Statistical Parsing Dependency parsing

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

November 2016

Ingredients of a parser

- A grammar useful and easy to process representations
- A parsing algorithm efficient enumeration of possible representations
- A disambiguation method finding most likely analyses

A phrase structure grammar is a tuple (Σ , N, S, R)

 Σ is a set of terminal symbols

A phrase structure grammar is a tuple (Σ , N, S, R)

- Σ is a set of terminal symbols
- $N \ \mbox{is a set of non-terminal symbols}$

A phrase structure grammar is a tuple (Σ , N, S, R)

- Σ is a set of terminal symbols
- N is a set of non-terminal symbols
- $S \in N$ is a distinguished *start* symbol

A phrase structure grammar is a tuple (Σ , N, S, R)

- Σ is a set of terminal symbols
- N is a set of non-terminal symbols
- $S \in N$ is a distinguished *start* symbol
- $\begin{array}{l} R \ \, \text{is a set of rules of the form} \\ A \rightarrow \alpha \ \, \text{for} \ \, A \in N \quad \alpha \in \Sigma \cup N \end{array}$

Context-free parsing: parsing algorithms

- Top-down parsers start with S, and try to derive the input
- Bottom-up parsers start with the input, and try to reduce it to S
- Naive search (in both directions) has exponential time complexity in the length of the input
- Chart parsing methods (CKY, Earley) do recognition in polynomial time
- Chart parsers also represent ambiguity in a space efficient manner (but recovering all parses can require exponential time complexity)

Context-free parsing: disambiguation

- PCFGs provide a first approximation to finding most likely parse
- But their independence assumptions are too strong:
 - They cannot model structural or lexical preferences/constraints
 - It is also difficult to incorporate arbitrary/global features
- Lexicalized grammars (or parent annotation) may help with the independence assumption
- Discriminative (re-ranking) models can incorporate richer set of (global) features

Short divergence: deterministic parsing

- Unlike natural languages, programming languages are designed not to be ambiguous
- Every programming language sentence (program) has to have a single (semantic) interpretation
- Local ambiguity may happen, but deterministic (without backtracking) parsing is possible with a short lookahead

LR(k) grammars and shift-reduce parsing

- Shift-reduce parsers are bottom-up, table-based, deterministic parsers used in compilers
- For the classes of grammar LR(k) grammars can be parsed by such parsers
 - L means left-to-right
 - R means rightmost derivation
 - k is the number of lookahead symbols needed (typically 1)
- Constructing an LR(k) grammar tables by hand is difficult, often parser-generators (e.g., yacc) are used for converting appropriate CFG grammars written by hand

Shift-reduce parsing

- A shift-reduce parser does a single pass over the input string
- It makes use of a *stack*, the *lookahead* and a *buffer* of unseen tokens
- It deterministically applies two operations: SHIFT the input symbol from the buffer to the stack REDUCE if the symbols on top of the stack match the RHS of a rule, pop them and push the LHS
 - Accepts the input, if the buffer is empty, and S is on top of the stack

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing example

Input: 2 * 3

stack	buffer	action
[2*3]	shift

Grammar:

$exp \rightarrow exp + term$
$exp \rightarrow term$
term \rightarrow term * factor
term \rightarrow factor
factor \rightarrow (exp)
factor \rightarrow [0-9]+

Input: 2 * 3

stack	buffer	action
[2*3]	shift
[2	* 3]	reduce

$exp \rightarrow exp + term$
$exp \rightarrow term$
term \rightarrow term * factor
term \rightarrow factor
factor \rightarrow (exp)
factor \rightarrow [0-9]+

Input: 2 * 3

Grammar:

stack	buffer	action
[2	2 * 3] * 3]	shift reduce
[factor	* 3]	reduce

 $\begin{array}{l} \exp \rightarrow \exp + \operatorname{term} \\ \exp \rightarrow \operatorname{term} \\ \operatorname{term} \rightarrow \operatorname{term} * \operatorname{factor} \\ \hline \operatorname{term} \rightarrow \operatorname{factor} \\ \operatorname{factor} \rightarrow (\operatorname{exp}) \\ \operatorname{factor} \rightarrow [0-9]+ \end{array}$

.

Input: 2 * 3

Grammar:

stack	buffer	action
[2*3]	shift
[2	* 3]	reduce
[factor	* 3]	reduce
[term	*3]	shift

$\exp \rightarrow \exp + \operatorname{term}$
$exp \rightarrow term$
term \rightarrow term * factor
term \rightarrow factor
factor \rightarrow (exp)
$factor \rightarrow [0-9]+$

-

Input: 2 * 3

Grammar:

stack	buffer	action
[2 * 3]	shift
[2	* 3]	reduce
[factor	* 3]	reduce
[term	* 3]	shift <mark>(?)</mark>

$exp \rightarrow exp + term$
$exp \rightarrow term$
term \rightarrow term * factor
term \rightarrow factor
factor \rightarrow (exp)
factor \rightarrow [0-9]+

Input: 2 * 3

Grammar:

stack	buffer	action	•
[2 * 3]	shift	
[2	* 3]	reduce	
[factor	* 3]	reduce	
[term	* 3]	shift (?)	1
[term *	3]	shift	t

$\exp \rightarrow \exp + \operatorname{term}$
$exp \rightarrow term$
term \rightarrow term * factor
term \rightarrow factor
factor \rightarrow (exp)
factor \rightarrow [0-9]+

_

Input: 2 * 3

Grammar:

stack	buffer	action	exp
[2 * 3]	shift	exp
[2	* 3]	reduce	tern
[factor	* 3]	reduce	
[term	* 3]	shift (?)	tern
[term *	3]	shift	fact
[term * 3]	reduce	

$\exp \rightarrow \exp + \operatorname{term}$	
$exp \rightarrow term$	
term \rightarrow term * factor	
term \rightarrow factor	
factor \rightarrow (exp)	
factor \rightarrow [0-9]+	

_

Input: 2 * 3

Grammar:

term

* factor

stack	buffer	action	$exp \rightarrow exp + te$
[2*3]	shift	$exp \rightarrow term$
[2	* 3]	reduce	$term \rightarrow term *$
[factor	* 3]	reduce	
[term	* 3]	shift (?)	$ $ term \rightarrow factor
[term *	3]	shift	factor \rightarrow (exp
[term * 3]	reduce	
[term * factor]	reduce	$factor \rightarrow [0-9]+$

Input: 2 * 3

Grammar:

1......

stack	buffer	action
[2 * 3]	shift
[2	* 3]	reduce
[factor	* 3]	reduce
[term	* 3]	shift (?)
[term *	3]	shift
[term * 3]	reduce
[term * factor]	reduce
[term]	reduce

$exp \rightarrow exp + term$
$exp \rightarrow term$
term \rightarrow term * factor
term \rightarrow factor
factor \rightarrow (exp)
factor \rightarrow [0-9]+

Input: 2 * 3

Grammar:

stack	buffer	action
[2 * 3]	shift
[2	* 3]	reduce
[factor	* 3]	reduce
[term	* 3]	shift (?)
[term *	3]	shift
[term * 3]	reduce
[term * factor]	reduce
[term]	reduce
[exp]	accept

$\exp \rightarrow \exp + \operatorname{term}$	
$exp \rightarrow term$	
term \rightarrow term * factor	
term \rightarrow factor	
factor \rightarrow (exp)	
factor \rightarrow [0-9]+	

-

Shift-reduce parsing: summary

- Deterministic parsing is possible for programming languages
- The potential non-determinism (conflicts during shift-reduce parsing) can be avoided
 - by converting the hand-written grammars to LR(k) grammars
 - by heuristics strategies or disambiguation during post-processing

Shift-reduce parsing: summary

- Deterministic parsing is possible for programming languages
- The potential non-determinism (conflicts during shift-reduce parsing) can be avoided
 - by converting the hand-written grammars to LR(k) grammars
 - by heuristics strategies or disambiguation during post-processing

A well-known ambiguity (just for fun):

```
int t, x;
t = 1;
if (t = 0) x = 0;
else if (t = 1) x = 1;
else x = 2;
```

- What is the value of x?
- How to resolve the ambiguity?

Shift-reduce parsing and natural languages ... or why we did went through all these

- Natural languages have global ambiguity, standard shift-reduce parsing will not work
- But there are some greedy parsers that follow the same principles (also think about the similarity with Earley parsing)
- Generalized LR (GLR) methods are also suggested for natural language parsing

• No constituents, units of syntactic structure are words

- No constituents, units of syntactic structure are words
- The structure of the sentence is represented by asymmetric binary relations between syntactic units

- No constituents, units of syntactic structure are words
- The structure of the sentence is represented by asymmetric binary relations between syntactic units
- The links (relations) have labels (dependency types)

- No constituents, units of syntactic structure are words
- The structure of the sentence is represented by asymmetric binary relations between syntactic units
- The links (relations) have labels (dependency types)
- Each relation defines one of the words as the head and the other as dependent

- No constituents, units of syntactic structure are words
- The structure of the sentence is represented by asymmetric binary relations between syntactic units
- The links (relations) have labels (dependency types)
- Each relation defines one of the words as the head and the other as dependent
- Often an artificial *root* node is used for computational convenience

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammars: notational variation

Dependency grammar: definition

A dependency grammar is a tuple (V, A)

- V is a set of nodes corresponding to the (syntactic) words (we implicitly assume that words have indexes)
- A is a set of arcs of the form (w_i, r, w_j) where
 - $w_i \in V$ is the head
 - r is the type of the relation (arc label)
 - $w_j \ \in V \text{ is the dependent}$

This defines a directed graph.

Dependency grammars: common assumptions

- Every word has a single head
- The dependency graphs are acyclic
- The graph is connected
- With these assumptions, the representation is a tree
- Note that these assumptions are not universal but common for dependency parsing

Dependency grammars: projectivity

- If a dependency graph has no crossing edges, it is said to be *projective*, otherwise *non-projective*
- Non-projectivity stem from long-distance dependencies and free word order
- Projective dependency trees can be represented with context-free grammars
- In general, projective dependencies are parsable more efficiently

Dependency grammars: projectivity

- If a dependency graph has no crossing edges, it is said to be *projective*, otherwise *non-projective*
- Non-projectivity stem from long-distance dependencies and free word order
- Projective dependency trees can be represented with context-free grammars
- In general, projective dependencies are parsable more efficiently

(tree reproduced from McDonald and Satta 2007)

Dependency grammars: some variation

- Choice of dependency types (edge labels) may differ
 - Semantic roles
 - Grammatical/syntactic functions
- The assumption about syntactic units
- Formal properties of dependency structures
 - Projective or non-projective
 - Mono-stratal or multi-stratal

Some tricky constructions

Coordination

Prepositional phrases

Subordinate clauses

Auxiliaries vs. main verbs

CONLL-X/U format for dependency annotation

Single-head assumption allows flat representation of dependency trees

Í	1	Read	read	VERB	VB	Mood=Imp VerbForm=Fin	0	root
	2	on	on	ADV	RB	-	1	advmod
l	3	to	to	PART	TO	-	4	mark
	4	learn	learn	VERB	VB	VerbForm=Inf	1	xcomp
	5	the	the	DET	DT	Definite=Def	6	det
	6	facts	fact	NOUN	NNS	Number=Plur	4	dobj
	7	•	•	PUNCT		-	1	punct

example from English Universal Dependencies treebank

Dependency parsing

- Dependency parsing has many similarities with context-free parsing (e.g., trees)
- They also have some different properties (e.g., number of edges and depth of trees are limited)
- Dependency parsing can be
 - grammar-driven (hand drafted rules or constraints)
 - data-driven (rules/model is learned from a treebank)
- There are two main approaches:

Graph-based similar to context-free parsing, search for the best tree structure

Transition-based similar to shift-reduce parsing, greedily search for the best transition sequence

Grammar-driven dependency parsing

- Grammar-driven dependency parsers typically based on
 - lexicalized CF parsing
 - constraint satisfaction problem
 - start from fully connected graph, eliminate trees that do not satisfy the constraints
 - exact solution is intractable, often employ heuristics, approximate methods
 - sometime 'soft', or weighted, constraints are used
 - Practical implementations exist
- Our focus will be data-driven methods

Transition based parsing

- Inspired by shift-reduce parsing, single pass over the input
- Use a stack and a buffer of unprocessed words
- Parsing as predicting a sequence of transitions like
 LEFT-ARC: similar to REDUCE, mark current word the
 head of the word on top of the stack
 RIGHT-ARC: similar to REDUCE, mark current word a
 dependent of the word on top of the stack
 SHIFT: push the current word to the stack
- Algorithm terminates when all words in the input are processed
- The transitions are not naturally deterministic, best transition is predicted using a machine learning method

(Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004)

A typical transition system

 $\text{Left-Arc}_{r}:\;(\sigma|w_{i},w_{j}|\beta,A) \Rightarrow\;(\sigma \quad,w_{j}|\beta,A\cup\{(w_{j},r,w_{i})\})$

- pop *w*_i,
- add arc (w_j, r, w_i) to A (keep w_j in the buffer)

 $\text{Right-Arc}_{r}: \ (\sigma|w_{i},w_{j}|\beta,A) \Rightarrow \ (\sigma \quad ,w_{i}|\beta,A\cup\{(w_{i},r,w_{j})\})$

- pop *w*_i,
- add arc (w_i, r, w_j) to A,
- move *w*_i to the buffer

Shift: $(\sigma , w_j | \beta, A) \Rightarrow (\sigma | w_j, \beta, A)$

- push w_j to the stack
- remove it from the buffer

Transition based parsing: example

Note: We need SHIFT for NP attachment.

Making transition decisions

- In classical shift-reduce parsing the actions are deterministic
- In transition-based dependency parsing we need to choose among all possible transitions
- The typical method is to train a (discriminative) classifier trained on features extracted from gold-standard *transition sequences*
- Almost any machine learning method method is applicable. Common choices include
 - Memory-based learning
 - Support vector machines
 - (Deep) neural networks

Features for transition-based parsing

- The features come from the parser configuration, for example
 - The word at the top of the stack, (peeking towards the bottom of the stack is also fine)
 - The first/second word on the buffer
 - Right/left dependents of the word on top of the stack/buffer
- For each possible 'address', we can make use of features like
 - Word form, lemma, POS tag, morphological features, word embedding
 - Dependency relations (w_i, r, w_j) triples
- Note that for some 'address'-'feature' combinations and in some configurations the values may be missing

The training data

- The features for transition-based parsing have to be extracted from *parser configurations*
- The data (treebanks) need to be preprocessed for obtaining the training data
- Construct a transition sequence by parsing the sentences, and using treebank annotations (the set A) as an 'oracle'
- Decide for

```
Left-Arc<sub>r</sub> if (\beta[0], r, \sigma[0]) \in A
Right-Arc<sub>r</sub> if (\sigma[0], r, \beta[0]) \in A
and all dependents of \beta[0] are attached
Right-Arc<sub>r</sub> otherwise
```

• There may be multiple sequences that yield to the same dependency tree, the above defines a 'canonical' transition sequence

Alternative transition systems

 A common alternative to the transition system we defined (known as *arc-standard*) is the *arc-eager* transitions system LEFT-ARC_r: (σ|w_i, w_j|β, A) ⇒ (σ , w_j|β, A ∪ {(w_j, r, w_i)}) if (w_k, r', w_i) ∉ A

 $\begin{array}{l} \text{Right-Arc}_{r} \colon (\sigma | w_{i}, w_{j} | \beta, A) \Rightarrow \ (\sigma | w_{i} | w_{j}, \ \beta, A \cup \{(w_{i}, r, w_{j})\}) \\ \\ \text{Reduce:} \ (\sigma | w_{i} \quad , \beta, A) \Rightarrow \ (\sigma, \qquad \beta, A) \end{array}$

if $(w_k, r', w_i) \notin A$

Shift: $(\sigma , w_j | \beta, A) \Rightarrow (\sigma | w_j, \beta, A)$

• This system does not have to wait until all dependents of $\beta[0]$ to be attached before a Right-Arc

(Kübler, McDonald, and Nivre 2009, p.34)

Non-projective parsing

- The transition-based parsing we defined so far works only for projective dependencies
- One way to achieve (limited) non-projective parsing is to add special Left-Arc and Right-Arc transitions to/from non-top words from the stack
- Another method is pseudo-projective parsing:
 - preprocessing to 'projectivize' the trees before training
 - The idea is to attach the dependents to a higher level head that preserves projectivity, while marking it on the change on the new dependency
 - postprocessing for restoring the projectivity after parsing
 - Re-introduce projectivity for the marked dependencies

Pseudo-projective parsing

Transition based parsing: summary/notes

- Linear time, greedy parsing
- Can be extended to non-projective dependencies
- One can use arbitrary features,
- We need some extra work for generating gold-standard transition sequences from treebanks
- Early errors propagate, transition-based parsers make more mistakes on long-distance dependencies
- The greedy algorithm can be extended to beam search for better accuracy (still linear time complexity)

Graph-based parsing: preliminaries

- Enumerate all possible dependency trees
- Pick the best scoring tree
- Features are based on limited parse history (like CFG parsing)
- Two well-known flavors:
 - Maximum (weight) spanning tree (MST)
 - Chart-parsing based methods

J. M. Eisner 1996; McDonald et al. 2005

MST parsing: preliminaries

Spanning tree of a graph

• Spanning tree of a connected graph is a sub-graph which is a tree and traverses all the nodes

MST parsing: preliminaries

Spanning tree of a graph

- Spanning tree of a connected graph is a sub-graph which is a tree and traverses all the nodes
- For fully-connected graphs, the number of spanning trees are exponential in the size of the graph
- The problem is well studied
- There are efficient algorithms for enumerating, and finding the optimum spanning tree on weighted graphs

MST algorithm for dependency parsing

- For directed graphs, there is a polynomial time algorithm that finds the minimum/maximum spanning tree (MST) of a fully connected graph (Chu-Liu-Edmonds algorithm)
- The algorithm starts with a dense/fully connected graph
- Removes edges until the resulting graph is a tree

For each node select the incoming arc with highest weight

Properties of the MST parser

- The MST parser is non-projective
- There is an alrgorithm with $O(n^2)$ time complexity $_{\scriptscriptstyle (Tarjan\,1977)}$
- The time complexity increases with typed dependencies (but still close to quadratic)
- The weights/parameters are associated with edges (often called 'arc-factored')
- We can learn the arc weights directly from a treebank
- However, it is difficult to incorporate non-local features

CKY reminder

return table

CKY for dependency parsing

- The CKY algorithm can be adopted to projective dependency parsing
- For a naive implementation the complexity increases drastically $O(\mathfrak{n}^6)$
 - Any of the words within the span can be the head
 - Inner loop has to consider all possible splits
- For projective parsing, the observation that the left and right dependents of a head are independently generated reduces the comlexity to $O(n^3)$

(J. Eisner 1997)

Non-local features

- The graph-based dependency parsers use edge-based features
- This limits the use of more global features
- Some extensions for using 'more' global features are possible
- This often leads non-projective parsing to become intractable

External features

- For both type of parsers, one can obtain features that are based on unsupervised methods such as
 - clustering
 - dense vector representations
 - alignment/transfer from bilingual corpora/treebanks

(Koo, Carreras, and Collins 2008)
Errors from different parsers

- Different parsers make different errors
 - Transition based parser do well on local arcs, worse on long-distance arcs
 - Graph based parser tend to do better on long-disntance dependencies
- Parser combination is a good way to comibine the powers of different models. Two common methods
 - Mojority voting: train parsers separately, use the weighted combination of their results
 - Stacking: use the output of a parser as features for another

(McDonald and Satta 2007; Sagae and Lavie 2006; Nivre and McDonald 2008)

Dependency parsing: summary

- Two general methods:
 - transition based greedy search, non-local features, fast, less accurate
 - graph based exact search, local features, slower, accurate (within model limitations)
- Combination of different methods often result in better performance
- Non-projective parsing is more difficult
- Most of the recent parsing research has focused on better machine learning methods (mainly using neural networks)

Evaluation metrics for dependency parsers

- Like CF parsing, exact match is often too strict
- *Attachment score* is the ratio of words whose heads are identified correctly.
 - Labeled attachment score (LAS) requires the dependency type to match
 - *Unlabeled attachment score* (UAS) disregards the dependency type
- *Precision/recall/F-measure* often used for quantifying success on identifying a particular dependency type
- precision is the ratio of correctly identified dependencies (of a certain type)
 - recall is the ratio of dependencies in the gold standard that parser predicted correctly

f-measure is the harmonic mean of precision and recall

 $\left(\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}\right)$

UAS LAS Precision_{nsubj} Recall_{nsubj} Precision_{dobj} Recall_{dobj}

Averaging evaluation scores

- As in context-free parsing, average scores can be macro-average or sentence-based micro-average or word-based
- Consider a two-sentence test set with

	words	correct
sentence 1	30	10
sentence 2	10	10

- word-based average attachment score:
- sentence-based average attachment score:

Averaging evaluation scores

- As in context-free parsing, average scores can be macro-average or sentence-based micro-average or word-based
- Consider a two-sentence test set with

	words	correct
sentence 1	30	10
sentence 2	10	10

- word-based average attachment score: 50% (20/40)
- sentence-based average attachment score: 66% ((1 + 1/3)/2)

Summary

- Dependency relations are often semantically easier to interpret
- It is also claimed that dependency parsers are more suitable for parsing free-word-order langauges
- Dependency relations are between words, no phrases or other abstract nodes are postulated
- This often leads to more efficient parsing
- We reviewed two major classes of parsers:
 - Transition based
 - Graph based

Summary

- Dependency relations are often semantically easier to interpret
- It is also claimed that dependency parsers are more suitable for parsing free-word-order langauges
- Dependency relations are between words, no phrases or other abstract nodes are postulated
- This often leads to more efficient parsing
- We reviewed two major classes of parsers:
 - Transition based
 - Graph based

Next:

Thursday More work practical work on of-the-shelf dependency parsers

Next Tue Michael Collins (2003). "Head-driven statistical models for natural language parsing". In: *Computational linguistics* 29.4, pp. 589–637. DOI: 10.1162/089120103322753356

Bibliography

Ē.

Collins, Michael (2003). "Head-driven statistical models for natural language parsing". In: *Computational linguistics* 29.4, pp. 589–637. DOI: 10.1162/089120103322753356.

- Eisner, Jason M. (1996). "Three New Probabilistic Models for Dependency Parsing: An Exploration". In: Proceedings of the 16th Conference on Computational Linguistics - Volume 1. COLING '96. Copenhagen, Denmark: Association for Computational Linguistics, pp. 340–345. DOI: 10.3115/992628.992688. URL: http://dx.doi.org/10.3115/992628.992688.
- Koo, Terry, Xavier Carreras, and Michael Collins (2008). "Simple Semi-supervised Dependency Parsing". In: Proceedings of ACL-08: HLT. Columbus, Ohio: Association for Computational Linguistics, pp. 595–603. URL: http://www.aclweb.org/anthology/P/P08/P08-1068.

Ē.

- Kübler, Sandra, Ryan McDonald, and Joakim Nivre (2009). Dependency Parsing. Synthesis lectures on human language technologies. Morgan & Claypool. ISBN: 9781598295962.
- McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič (2005). "Non-projective Dependency Parsing Using Spanning Tree Algorithms". In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing. HLT '05. Vancouver, British Columbia, Canada: Association for Computational Linguistics, pp. 523–530. DOI: 10.3115/1220575.1220641. URL: http://dx.doi.org/10.3115/1220575.1220641.

Bibliography (cont.)

Nivre, Joakim, Johan Hall, and Jens Nilsson (2004). "Memory-based dependency parsing". In: Proceedings of the 8th Conference on Computational Natural Language Learning (CoNLL). Ed. by Hwee Tou Ng and Ellen Riloff, pp. 49–56.

Nivre, Joakim and Ryan McDonald (2008). "Integrating Graph-Based and Transition-Based Dependency Parsers". In: Proceedings of ACL-08: HLT. Columbus, Ohio: Association for Computational Linguistics, pp. 950–958. URL: http://www.aclweb.org/anthology/P/P08/P08-1108.

Sagae, Kenji and Alon Lavie (2006). "Parser Combination by Reparsing". In: Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers. New York City, USA: Association for Computational Linguistics, pp. 129–132. URL: http://www.aclweb.org/anthology/N/N06/N06-2033.

Tarjan, R. E. (1977). "Finding optimum branchings". In: Networks 7.1, pp. 25–35. ISSN: 1097-0037. DOI: 10.1002/net.3230070103.

Yamada, Hiroyasu and Yuji Matsumoto (2003). "Statistical dependency analysis with support vector machines". In: Proceedings of 8th international workshop on parsing technologies (IWPT). Ed. by Gertjan Van Noord, pp. 195–206.

A small assignment

Find the ratio of the non-projective trees and dependencies in all Universal Dependencies treebanks (version 1.4).

- Information about the treebanks: http://universaldependencies.org/
- Can be downloaded from: http://hdl.handle.net/11234/1-1827

Please send your results via email before next Thursday (December 1st).