
Statistics II
Regression & Correlation
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Practical Matters Preliminaries Correlation Regression Example Summary

When, where, who?

I Lectures: Wednesday 13:00–15:00, Boeringzaal

I Computer Labs:

Group 1 Tue 09:00–11:001312.0107A Mets Visser
Group 3 Thu 11:00–13:001312.0119A Mets Visser
Group 4 Thu 13:00–15:001312.0119A Carmen Klaussner
Group 2 Fri 11:00–13:001312.0119A Carmen Klaussner

I Office Hours: Wednesday 10:00–12:00, or by appointment
(email c.coltekin@rug.nl).

I Course web page:
http://www.let.rug.nl/coltekin/statII/
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Evaluation

I Exam (80%)
I Lab exercises (10%): you will get

2 if complete and in time
1 if incomplete or late (less than one week)
0 otherwise

I Quizzes (5%): quiz scores count only if you get 60% or
higher, otherwise you get a 0.

I Attendance (5%): if you are present at five or more lectures.
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The plan

1. Simple regression

2. Multiple regression

3. ANOVA

4. Factorial ANOVA

5. Repeated measures ANOVA

6. Logistic regression

7. Summary & (possibly) some advanced topics
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What you should already know

I Descriptive statistics

I Sampling: how to obtain data

I Basics of probability

I Basics of hypothesis testing
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Why do (inferential) statistics?

If your experiment needs statistics, you ought to have
done a better experiment. — Ernest Rutherford

I Our results are based on a sample, we want to generalize to
the population the sample was drawn from.

I The values we obtain include measurement error.

Even a very precise experiment cannot account for all sources of
variation.
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The speed of light

I In 1879, A. Michelson took 100 measurements of the speed of
light (n = 100).

I The data looks like
x1..n = 299850, 299740, 299900, 300070, 299930 . . .

I The mean is, x̄ = 1
n

∑n
i=1 xi = 299852.4.

I Estimated variance is s2 = 1
n−1

∑n
i=1(xi − x̄)

2 = 6242.67

I Estimated standard deviation is s =
√
6242.66 = 79.01.

I Based on this data what is our best estimate of the speed of
light?

I Why do individual measurements differ?
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Speed of light: histogram
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Speed of light: is the distribution normal?
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Ç. Çöltekin / RuG Statistics II: Correlation & Regression April 17, 2013 8 / 60

Practical Matters Preliminaries Correlation Regression Example Summary

Confidence intervals: accounting for uncertainty

I A confidence is an interval specified around known sample
mean. The interval is typically set to 95% or 99% (by
convention).

I The question is: if we did this experiment many times, in how
many of them the true mean would fall within the interval?

I The estimated standard deviation of the sample means (called
standard error of the mean) is SEx̄ =

sx√
n

.

I We use Student’s t-distribution to which the interval covers
the true mean with given probability (e.g., 95%).
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How certain are we about these measurements?
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Confidence intervals: how to calculate it

t =
x̄− µ

SEx̄

−2< 299852.4−µ
79.01√

100

<2

−2× 7.9< 299852.4− µ<2× 7.9
−2× 7.9− 299852.4< −µ <2× 7.9− 299852.4

−299868.2< −µ <−299836.6
299836.6< µ <299868.2

We are 95% confident that the true mean is in the range
[299836.6, 299868.2].
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Basic hypothesis testing: one sample t-test

The known the value of the speed of light in vacuum is
299, 792.458km/s. Assuming the previous example was testing a
special case, we set our hypotheses:

H0 : The speed of light in the experiment condition is
299, 792.458km/s.

Ha : The speed of light in the experiment condition is
different than 299, 792.458km/s (two-tailed
hypothesis).

Since 95% confidence interval [299, 836.6, 299, 868.2] does not
include 299, 792.458, we would reject the null hypothesis, and
conclude that we found a difference with α-level = 0.05.
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Basic hypothesis testing: looking it another way

I Calculate the t-score for the mean, given the null hypothesis is
true:

t= x̄−µ
SEx̄

= 299852.4−299792.458
7.9

= 7.59

I Calculate the probability a value this extreme under the
t-distribution with DF = 99 (or check via probability tables).

p= 1.9× 10−11
= 0.0000000000019
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Basic hypothesis testing: visualizaiton
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Some terms you should know

If you are not familiar with the following, it is time to go back to
your Statistcs I course, and get a good understanding of them

I mean

I median

I mode

I variance

I standard deviation

I standard error

I normal (or Gaussian)
distribution

I z-score

I t distribution

I t-score

I variable types: numeric,
categorical, . . .

I histogram

I box-and-whisker plot

I confidence intervals

I Q-Q (or P-P) plot for
normality

I null hyopothesis (H0) and
alternative hypothesis (Ha)

I parametric/non-parametric
tests
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Correlation and Regression

Two common methods of analyzing relationship between two
(numeric) variables are correlation and regression. For example,

I Education and income.

I Height and weight.

I Age and ability (e.g., language skills, cognitive functions, eye
sight, . . . )

I Speed and accuracy.
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Correlation

Correlation coefficient is a standardized measure of covariance
between two variables, x and y. It takes values between −1 and 1

1 Perfect positive correlation.

(0, 1) positive correlation: x increases as y increases.

0 No correlation, variables are independent.

(−1, 0) negative correlation: x decreases as y increases.

−1 Perfect negative correlation.

Note: correlation is a symmetric measure.
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Scatter plots
Scatterplots are a good way to visualize the relationship between
two variables:
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Scatter plots
Scatterplots are a good way to visualize the relationship between
two variables:
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Scatter plots
Scatterplots are a good way to visualize the relationship between
two variables:
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Scatter plots
Scatterplots are a good way to visualize the relationship between
two variables:
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Scatter plots
Scatterplots are a good way to visualize the relationship between
two variables:
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Pearson product-moment correlation coefficient

rxy =
1

n− 1

n∑
i=1

zxizyi

I Reminder: zx =
x−µx
σx

I If zxi and zyi have the same sign, the result is positive.

I If zxi and zyi have the opposite signs, the result is negative.

I Pearson’s r has the same assumption and weaknesses of linear
regression (we’ll discuss it soon).

I When assumptions do not hold, use non-parametric
alternatives: Spearman’s ρ (rho) or Kendall’s τ (tau).
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Inference for correlation

Correlation coefficient shows the association of values within the
sample, if we want to know whether the results hold for the
population,

I We can calculate a confidence interval (e.g., 95%).

I Do a single-sample t-test with null hypothesis that r = 0.

Note: The inference is based on the following statistic which is
t-distributed with DF = n− 2.

t =
r
√
n− 2√
1− r2
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Correlation is not causation

I Shoe size correlates highly with reading ability.

I Chocolate consumption in a country correlates with number of
Nobel prize winners.

I Weight of a person correlates with the daily amount of calorie
intake.

I Number of police station in a neighborhood correlates with
the rate of crime.

I Decrease in number of pirates (or ratio of people wearing
hats) is correlated with global warming.
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Regression

Regression analysis is about finding the best linear equation that
describes the relationship between two variables.

I Regression is closely related to correlation: higher the
correlation between two variables, better the fit of regression
line.

I Simple regression can be extended to multiple predictor
variables easily (next week).
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The linear equation

y = a+ bx

a (intercept) is
where the line
crosses the y axis.

b (slope) is the
change in y as x is
increased one unit.

What is the
correlation between x
and y for each line
(relation)?
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The regression equation

yi = a+ bxi + ei

y is the outcome (or response, or dependent) variable. The
index i represent each unit observation/measurement
(sometimes called a ‘case’).

x is the predictor (or explanatory, or independent) variable.

a is the intercept.

b is the slope of the regression line.

a+ bx is the deterministic part of the model (we sometimes use ŷ).

e is the residual, error, or the variation that is not accounted for
by the model. Assumed to be (approximately) normally
distributed with 0 mean (ei are assumed to be i.i.d).
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Notation differences for the regression equation

yi = a+ bxi + ei

I Sometimes, Greek letters α and β are used for intercept and
the slope, respectively.

I Another common notation to use only b or β, but use
subscripts, 0 indicating the intercept and 1 indicating the
slope.

I It is also common to use ε for the error term (residuals).
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Least-squares regression
Least-squares regression is the method of determining regression
coefficients that minimizes the sum of squared residuals (SSR).

yi = a+ bxi︸ ︷︷ ︸
ŷi

+ei

I We try to find a and b, that minimizes the prediction error:∑
i

e2i =
∑
i

(yi − ŷi)
2 =

∑
i

(yi − (a+ bxi))
2

I This minimization problem can be solved analytically, yielding:

b = r
σy

σx

a = ȳ− bx̄

* See appendix for the derivation.

Ç. Çöltekin / RuG Statistics II: Correlation & Regression April 17, 2013 30 / 60

Practical Matters Preliminaries Correlation Regression Example Summary

Visualization of regression procedure
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Variation explained by regression
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Assessing the model fit: r2

We can express the variation explained by a regression model as:

Explained variation

Total variation
=

∑n
i (ŷ− ȳ)2∑n
i (y− ȳ)2

=
SSM
SST

It can be shown that this value is the square of the correlation
coefficient, r2, also called the coefficient of determination.

I 100× r2 can be interpreted as ‘the percentage of variance
explained by the model’.

I r2 shows how well the model fits to the data: closer the data
points to the regression line, higher the value of r2.

I r2 is also a way of characterizing the effect size.
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r2: examples
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r2: examples
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r2: examples

20 40 60 80

-1
00

-5
0

0

x

y

r2 = 0.996004
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r2: examples
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r2: examples
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Inference for regression

We calculate standard errors for coefficients, SEb and SEa (see
appendix for the formulas).

I We can construct confidence intervals for a and b as usual
using t-distribution with n− 2 degrees of freedom.

I If corresponding confidence interval does not contain 0, we
state that the estimate of the parameter is statistically
significant.

I If the estimate of the slope (b) is statistically significant, the
effect of predictor on the response variable is not due to
chance. In other words: we are confident about the direction
(sign) of the effect.
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F-test for regression

We can also test whether the overall model fit is significant. To do
this, we use the ratio,

F =
Explained variance

Unexplained variance
=
MSM
MSR

=

∑n
i (ŷi − ȳi)

2

1
n−2

∑n
i (yi − ŷi)

2

I This ratio follows an F-distribution with DF = (1, n− 2).

I Note: MSM is the variance explained by the regression line in
comparison to the mean of y, the null model.

I We require variance explained to be larget than the
unexplained variance. So, we test for F > 1.

I This test is equivalent to the t-test for the slope for simple
regression.

* More on F-distribution later.
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Significance: examples
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Significance: examples
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Significance: examples
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Significance: examples
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Significance: examples
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Checking the validity of the model

I The relationship between the response variable and the
predictor should be linear.

I The residuals should be distributed normally with mean = 0.
(As a result, the response variable should also be normally
distributed).

I The residuals should be independent for any two observation.

I Least-squares regression is sensitive to outliers, more
importantly influential observations.
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Always plot your data

* This data set is known as Anscombe’s quartet (Anscombe, 1973). All four sets have the same mean, variance and

fitted regression line.
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Normality of residuals: not bad
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Normality of residuals: bad
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Checking residual distribution: good
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Checking residual distribution: non-linear
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Checking residual distribution: non-constant variance
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Example: the data

We want to see the effect of mother’s IQ to four-year-old children’s
cognitive test scores (Fake data, based on analysis presented in
Gelman&Hill 2007).

Case Kid’s Score Mom’s IQ

1 109 91
2 99 102
3 96 88

. . .
43 108 101
44 110 78
45 97 67
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Example: regression analysis in R

> lm(kid.score ~ mother.iq)

Call:

lm(formula = kid.score ~ mother.iq)

Coefficients:

(Intercept) mother.iq

3.5174 0.6023

How do we interpret the intercept and the slope? (assuming our
model assumptions are correct)
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Example: scatter plot and the regression line
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Example: inference and the model fit

> summary(lm(kid.score ~ mother.iq)

Call:

lm(formula = kid.score ~ mother.iq)

Residuals:

Min 1Q Median 3Q Max

-57.749 -12.737 2.467 12.286 48.444

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.5174 24.2375 0.145 0.885

mother.iq 0.6023 0.2471 2.437 0.019 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.59 on 43 degrees of freedom

Multiple R-squared: 0.1214, Adjusted R-squared: 0.101

F-statistic: 5.941 on 1 and 43 DF, p-value: 0.019
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Example: normality of the residuals
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Example: residuals
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Example: prediction with the fitted model
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Summary and Next week

Today:

I Some preliminaries: confidence intervals, hypothesis testing..

I Correlation

I Single regression

Next week:

I Multiple regression (sections 7.5–7.10).
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Estimating the regression line

We express the sum of squared residuals as a function of the
(unknown) regression line:

n∑
i=1

ε2i =

n∑
i=1

(yi − ŷi)
2

=

n∑
i=1

(yi − (a+ bxi))
2

=

n∑
i=1

(yi − a− bxi)
2

=

n∑
i=1

(a2 + 2abxi − 2ayi + b
2x2i − 2bxiyi + y

2
i )

Thus,
∑n
i=1 ε

2
i is function f in x, y with unknown parameters a, b.
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Estimating the regression line

For a fixed sample S = (x, y), we want to minimize fab(x, y) with

fab(x, y) =

n∑
i=1

(a2 + 2abxi − 2ayi + b
2x2i − 2bxiyi + y

2
i )

To minimize this function, find a and b such that f′ab(x, y) = 0.

Treat a and b as variables and find partial derivatives ∂
∂af,

∂
∂bf

∂

∂a
f = f ′xyb(a) =

n∑
i=1

(2a+ 2bxi − 2yi)

∂

∂b
f = f ′xya(b) =

n∑
i=1

(2axi + 2bx
2
i − 2xiyi)
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Relationship between correlation and regression
Recall we obtained two partial derivatives (when minimizing sum of
squared residuals):

f ′xyb(a) =

n∑
i=1

(2a+ 2bxi − 2yi) (1)

f ′xya(b) =

n∑
i=1

(2axi + 2bx
2
i − 2xiyi) (2)

Set (1) to zero:
f ′xyb(a) = 0

⇔ n · 2a+

n∑
i=1

(2bxi − 2yi) = 0

⇔ n · 2a+ 2b

n∑
i=1

xi − 2

n∑
i=1

yi = 0

⇔ n · a = n · y− n · bx⇔ a = y− bx
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Relationship between correlation and regression
Plug a = y− bx into (2) and set to zero:

f ′xya(b) = 0

⇔ n∑
i=1

(2(y− bx)xi + 2bx
2
i − 2xiyi) = 0

⇔ (y− bx)(nx) + b

n∑
i=1

x2i −

n∑
i=1

xiyi = 0

⇔ nxy− bx2n+ b

n∑
i=1

x2i −

n∑
i=1

xiyi = 0

⇔ b(

n∑
i=1

x2i − x
2n) =

n∑
i=1

xiyi − nxy

⇔ b =

∑n
i=1 xiyi − nxy∑n
i=1 x

2
i − x

2n
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Relationship between correlation and regression

b =

∑n
i=1 xiyi − nxy∑n
i=1 x

2
i − x

2n
⇔ b =

∑n
i=1 xiyi − nxy∑n
i=1(xi − x)

2

⇔ b =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)
2

⇔ b =
1

n− 1

∑n
i=1(xi − x)(yi − y)(
1

n−1

∑n
i=1(xi − x)

2
)

⇔ b =
1

n− 1

n∑
i=1

(xi − x)(yi − y)

σ2x

⇔ b =

(
1

n− 1

n∑
i=1

(
xi − x

σx

)(
yi − y

σy

))
· σy
σx

⇔ b = r
σy

σx
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Another relation between correlation and regression

explained variance

total variance
=

∑n
i=1((a+ bxi) − y)

2∑n
i=1(yi − y)

2

=

∑n
i=1((y− bx+ bxi) − y)

2∑n
i=1(yi − y)

2

=

∑n
i=1 b

2(xi − x)
2∑n

i=1(yi − y)
2

= b2 ·
(
σx

σy

)2
= r2

(
σy

σx

)2
·
(
σx

σy

)2
= r2
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Standard error for the regression slope and intercept

SEb =
sr√∑
(xi − x̄)2

SEa = sr ×

√
1

n
+

x̄2∑
(xi − x̄)2
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