Precision/recall/F-measure often used for quantifying success

on identifying a particular dependency type
precision is the ratio of correctly identified dependencies (of a certain

type)
recall is the ratio of dependencies in the gold standard that parser

predicted correctly
f-measure is the harmonic mean of precision and recall(

2×precision×recall
precision+recall

)
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Evaluation example

I saw her duck

nsubj
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0%
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Evaluation example

I saw her duck

nsubj

dobj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisiondobj 0% (assumed)
Recalldobj 0%

Ç. Çöltekin, SfS / University of Tübingen November 2016 43 / 45



Recap/background Dependency grammar Dependency parsing Evaluation Summary

Averaging evaluation scores

• As in context-free parsing, average scores can be
macro-average or sentence-based
micro-average or word-based

• Consider a two-sentence test set with
words correct

sentence 1 30 10
sentence 2 10 10

– word-based average attachment score:

50% (20/40)

– sentence-based average attachment score:

66% ((1 + 1/3)/2)
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Summary

• Dependency relations are often semantically easier to
interpret

• It is also claimed that dependency parsers are more
suitable for parsing free-word-order langauges

• Dependency relations are between words, no phrases or
other abstract nodes are postulated

• This often leads to more efficient parsing
• We reviewed two major classes of parsers:

– Transition based
– Graph based

Next:
Thursday More work practical work on of-the-shelf dependency parsers
Next Tue Michael Collins (2003). “Head-driven statistical models for natural language

parsing”. In: Computational linguistics 29.4, pp. 589–637. doi:
10.1162/089120103322753356
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A small assignment

Find the ratio of the non-projective trees and dependencies in
all Universal Dependencies treebanks (version 1.4).

• Information about the treebanks:
http://universaldependencies.org/

• Can be downloaded from:
http://hdl.handle.net/11234/1-1827

Please send your results via email before next Thursday
(December 1st).
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