
Statistical Parsing
Dependency parsing

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft

November 2016

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Ingredients of a parser

• A grammar - useful and easy to process representations
• A parsing algorithm - efficient enumeration of possible

representations
• A disambiguation method - finding most likely analyses

Ç. Çöltekin, SfS / University of Tübingen November 2016 1 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Context-free parsing: grammars

A phrase structure grammar is a tuple (Σ,
N, S, R)
Σ is a set of terminal symbols

N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol
R is a set of rules of the form

A→ α for A ∈ N α ∈ Σ ∪N

S → NP VP VP → V NP
NP → John | Marry V → saw

S

NP

John

VP

V

saw

NP

Marry

Ç. Çöltekin, SfS / University of Tübingen November 2016 2 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Context-free parsing: grammars

A phrase structure grammar is a tuple (Σ,
N, S, R)
Σ is a set of terminal symbols
N is a set of non-terminal symbols

S ∈ N is a distinguished start symbol
R is a set of rules of the form

A→ α for A ∈ N α ∈ Σ ∪N

S → NP VP VP → V NP
NP → John | Marry V → saw

S

NP

John

VP

V

saw

NP

Marry

Ç. Çöltekin, SfS / University of Tübingen November 2016 2 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Context-free parsing: grammars

A phrase structure grammar is a tuple (Σ,
N, S, R)
Σ is a set of terminal symbols
N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol

R is a set of rules of the form
A→ α for A ∈ N α ∈ Σ ∪N

S → NP VP VP → V NP
NP → John | Marry V → saw

S

NP

John

VP

V

saw

NP

Marry

Ç. Çöltekin, SfS / University of Tübingen November 2016 2 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Context-free parsing: grammars

A phrase structure grammar is a tuple (Σ,
N, S, R)
Σ is a set of terminal symbols
N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol
R is a set of rules of the form

A→ α for A ∈ N α ∈ Σ ∪N

S → NP VP VP → V NP
NP → John | Marry V → saw

S

NP

John

VP

V

saw

NP

Marry

Ç. Çöltekin, SfS / University of Tübingen November 2016 2 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Context-free parsing: parsing algorithms

• Top-down parsers start with S, and try to derive the input
• Bottom-up parsers start with the input, and try to reduce it

to S

• Naive search (in both directions) has exponential time
complexity in the length of the input

• Chart parsing methods (CKY, Earley) do recognition in
polynomial time

• Chart parsers also represent ambiguity in a space efficient
manner (but recovering all parses can require exponential
time complexity)

Ç. Çöltekin, SfS / University of Tübingen November 2016 3 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Context-free parsing: disambiguation

• PCFGs provide a first approximation to finding most likely
parse

• But their independence assumptions are too strong:
– They cannot model structural or lexical

preferences/constraints
– It is also difficult to incorporate arbitrary/global features

• Lexicalized grammars (or parent annotation) may help
with the independence assumption

• Discriminative (re-ranking) models can incorporate richer
set of (global) features

Ç. Çöltekin, SfS / University of Tübingen November 2016 4 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Short divergence: deterministic parsing

• Unlike natural languages, programming languages are
designed not to be ambiguous

• Every programming language sentence (program) has to
have a single (semantic) interpretation

• Local ambiguity may happen, but deterministic (without
backtracking) parsing is possible with a short lookahead

Ç. Çöltekin, SfS / University of Tübingen November 2016 5 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

LR(k) grammars and shift-reduce parsing

• Shift-reduce parsers are bottom-up, table-based,
deterministic parsers used in compilers

• For the classes of grammar LR(k) grammars can be parsed
by such parsers

L means left-to-right
R means rightmost derivation
k is the number of lookahead symbols needed (typically 1)

• Constructing an LR(k) grammar tables by hand is difficult,
often parser-generators (e.g., yacc) are used for converting
appropriate CFG grammars written by hand

Ç. Çöltekin, SfS / University of Tübingen November 2016 6 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing

• A shift-reduce parser does a single pass over the input
string

• It makes use of a stack, the lookahead and a buffer of unseen
tokens

• It deterministically applies two operations:
Shift the input symbol from the buffer to the stack

Reduce if the symbols on top of the stack match the RHS of a rule,
pop them and push the LHS

• Accepts the input, if the buffer is empty, and S is on top of
the stack

Ç. Çöltekin, SfS / University of Tübingen November 2016 7 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing example

Input: 2 * 3

stack buffer action

[2 * 3] shift

[2 * 3] reduce
[factor * 3] reduce
[term * 3] shift

(?)

[term * 3] shift
[term * 3] reduce
[term * factor] reduce
[term] reduce
[exp] accept

Grammar:
exp → exp + term

exp → term

term → term * factor
term → factor
factor → (exp)

factor → [0-9]+

Ç. Çöltekin, SfS / University of Tübingen November 2016 8 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing example

Input: 2 * 3

stack buffer action

[2 * 3] shift
[2 * 3] reduce

[factor * 3] reduce
[term * 3] shift

(?)

[term * 3] shift
[term * 3] reduce
[term * factor] reduce
[term] reduce
[exp] accept

Grammar:
exp → exp + term

exp → term

term → term * factor
term → factor
factor → (exp)

factor → [0-9]+

Ç. Çöltekin, SfS / University of Tübingen November 2016 8 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing example

Input: 2 * 3

stack buffer action

[2 * 3] shift
[2 * 3] reduce
[factor * 3] reduce

[term * 3] shift

(?)

[term * 3] shift
[term * 3] reduce
[term * factor] reduce
[term] reduce
[exp] accept

Grammar:
exp → exp + term

exp → term

term → term * factor
term → factor
factor → (exp)

factor → [0-9]+

Ç. Çöltekin, SfS / University of Tübingen November 2016 8 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing example

Input: 2 * 3

stack buffer action

[2 * 3] shift
[2 * 3] reduce
[factor * 3] reduce
[term * 3] shift

(?)
[term * 3] shift
[term * 3] reduce
[term * factor] reduce
[term] reduce
[exp] accept

Grammar:
exp → exp + term

exp → term

term → term * factor
term → factor
factor → (exp)

factor → [0-9]+

Ç. Çöltekin, SfS / University of Tübingen November 2016 8 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing example

Input: 2 * 3

stack buffer action

[2 * 3] shift
[2 * 3] reduce
[factor * 3] reduce
[term * 3] shift (?)

[term * 3] shift
[term * 3] reduce
[term * factor] reduce
[term] reduce
[exp] accept

Grammar:
exp → exp + term

exp → term

term → term * factor
term → factor
factor → (exp)

factor → [0-9]+

Ç. Çöltekin, SfS / University of Tübingen November 2016 8 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing example

Input: 2 * 3

stack buffer action

[2 * 3] shift
[2 * 3] reduce
[factor * 3] reduce
[term * 3] shift (?)
[term * 3] shift

[term * 3] reduce
[term * factor] reduce
[term] reduce
[exp] accept

Grammar:
exp → exp + term

exp → term

term → term * factor
term → factor
factor → (exp)

factor → [0-9]+

Ç. Çöltekin, SfS / University of Tübingen November 2016 8 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing example

Input: 2 * 3

stack buffer action

[2 * 3] shift
[2 * 3] reduce
[factor * 3] reduce
[term * 3] shift (?)
[term * 3] shift
[term * 3] reduce

[term * factor] reduce
[term] reduce
[exp] accept

Grammar:
exp → exp + term

exp → term

term → term * factor
term → factor
factor → (exp)

factor → [0-9]+

Ç. Çöltekin, SfS / University of Tübingen November 2016 8 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing example

Input: 2 * 3

stack buffer action

[2 * 3] shift
[2 * 3] reduce
[factor * 3] reduce
[term * 3] shift (?)
[term * 3] shift
[term * 3] reduce
[term * factor] reduce

[term] reduce
[exp] accept

Grammar:
exp → exp + term

exp → term

term → term * factor
term → factor
factor → (exp)

factor → [0-9]+

Ç. Çöltekin, SfS / University of Tübingen November 2016 8 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing example

Input: 2 * 3

stack buffer action

[2 * 3] shift
[2 * 3] reduce
[factor * 3] reduce
[term * 3] shift (?)
[term * 3] shift
[term * 3] reduce
[term * factor] reduce
[term] reduce

[exp] accept

Grammar:
exp → exp + term

exp → term

term → term * factor
term → factor
factor → (exp)

factor → [0-9]+

Ç. Çöltekin, SfS / University of Tübingen November 2016 8 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing example

Input: 2 * 3

stack buffer action

[2 * 3] shift
[2 * 3] reduce
[factor * 3] reduce
[term * 3] shift (?)
[term * 3] shift
[term * 3] reduce
[term * factor] reduce
[term] reduce
[exp] accept

Grammar:
exp → exp + term

exp → term

term → term * factor
term → factor
factor → (exp)

factor → [0-9]+

Ç. Çöltekin, SfS / University of Tübingen November 2016 8 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing: summary
• Deterministic parsing is possible for programming

languages
• The potential non-determinism (conflicts during

shift-reduce parsing) can be avoided
– by converting the hand-written grammars to LR(k)

grammars
– by heuristics strategies or disambiguation during

post-processing

A well-known ambiguity (just for fun):

int t, x;
t = 1;
if (t = 0) x = 0;
else if (t = 1) x = 1;
else x = 2;

• What is the value of x?
• How to resolve the ambiguity?

Ç. Çöltekin, SfS / University of Tübingen November 2016 9 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing: summary
• Deterministic parsing is possible for programming

languages
• The potential non-determinism (conflicts during

shift-reduce parsing) can be avoided
– by converting the hand-written grammars to LR(k)

grammars
– by heuristics strategies or disambiguation during

post-processing
A well-known ambiguity (just for fun):

int t, x;
t = 1;
if (t = 0) x = 0;
else if (t = 1) x = 1;
else x = 2;

• What is the value of x?
• How to resolve the ambiguity?

Ç. Çöltekin, SfS / University of Tübingen November 2016 9 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Shift-reduce parsing and natural languages
…or why we did went through all these

• Natural languages have global ambiguity, standard
shift-reduce parsing will not work

• But there are some greedy parsers that follow the same
principles (also think about the similarity with Earley
parsing)

• Generalized LR (GLR) methods are also suggested for
natural language parsing

Ç. Çöltekin, SfS / University of Tübingen November 2016 10 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words

• The structure of the sentence is represented by asymmetric
binary relations between syntactic units

• The links (relations) have labels (dependency types)
• Each relation defines one of the words as the head and the

other as dependent
• Often an artificial root node is used for computational

convenience

Ç. Çöltekin, SfS / University of Tübingen November 2016 11 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric

binary relations between syntactic units

• The links (relations) have labels (dependency types)
• Each relation defines one of the words as the head and the

other as dependent
• Often an artificial root node is used for computational

convenience

Ç. Çöltekin, SfS / University of Tübingen November 2016 11 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric

binary relations between syntactic units
• The links (relations) have labels (dependency types)

• Each relation defines one of the words as the head and the
other as dependent

• Often an artificial root node is used for computational
convenience

Ç. Çöltekin, SfS / University of Tübingen November 2016 11 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric

binary relations between syntactic units
• The links (relations) have labels (dependency types)
• Each relation defines one of the words as the head and the

other as dependent

• Often an artificial root node is used for computational
convenience

Ç. Çöltekin, SfS / University of Tübingen November 2016 11 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric

binary relations between syntactic units
• The links (relations) have labels (dependency types)
• Each relation defines one of the words as the head and the

other as dependent
• Often an artificial root node is used for computational

convenience

Ç. Çöltekin, SfS / University of Tübingen November 2016 11 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammars: notational variation

I

saw

her

duck

root

su
bj

dobj

nm
od

pron

verb

pron

noun

root

I saw her duck

su
bj dobj

nm
od

Ç. Çöltekin, SfS / University of Tübingen November 2016 12 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammar: definition

A dependency grammar is a tuple (V,A)

V is a set of nodes corresponding to the (syntactic) words (we
implicitly assume that words have indexes)

A is a set of arcs of the form (wi, r,wj) where
wi ∈ V is the head
r is the type of the relation (arc label)

wj ∈ V is the dependent

This defines a directed graph.

Ç. Çöltekin, SfS / University of Tübingen November 2016 13 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammars: common assumptions

• Every word has a single head
• The dependency graphs are acyclic
• The graph is connected
• With these assumptions, the representation is a tree
• Note that these assumptions are not universal but common

for dependency parsing

Ç. Çöltekin, SfS / University of Tübingen November 2016 14 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammars: projectivity

A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD

• If a dependency graph has no crossing edges, it is said to
be projective, otherwise non-projective

• Non-projectivity stem from long-distance dependencies
and free word order

• Projective dependency trees can be represented with
context-free grammars

• In general, projective dependencies are parsable more
efficiently

(tree reproduced from McDonald and Satta 2007)

Ç. Çöltekin, SfS / University of Tübingen November 2016 15 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammars: projectivity

A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD

• If a dependency graph has no crossing edges, it is said to
be projective, otherwise non-projective

• Non-projectivity stem from long-distance dependencies
and free word order

• Projective dependency trees can be represented with
context-free grammars

• In general, projective dependencies are parsable more
efficiently

(tree reproduced from McDonald and Satta 2007)

Ç. Çöltekin, SfS / University of Tübingen November 2016 15 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency grammars: some variation

• Choice of dependency types (edge labels) may differ
– Semantic roles
– Grammatical/syntactic functions

• The assumption about syntactic units
• Formal properties of dependency structures

– Projective or non-projective
– Mono-stratal or multi-stratal

Ç. Çöltekin, SfS / University of Tübingen November 2016 16 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Some tricky constructions

• Coordination

John and Marry work

subj

cc
conj

John and Marry work

subj

cc conj

John and Marry work

subj
conj conj

• Prepositional phrases

…works from home

vcompl pcompl

…works from home

nmod

case

• Subordinate clauses

think that they can…
obj

sbar
subj

think that they can…

obj
mark

subj

• Auxiliaries vs. main verbs

…will work

root
aux

…will work

root
aux

Ç. Çöltekin, SfS / University of Tübingen November 2016 17 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

CONLL-X/U format for dependency annotation
Single-head assumption allows flat representation of dependency trees� �

1 Read read VERB VB Mood=Imp|VerbForm=Fin 0 root
2 on on ADV RB _ 1 advmod
3 to to PART TO _ 4 mark
4 learn learn VERB VB VerbForm=Inf 1 xcomp
5 the the DET DT Definite=Def 6 det
6 facts fact NOUN NNS Number=Plur 4 dobj
7 . . PUNCT . _ 1 punct� �

Read on to learn the facts .

advmod mark
xcomp

det

dobj

punct

example from English Universal Dependencies treebank

Ç. Çöltekin, SfS / University of Tübingen November 2016 18 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency parsing

• Dependency parsing has many similarities with
context-free parsing (e.g., trees)

• They also have some different properties (e.g., number of
edges and depth of trees are limited)

• Dependency parsing can be
– grammar-driven (hand drafted rules or constraints)
– data-driven (rules/model is learned from a treebank)

• There are two main approaches:
Graph-based similar to context-free parsing, search for the

best tree structure
Transition-based similar to shift-reduce parsing, greedily

search for the best transition sequence

Ç. Çöltekin, SfS / University of Tübingen November 2016 19 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Grammar-driven dependency parsing

• Grammar-driven dependency parsers typically based on
– lexicalized CF parsing
– constraint satisfaction problem

• start from fully connected graph, eliminate trees that do not
satisfy the constraints

• exact solution is intractable, often employ heuristics,
approximate methods

• sometime ‘soft’, or weighted, constraints are used
– Practical implementations exist

• Our focus will be data-driven methods

Ç. Çöltekin, SfS / University of Tübingen November 2016 20 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing

• Inspired by shift-reduce parsing, single pass over the input
• Use a stack and a buffer of unprocessed words
• Parsing as predicting a sequence of transitions like

Left-Arc: similar to Reduce, mark current word the
head of the word on top of the stack

Right-Arc: similar to Reduce, mark current word a
dependent of the word on top of the stack

Shift: push the current word to the stack
• Algorithm terminates when all words in the input are

processed
• The transitions are not naturally deterministic, best

transition is predicted using a machine learning method

(Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004)

Ç. Çöltekin, SfS / University of Tübingen November 2016 21 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

A typical transition system

(σ |

stack top
wi

stack

,
next word

wj | β

buffer

, A

arcs
)

Left-Arcr: (σ|wi, wj|β,A)⇒ (σ ,wj|β,A ∪ {(wj, r,wi)})

• pop wi,
• add arc (wj, r,wi) to A (keep wj in the buffer)

Right-Arcr: (σ|wi, wj|β,A)⇒ (σ ,wi|β,A ∪ {(wi, r,wj)})

• pop wi,
• add arc (wi, r,wj) to A,
• move wi to the buffer

Shift: (σ ,wj|β,A)⇒ (σ|wj, β,A)

• push wj to the stack
• remove it from the buffer

(Kübler, McDonald, and Nivre 2009, p.23)

Ç. Çöltekin, SfS / University of Tübingen November 2016 22 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj dobj

nmod

case

Ç. Çöltekin, SfS / University of Tübingen November 2016 23 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Left-Arc(nsubj)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj dobj

nmod

case

Ç. Çöltekin, SfS / University of Tübingen November 2016 23 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj

dobj

nmod

case

Ç. Çöltekin, SfS / University of Tübingen November 2016 23 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Right-Arc(dobj)

Note: we need Shift for NP attachment.Note: We need Shift for NP attachment.

root

nsubj

dobj

nmod

case

Ç. Çöltekin, SfS / University of Tübingen November 2016 23 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj dobj

nmod

case

Ç. Çöltekin, SfS / University of Tübingen November 2016 23 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj dobj

nmod

case

Ç. Çöltekin, SfS / University of Tübingen November 2016 23 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Left-Arc(case)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj dobj

nmod

case

Ç. Çöltekin, SfS / University of Tübingen November 2016 23 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Left-Arc(nmod)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj dobj

nmod

case

Ç. Çöltekin, SfS / University of Tübingen November 2016 23 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Right-Arc(root)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj dobj

nmod

case

Ç. Çöltekin, SfS / University of Tübingen November 2016 23 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj dobj

nmod

case

Ç. Çöltekin, SfS / University of Tübingen November 2016 23 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj dobj

nmod

case

Ç. Çöltekin, SfS / University of Tübingen November 2016 23 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Making transition decisions

• In classical shift-reduce parsing the actions are
deterministic

• In transition-based dependency parsing we need to choose
among all possible transitions

• The typical method is to train a (discriminative) classifier
trained on features extracted from gold-standard transition
sequences

• Almost any machine learning method method is
applicable. Common choices include

– Memory-based learning
– Support vector machines
– (Deep) neural networks

Ç. Çöltekin, SfS / University of Tübingen November 2016 24 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Features for transition-based parsing

• The features come from the parser configuration, for
example

– The word at the top of the stack, (peeking towards the
bottom of the stack is also fine)

– The first/second word on the buffer
– Right/left dependents of the word on top of the

stack/buffer
• For each possible ‘address’, we can make use of features

like
– Word form, lemma, POS tag, morphological features, word

embedding
– Dependency relations – (wi, r,wj) triples

• Note that for some ‘address’–‘feature’ combinations and in
some configurations the values may be missing

Ç. Çöltekin, SfS / University of Tübingen November 2016 25 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

The training data

• The features for transition-based parsing have to be
extracted from parser configurations

• The data (treebanks) need to be preprocessed for obtaining
the training data

• Construct a transition sequence by parsing the sentences,
and using treebank annotations (the set A) as an ‘oracle’

• Decide for
Left-Arcr if (β[0], r, σ[0]) ∈ A

Right-Arcr if (σ[0], r, β[0]) ∈ A

and all dependents of β[0] are attached
Right-Arcr otherwise

• There may be multiple sequences that yield to the same
dependency tree, the above defines a ‘canonical’ transition
sequence

Ç. Çöltekin, SfS / University of Tübingen November 2016 26 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Alternative transition systems

• A common alternative to the transition system we defined
(known as arc-standard) is the arc-eager transitions system

Left-Arcr: (σ|wi, wj|β,A)⇒ (σ ,wj|β,A∪ {(wj, r,wi)})
if (wk, r

′, wi) ̸∈ A

Right-Arcr: (σ|wi, wj|β,A)⇒ (σ|wi|wj, β,A∪{(wi, r,wj)})

Reduce: (σ|wi , β,A)⇒ (σ, β,A)
if (wk, r

′, wi) ̸∈ A

Shift: (σ ,wj|β,A)⇒ (σ|wj, β,A)

• This system does not have to wait until all dependents of
β[0] to be attached before a Right-Arc

(Kübler, McDonald, and Nivre 2009, p.34)

Ç. Çöltekin, SfS / University of Tübingen November 2016 27 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Non-projective parsing

• The transition-based parsing we defined so far works only
for projective dependencies

• One way to achieve (limited) non-projective parsing is to
add special Left-Arc and Right-Arc transitions to/from
non-top words from the stack

• Another method is pseudo-projective parsing:
– preprocessing to ‘projectivize’ the trees before training

• The idea is to attach the dependents to a higher level head
that preserves projectivity, while marking it on the change
on the new dependency

– postprocessing for restoring the projectivity after parsing
• Re-introduce projectivity for the marked dependencies

Ç. Çöltekin, SfS / University of Tübingen November 2016 28 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Pseudo-projective parsing

Non-projective tree:

A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD

Pseudo-projective tree:

A hearing is scheduled on the issue today .

ROOT

VC

VC:TMP

SJ:PP

PUNC

SBJNMOD
NP
NMOD

Ç. Çöltekin, SfS / University of Tübingen November 2016 29 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Transition based parsing: summary/notes

• Linear time, greedy parsing
• Can be extended to non-projective dependencies
• One can use arbitrary features,
• We need some extra work for generating gold-standard

transition sequences from treebanks
• Early errors propagate, transition-based parsers make

more mistakes on long-distance dependencies
• The greedy algorithm can be extended to beam search for

better accuracy (still linear time complexity)

Ç. Çöltekin, SfS / University of Tübingen November 2016 30 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Graph-based parsing: preliminaries

• Enumerate all possible dependency trees
• Pick the best scoring tree
• Features are based on limited parse history (like CFG

parsing)
• Two well-known flavors:

– Maximum (weight) spanning tree (MST)
– Chart-parsing based methods

J. M. Eisner 1996; McDonald et al. 2005

Ç. Çöltekin, SfS / University of Tübingen November 2016 31 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

MST parsing: preliminaries
Spanning tree of a graph

• Spanning tree of a connected graph is a
sub-graph which is a tree and traverses
all the nodes

• For fully-connected graphs, the number
of spanning trees are exponential in the
size of the graph

• The problem is well studied
• There are efficient algorithms for

enumerating, and finding the optimum
spanning tree on weighted graphs

Ç. Çöltekin, SfS / University of Tübingen November 2016 32 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

MST parsing: preliminaries
Spanning tree of a graph

• Spanning tree of a connected graph is a
sub-graph which is a tree and traverses
all the nodes

• For fully-connected graphs, the number
of spanning trees are exponential in the
size of the graph

• The problem is well studied
• There are efficient algorithms for

enumerating, and finding the optimum
spanning tree on weighted graphs

Ç. Çöltekin, SfS / University of Tübingen November 2016 32 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

MST algorithm for dependency parsing

• For directed graphs, there is a polynomial time algorithm
that finds the minimum/maximum spanning tree (MST) of
a fully connected graph (Chu-Liu-Edmonds algorithm)

• The algorithm starts with a dense/fully connected graph
• Removes edges until the resulting graph is a tree

Ç. Çöltekin, SfS / University of Tübingen November 2016 33 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

11

1

For each node select the incoming arc with highest weight

Ç. Çöltekin, SfS / University of Tübingen November 2016 34 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

11

1

Detect the cycles, contract them to a ‘single node’

Ç. Çöltekin, SfS / University of Tübingen November 2016 34 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

11

1

Pick the best arc into the combined node, break the cycle

Ç. Çöltekin, SfS / University of Tübingen November 2016 34 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

11

1

Once all cycles are eliminated, the result is the MST

Ç. Çöltekin, SfS / University of Tübingen November 2016 34 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Properties of the MST parser

• The MST parser is non-projective
• There is an alrgorithm with O(n2) time complexity (Tarjan 1977)

• The time complexity increases with typed dependencies
(but still close to quadratic)

• The weights/parameters are associated with edges (often
called ‘arc-factored’)

• We can learn the arc weights directly from a treebank
• However, it is difficult to incorporate non-local features

Ç. Çöltekin, SfS / University of Tübingen November 2016 35 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

CKY reminder

function CKY(words, grammar)
for j ← 1 to Length(words) do

table[j− 1, j]← {A|A→ words[j] ∈ grammar}

for i ← j− 1 downto 0 do
for k ← i+ 1 to j− 1 do

table[i, j]← table[i, j] ∪
{A|A→ BC ∈ grammar and

B ∈ table[i, k] and
C ∈ table[k, j]}

return table

Ç. Çöltekin, SfS / University of Tübingen November 2016 36 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

CKY for dependency parsing

• The CKY algorithm can be adopted to projective
dependency parsing

• For a naive implementation the complexity increases
drastically O(n6)

– Any of the words within the span can be the head
– Inner loop has to consider all possible splits

• For projective parsing, the observation that the left and
right dependents of a head are independently generated
reduces the comlexity to O(n3)

(J. Eisner 1997)

Ç. Çöltekin, SfS / University of Tübingen November 2016 37 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Non-local features

• The graph-based dependency parsers use edge-based
features

• This limits the use of more global features
• Some extensions for using ‘more’ global features are

possible
• This often leads non-projective parsing to become

intractable

Ç. Çöltekin, SfS / University of Tübingen November 2016 38 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

External features

• For both type of parsers, one can obtain features that are
based on unsupervised methods such as

– clustering
– dense vector representations
– alignment/transfer from bilingual corpora/treebanks

(Koo, Carreras, and Collins 2008)

Ç. Çöltekin, SfS / University of Tübingen November 2016 39 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Errors from different parsers

• Different parsers make different errors
– Transition based parser do well on local arcs, worse on

long-distance arcs
– Graph based parser tend to do better on long-disntance

dependencies
• Parser combination is a good way to comibine the powers

of different models. Two common methods
– Mojority voting: train parsers separately, use the weighted

combination of their results
– Stacking: use the output of a parser as features for another

(McDonald and Satta 2007; Sagae and Lavie 2006; Nivre and McDonald 2008)

Ç. Çöltekin, SfS / University of Tübingen November 2016 40 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Dependency parsing: summary

• Two general methods:
transition based greedy search, non-local features, fast,

less accurate
graph based exact search, local features, slower, accurate

(within model limitations)
• Combination of different methods often result in better

performance
• Non-projective parsing is more difficult
• Most of the recent parsing research has focused on better

machine learning methods (mainly using neural networks)

Ç. Çöltekin, SfS / University of Tübingen November 2016 41 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Evaluation metrics for dependency parsers

• Like CF parsing, exact match is often too strict
• Attachment score is the ratio of words whose heads are

identified correctly.
– Labeled attachment score (LAS) requires the dependency type

to match
– Unlabeled attachment score (UAS) disregards the dependency

type
• Precision/recall/F-measure often used for quantifying success

on identifying a particular dependency type
precision is the ratio of correctly identified dependencies (of a certain

type)
recall is the ratio of dependencies in the gold standard that parser

predicted correctly
f-measure is the harmonic mean of precision and recall(

2×precision×recall
precision+recall

)
Ç. Çöltekin, SfS / University of Tübingen November 2016 42 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Evaluation example

I saw her duck

nsubj

dobj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS

100%

LAS

50%

Precisionnsubj

50%

Recallnsubj

100%

Precisiondobj

0% (assumed)

Recalldobj

0%

Ç. Çöltekin, SfS / University of Tübingen November 2016 43 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Evaluation example

I saw her duck

nsubj

dobj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS

50%

Precisionnsubj

50%

Recallnsubj

100%

Precisiondobj

0% (assumed)

Recalldobj

0%

Ç. Çöltekin, SfS / University of Tübingen November 2016 43 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Evaluation example

I saw her duck

nsubj

dobj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj

50%

Recallnsubj

100%

Precisiondobj

0% (assumed)

Recalldobj

0%

Ç. Çöltekin, SfS / University of Tübingen November 2016 43 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Evaluation example

I saw her duck

nsubj

dobj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj

100%

Precisiondobj

0% (assumed)

Recalldobj

0%

Ç. Çöltekin, SfS / University of Tübingen November 2016 43 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Evaluation example

I saw her duck

nsubj

dobj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisiondobj

0% (assumed)

Recalldobj

0%

Ç. Çöltekin, SfS / University of Tübingen November 2016 43 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Evaluation example

I saw her duck

nsubj

dobj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisiondobj 0% (assumed)
Recalldobj

0%

Ç. Çöltekin, SfS / University of Tübingen November 2016 43 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Evaluation example

I saw her duck

nsubj

dobj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisiondobj 0% (assumed)
Recalldobj 0%

Ç. Çöltekin, SfS / University of Tübingen November 2016 43 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Averaging evaluation scores

• As in context-free parsing, average scores can be
macro-average or sentence-based
micro-average or word-based

• Consider a two-sentence test set with
words correct

sentence 1 30 10
sentence 2 10 10

– word-based average attachment score:

50% (20/40)

– sentence-based average attachment score:

66% ((1 + 1/3)/2)

Ç. Çöltekin, SfS / University of Tübingen November 2016 44 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Averaging evaluation scores

• As in context-free parsing, average scores can be
macro-average or sentence-based
micro-average or word-based

• Consider a two-sentence test set with
words correct

sentence 1 30 10
sentence 2 10 10

– word-based average attachment score: 50% (20/40)
– sentence-based average attachment score: 66% ((1 + 1/3)/2)

Ç. Çöltekin, SfS / University of Tübingen November 2016 44 / 45

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Summary

• Dependency relations are often semantically easier to
interpret

• It is also claimed that dependency parsers are more
suitable for parsing free-word-order langauges

• Dependency relations are between words, no phrases or
other abstract nodes are postulated

• This often leads to more efficient parsing
• We reviewed two major classes of parsers:

– Transition based
– Graph based

Next:
Thursday More work practical work on of-the-shelf dependency parsers
Next Tue Michael Collins (2003). “Head-driven statistical models for natural language

parsing”. In: Computational linguistics 29.4, pp. 589–637. doi:
10.1162/089120103322753356

Ç. Çöltekin, SfS / University of Tübingen November 2016 45 / 45

http://dx.doi.org/10.1162/089120103322753356

Recap/background Dependency grammar Dependency parsing Evaluation Summary

Summary

• Dependency relations are often semantically easier to
interpret

• It is also claimed that dependency parsers are more
suitable for parsing free-word-order langauges

• Dependency relations are between words, no phrases or
other abstract nodes are postulated

• This often leads to more efficient parsing
• We reviewed two major classes of parsers:

– Transition based
– Graph based

Next:
Thursday More work practical work on of-the-shelf dependency parsers
Next Tue Michael Collins (2003). “Head-driven statistical models for natural language

parsing”. In: Computational linguistics 29.4, pp. 589–637. doi:
10.1162/089120103322753356

Ç. Çöltekin, SfS / University of Tübingen November 2016 45 / 45

http://dx.doi.org/10.1162/089120103322753356

Bibliography

Collins, Michael (2003). “Head-driven statistical models for natural language parsing”. In: Computational linguistics
29.4, pp. 589–637. doi: 10.1162/089120103322753356.

Eisner, Jason (1997). “Bilexical grammars and a cubic-time probabilistic parser”. In: Proceedings of the Fifth
International Conference on Parsing Technologies (IWPT).

Eisner, Jason M. (1996). “Three New Probabilistic Models for Dependency Parsing: An Exploration”. In: Proceedings
of the 16th Conference on Computational Linguistics - Volume 1. COLING ’96. Copenhagen, Denmark: Association
for Computational Linguistics, pp. 340–345. doi: 10.3115/992628.992688. url:
http://dx.doi.org/10.3115/992628.992688.

Koo, Terry, Xavier Carreras, and Michael Collins (2008). “Simple Semi-supervised Dependency Parsing”. In:
Proceedings of ACL-08: HLT. Columbus, Ohio: Association for Computational Linguistics, pp. 595–603. url:
http://www.aclweb.org/anthology/P/P08/P08-1068.

Kübler, Sandra, Ryan McDonald, and Joakim Nivre (2009). Dependency Parsing. Synthesis lectures on human
language technologies. Morgan & Claypool. isbn: 9781598295962.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič (2005). “Non-projective Dependency Parsing Using
Spanning Tree Algorithms”. In: Proceedings of the Conference on Human Language Technology and Empirical Methods
in Natural Language Processing. HLT ’05. Vancouver, British Columbia, Canada: Association for Computational
Linguistics, pp. 523–530. doi: 10.3115/1220575.1220641. url:
http://dx.doi.org/10.3115/1220575.1220641.

McDonald, Ryan and Giorgio Satta (2007). “On the complexity of non-projective data-driven dependency parsing”.
In: Proceedings of the 10th International Conference on Parsing Technologies. Association for Computational
Linguistics, pp. 121–132.

Ç. Çöltekin, SfS / University of Tübingen November 2016 A.1

http://dx.doi.org/10.1162/089120103322753356
http://dx.doi.org/10.3115/992628.992688
http://dx.doi.org/10.3115/992628.992688
http://www.aclweb.org/anthology/P/P08/P08-1068
http://dx.doi.org/10.3115/1220575.1220641
http://dx.doi.org/10.3115/1220575.1220641

Bibliography (cont.)

Nivre, Joakim, Johan Hall, and Jens Nilsson (2004). “Memory-based dependency parsing”. In: Proceedings of the 8th
Conference on Computational Natural Language Learning (CoNLL). Ed. by Hwee Tou Ng and Ellen Riloff, pp. 49–56.

Nivre, Joakim and Ryan McDonald (2008). “Integrating Graph-Based and Transition-Based Dependency Parsers”.
In: Proceedings of ACL-08: HLT. Columbus, Ohio: Association for Computational Linguistics, pp. 950–958. url:
http://www.aclweb.org/anthology/P/P08/P08-1108.

Sagae, Kenji and Alon Lavie (2006). “Parser Combination by Reparsing”. In: Proceedings of the Human Language
Technology Conference of the NAACL, Companion Volume: Short Papers. New York City, USA: Association for
Computational Linguistics, pp. 129–132. url: http://www.aclweb.org/anthology/N/N06/N06-2033.

Tarjan, R. E. (1977). “Finding optimum branchings”. In: Networks 7.1, pp. 25–35. issn: 1097-0037. doi:
10.1002/net.3230070103.

Yamada, Hiroyasu and Yuji Matsumoto (2003). “Statistical dependency analysis with support vector machines”. In:
Proceedings of 8th international workshop on parsing technologies (IWPT). Ed. by Gertjan Van Noord, pp. 195–206.

Ç. Çöltekin, SfS / University of Tübingen November 2016 A.2

http://www.aclweb.org/anthology/P/P08/P08-1108
http://www.aclweb.org/anthology/N/N06/N06-2033
http://dx.doi.org/10.1002/net.3230070103

A small assignment

Find the ratio of the non-projective trees and dependencies in
all Universal Dependencies treebanks (version 1.4).

• Information about the treebanks:
http://universaldependencies.org/

• Can be downloaded from:
http://hdl.handle.net/11234/1-1827

Please send your results via email before next Thursday
(December 1st).

Ç. Çöltekin, SfS / University of Tübingen November 2016 A.3

http://universaldependencies.org/
http://universaldependencies.org/
http://hdl.handle.net/11234/1-1827

	Statistical Parsing
	Recap/background
	Ingredients of a parser
	Context-free parsing: grammars
	Context-free parsing: grammars
	Context-free parsing: grammars
	Context-free parsing: grammars
	Context-free parsing: parsing algorithms
	Context-free parsing: disambiguation
	Short divergence: deterministic parsing
	LR(k) grammars and shift-reduce parsing
	Shift-reduce parsing
	Shift-reduce parsing example
	Shift-reduce parsing example
	Shift-reduce parsing example
	Shift-reduce parsing example
	Shift-reduce parsing example
	Shift-reduce parsing example
	Shift-reduce parsing example
	Shift-reduce parsing example
	Shift-reduce parsing example
	Shift-reduce parsing example
	Shift-reduce parsing: summary
	Shift-reduce parsing: summary
	Shift-reduce parsing and natural languages

	Dependency grammar
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars: notational variation
	Dependency grammar: definition
	Dependency grammars: common assumptions
	Dependency grammars: projectivity
	Dependency grammars: projectivity
	Dependency grammars: some variation
	Some tricky constructions
	CONLL-X/U format for dependency annotation

	Dependency parsing
	Intro
	Dependency parsing
	Grammar based
	Grammar-driven dependency parsing
	Transition based
	Transition based parsing
	A typical transition system
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Making transition decisions
	Features for transition-based parsing
	The training data
	Alternative transition systems
	Non-projective parsing
	Pseudo-projective parsing
	Transition based parsing: summary/notes
	Graph based
	Graph-based parsing: preliminaries
	MST parsing: preliminaries
	MST parsing: preliminaries
	MST algorithm for dependency parsing
	MST example
	MST example
	MST example
	MST example
	Properties of the MST parser
	CKY reminder
	CKY for dependency parsing
	Non-local features
	External features
	Errors from different parsers
	Dependency parsing: summary

	Dependency parser evaluation
	Evaluation metrics for dependency parsers
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Averaging evaluation scores
	Averaging evaluation scores

	Summary
	Summary
	Summary

	Appendix
	Bibliography
	Bibliography
	A small assignment

