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Some reminders

I Computer exercises:
I The first exercise to be done this week. Deadline in two weeks.
I We will have two weeks of break.

I Quizzes:
I The first quiz is already on Nestor, the second one will be

available today.
I You can try them as many times as you like, but you need to

do them in a two-week time window.
I Note: less than 60% will count as 0.

Ç. Çöltekin / RuG Statistics II: Multiple Regression April 24, 2013 1 / 47



Scheduling problems: the exam

Exam was scheduled at June 21 Friday at 10:00. However, it seems
to conflict with some people. New alternatives:
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I June 17 Monday,
19.00–21.00

I June 20 Thursday
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Previously in this course...

Correlation

I The correlation coefficient (r) is a standardized symmetric
measure of covariance between two variables.

I The correlation coefficient ranges between -1 and 1.

I Correlation and regression are strongly related.

I The most common correlation coefficient is Pearson’s r, which
assumes a linear relationship between two variables.

I When this assumption is not correct, non-parametric
alternatives Spearman’s ρ or Kendall’s τ can be used.

I Correlation is not causation!
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Previously in this course...

Simple regression

yi = a+ bxi + ei

y is the response (or outcome, or dependent) variable. The
index i represent each unit observation/measurement
(sometimes called a ‘case’).

x is the predictor (or explanatory, or independent) variable.

a is the intercept.

b is the slope of the regression line.

a+ bx is the deterministic part of the model (we sometimes use ŷ).

e is the residual, error, or the variation that is not accounted for
by the model. Assumed to be (approximately) normally
distributed with 0 mean (ei are assumed to be i.i.d).
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Previously in this course...

The regression line
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Previously in this course...

Variation explained by regression
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Total variation = Unexplained variation + Explained variation
y− ȳ = y− ŷ + ŷ− ȳ
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Previously in this course...

Estimation and interpretation of regression

I The most common method of estimation is the ‘least-squares
regression’, which minimizes the square of the residuals.

I Intercept (a) is the value y takes when x = 0.

I Slope (b) is the change in y when x changes 1 unit.

I Coefficient of determination (r2) represent ratio of variance of
y explained by x.

I Individual t-tests for coefficients indicates whether estimate is

I F-test indicates statistical significance of the overall model
performance.
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Previously in this course...

Regression analysis step by step

1. Collect/check your data: cases should be independent.

2. Fit your model (let the computer do it).

3. Check assumptions or problem indications:
linearity scatter plot of ‘y vs. x’ or ‘residuals vs. fitted’.

normality (of residuals!) histogram, Q-Q (or P-P) plot.
constant variance (of residuals!) ‘residuals vs. fitted’ plot.

outliers scatter plot of ‘y vs. x’ together with regression
line, residual histogram or box plot.

influential cases scatter plot of ‘y vs. x’, ‘residuals vs. fitted’, or
more specialized statistics like Cook’s distance.

4. Interpret your results:
I Model parameters (coefficients): intercept and slope estimates.
I Model fit: coefficient of determination (r2).
I Generalizability of the estimates: F-test for the model, and

t-tests for the coefficients.
I Prediction: confidence intervals for regression line (expected

value of the response variable), and future observations.
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Previously in this course...

Regression example: 1. the data

Case Kid’s Score Mom’s IQ

1 109 91
2 99 102
3 96 88

. . .
43 108 101
44 110 78
45 97 67

Not many assumptions here:

I Cases are independent.

I Both predictor and the response variables are numeric (not
strictly, more on this later).
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Previously in this course...

Regression example: 2. plot your data
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I Are there any non-linear patterns?

I Are there outliers or influential observations?
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Previously in this course...

Regression example: 3. fit your model

lm(formula = kid.score ~ mother.iq)

Residuals:

Min 1Q Median 3Q Max

-57.749 -12.737 2.467 12.286 48.444

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.5174 24.2375 0.145 0.885

mother.iq 0.6023 0.2471 2.437 0.019 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.59 on 43 degrees of freedom

Multiple R-squared: 0.1214, Adjusted R-squared: 0.101

F-statistic: 5.941 on 1 and 43 DF, p-value: 0.019

... but before drawing conclusions...

Ç. Çöltekin / RuG Statistics II: Multiple Regression April 24, 2013 11 / 47



Previously in this course...

Regression example: 4. check residuals for normality
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Normal Q-Q plot: residuals

I Are residuals distributed approximately normally?
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Previously in this course...

Regression example: 5. residuals vs. predicted
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I Are there any patterns, e.g., non-linearity?

I Is the variance of residuals constant?

I Are there outliers?
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Previously in this course...

Regression example: 6. what does the model say?

lm(formula = kid.score ~ mother.iq)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.5174 24.2375 0.145 0.885

mother.iq 0.6023 0.2471 2.437 0.019 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.59 on 43 degrees of freedom

Multiple R-squared: 0.1214, Adjusted R-squared: 0.101

F-statistic: 5.941 on 1 and 43 DF, p-value: 0.019

b = 0.6 Expected score difference between two children whose
mother’s IQ differs one unit.

r2 = 0.12 Mother’s IQ explains 12% of the variation in test scores.

p = 0.02 Given the sample size, probability of finding b value that far
from 0 (two-tailed t-test with null hypothesis b = 0).
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Previously in this course...

Regression example: 7. prediction
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95% CI regression line
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Note: prediction error is not the same everywhere.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Multiple regression: motivating examples

Often we want to predict a (numeric) variable based on more than
one (numeric) predictors. Examples:

I university performance dependent on general intelligence, high
school grades, education of parents,...

I income dependent on years of schooling, school performance,
general intelligence, income of parents,...

I level of language ability of immigrants depending on
I leisure contact with natives
I age at immigration
I employment-related contact with natives
I professional qualification
I duration of stay
I accommodation
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Data for multiple regression

One response variable (y), k predictors (x1 to xk), and n data
points (observations or cases).

Case response predictors

1 y1 x1,1 . . . x1,k
2 y2 x2,1 . . . x2,k

. . .
n yn xn,1 . . . xn,k
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Multiple regression: formulation

yi =a+ b1xi,1+b2x2,i + . . .+ bkxk,i︸ ︷︷ ︸
ŷ

+ei

a is the intercept (as before).

b1..k are the coefficients of the respective predictors.

e is the error term (residual).

It is a generalization of simple regression with some additional
power and complexity.

Ç. Çöltekin / RuG Statistics II: Multiple Regression April 24, 2013 18 / 47



Motivation Definition Example Model selection Multicollinearity Suppression Summary

Multiple regression: issues and difficulties

Multiple regression shares all aspects/assumptions of simple
regression, and

I Visual inspection of the data becomes more difficult.

I Multicollinearity causes problems in estimation and
interpretation of multiple-regression models.

I Suppression is another possibility, where combination of
predictors are more useful than individual predictors.

I Overfitting, occurs when there are large number of predictors.

I Model selection (finding a model that fits the data well, but
not more complex than necessary) is important.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Visualizing regression with two predictors
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Pairwise scatter plots
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Least-squares regression for multiple predictors

As in simple regression, we try to minimize SSR

SSR =
∑
i

(yi − ŷi)
2 =

∑
i

(yi − (a+ b1xi,1 + . . .+ bkxi,k))
2

The parameter values (a, b1, . . ., bk) that minimize the above
expression can, again, be calculated analytically (if n > k).
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Model fit: partitioning the variance

Similar to simple regression, we can partition the variance (sums of
squares) as,

Total variance = Explained variance + Unexplained variance∑
i(yi − ȳi)

2 =
∑

i(ŷi − ȳi)
2 +

∑
i(yi − ŷi)

2

SST = SSM + SSR

multiple-r2 =
SSM
SST

I Like in single regression, we interpret multiple-r2 as the ratio
of variance explained by the model.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Inference for multiple regression

Inference also follows single regression, we test significance of the
model based on the F statistic distributed with F(k, n− k− 1).

F =
MSM
MSR

This is significance test for at least one non-zero b value. The null
hypothesis is

H0 : b1 = b2 = . . . = bk = 0

As before, the estimates of the individual coefficients (a and b1..k)
are tested for significance using t-test.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

An example multiple regression

We extend last week’s example: we want to predict children’s
cognitive development based on their mother’s IQ, and the amount
of time they spend in front of TV. The data:

Case Kid’s Score Mom’s IQ

1 109 91
2 99 102
3 96 88

. . .
43 108 101
44 110 78
45 97 67
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

An example multiple regression

We extend last week’s example: we want to predict children’s
cognitive development based on their mother’s IQ, and the amount
of time they spend in front of TV. The data:

Case Kid’s Score Mom’s IQ TV time (min/day)

1 109 91 45
2 99 102 90
3 96 88 150

. . .
43 108 101 120
44 110 78 75
45 97 67 45
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Always plot your data
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Regression coefficients

lm(formula = kid.score ~ mother.iq + tv.time)

Coefficients:

(Intercept) mother.iq tv.time

42.9056 0.4078 -0.2530

How to interpret it?

Intercept (a) Test score of a kid whose mother has IQ = 0, and who
does not watch any TV at all.

bmother.iq Change in the test score when Mother’s IQ is increased one
unit, while keeping TV time constant.

btv.time Change in the test score when increasing TV time one unit
(minute) while keeping Mother’s IQ constant.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Model fit

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.90562 26.94569 1.592 0.1188

mother.iq 0.40781 0.24186 1.686 0.0992 .

tv.time -0.25302 0.09384 -2.696 0.0100 *

---

Residual standard error: 21.11 on 42 degrees of freedom

Multiple R-squared: 0.251, Adjusted R-squared: 0.2154

F-statistic: 7.039 on 2 and 42 DF, p-value: 0.00231

multiple-r2 Is percentage of variation explained by the model.

adjusted-r2 Adding more predictors increase multiple-r2.
Adjusted-r2 (or r̄2)corrects for by-chance increase due
to more predictors. r̄2 = 1−

[
n−1
n−k−1 × (1− r2)

]
.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Inference

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.90562 26.94569 1.592 0.1188

mother.iq 0.40781 0.24186 1.686 0.0992 .

tv.time -0.25302 0.09384 -2.696 0.0100 *

---

Residual standard error: 21.11 on 42 degrees of freedom

Multiple R-squared: 0.251, Adjusted R-squared: 0.2154

F-statistic: 7.039 on 2 and 42 DF, p-value: 0.00231

I T-tests for predictors show significance of the coefficient
estimates.

I F-test indicates the significance of the complete model.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Diagnostics: normality of the residuals
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Normal Q-Q plot: residuals
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Diagnostics: predicted vs. residuals graph
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

More diagnostics: outliers and influential cases

I Influential observations affect the regression line (or surface)

I Outliers are easy to spot on a scatter plot for single predictor.

I Not all outliers are influential, an outlier is more likely to be
influential if it is at the extreme values of predictors.

I One (of many) statistics that are used for detecting influential
cases is Cook’s distance, which measures the effect of
removing a case from the regression estimation.

I The values for large (above 1) Cook’s distance are a cause of
concern.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Which predictors to include: model selection

Given two predictors (x1, x2) and a response variable (y), our
options are:

yi = a+ ei the null model, or the ‘model of the
mean’ (note that a = ȳ).

yi = a+ b1xi,1 + ei y depends only on x1

yi = a+ b2xi,2 + ei y depends only on x2

yi = a+ b1xi,1 + b2xi,2 + ei both x1 and x2 affect the outcome
variable.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Model selection: the model fit

Everything being equal, we want the model that explains the data
at hand the best (higher r2).
For our example:

predictor r2 F-test (p value) t-test (p-value)

Mother’s IQ 0.12 0.0100 0.019

TV time 0.20 0.0021 0.002

Mother’s IQ 0.25 0.0023 0.100

& TV time 0.010

Things to note

I r2’s do not sum up.

I Significance drops with multiple predictor estimates.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Which model is the best?

We prefer models with high model fit (high r2). However

I r2 is a measure of how well your data fits to the current
sample, we want to develop models that are useful beyond the
sample at hand.

I Adding more predictors increase model fit.

I If you have as many predictors as data points, you have a
saturated model.

I The model selection process is a balance between a model
that fits well to the data and a model that is simpler (fewer
parameters).

Everything should be made as simple as possible, but no
simpler.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Stepwise methods

Ideally, model selection should be based on your theories about the
problem.

I You can compare two models using an F-test (as we compare
our model to the null model).

F =
MSm1

MSm2

I You can also use more general statistics like ‘Akaike
information criterion’ (AIC).

I Once you have a way to compare two models, you can also
ask computer to search for the best model using stepwise
methods.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Multicollinearity

Multicollinearity is a problem associated with multiple predictors
explaining same portion of the variance in the response variable.

I In case of perfect multicollinearity (when one of the predictors
is predicted by others perfectly) regression line cannot be
estimated.

I Ideal case is when there is no multicollinearity: this rarely
happens.

I High correlation between predictors is a sign of
multicollinearity.

I High multicollinearity causes uncertain estimates of the
coefficients.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Multicollinearity: visualization

y

x I Single regression
y = a+ bx+ e.

I Filled area: r2, variance of y
by x, or square of the
Pearson’s r (correlation
coefficient).
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Multicollinearity: visualization

x2

y

x1
I Multiple regression
y = a+ b1x1 + b2x2 + e.

I No multicollinearity.
I Filled areas:

I red: r2x1
= 0.25, due to

x1
I green: r2x2

= 0.25, due to
x2

I Total r2 = 0.50, due to
model.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Multicollinearity: visualization

x2

y

x1

I Multiple regression
y = a+ b1x1 + b2x2 + e.

I Small/mild multicollinearity.
I Filled areas:

I red: r2x1
= 0.36, due to

x1
I green: r2x2

= 0.36, due to
x2

I gray: r2x1,x2
= 0.04, due

to both variables.
I Total r2 = 0.68 (not
0.72), due to model.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Multicollinearity: visualization

x2

y
x1

I Multiple regression
y = a+ b1x1 + b2x2 + e.

I Small/mild multicollinearity.
I Filled areas:

I red+gray: r2x1
= 0.4, due

to x1
I green+gray: r2x2

= 0.4,
due to x2

I gray: r2x1,x2
= 0.3, due to

both variables.
I Total r2 = 0.5 (not 0.8),

due to model.
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Motivation Definition Example Model selection Multicollinearity Suppression Summary

Multicollinearity: visualization

y

x1

x2

I Multiple regression
y = a+ b1x1 + b2x2 + e.

I Perfect multicollinearity.

I Regression parameters
cannot be estimated in this
case.

I Some software will return an
error, some will drop one of
the predictors.
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Multicollinearity: visualization

y

x1

x2

x3

I Multiple regression
y = a+b1x1+b2x2+b3x3+ e.

I Another example of perfect
multicollinearity with 3
variables.

I All explanation x2 provides is
also explained by combination
of x1 and x3.
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Multicollinearity: how to detect it?

I High pairwise correlation is an indication, but not a sufficient
one.

I No/small increase in r2 in the combined model with respect
to individual predictors is another indication.

I Variance-inflation factor (VIF) statistics.
I For each predictor, xj, fit a regression model,
xj = a+ . . .+ xj−1 + xj+1 + . . . xk

I Calculate the r2j for the model.
I VIF statistics for jth is,

VIFj =
1

1− r2j

I Interpretation of VIF is also not straightforward.
I Values over 5 (or 10 for some) is a case for concern.
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Suppression

Another possibility in multiple regression is called suppression.
Consider the following hypothetical example:

I We do a language test with time limit. We’d like to know how
multilingualism affects the task.

I We find multilingualism to be negatively correlated with the
test score (negative regression coefficient).

I We also add ‘speed’ as a variable, which turns the negative
effect to positive.

How can this happen?

I Multi-linguals are in fact better.

I But they are also slow at this task. They cannot finish the
test, so they get bad scores.

I Adding speed to the regression allows us to find the correct
effect of the multilingualism in the task.
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Summary: multiple regression

yi =a+ b1xi,1+b2x2,i + . . .+ bkxk,i︸ ︷︷ ︸
ŷ

+ei

I Multiple regression is a generalization of the simple regression,
where we predict the outcome using multiple predictors.

I Multicollinearity causes problems in estimation and
interpretation of multiple-regression models.

I Model selection (finding a model that fits the data well, but
not more complex than necessary) is important.
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Next week

Summary and Next week

Today:

I A review of Regression & correlation

I Multiple regression

Next lecture:

I Single-factor ANOVA (sections 7.11–7.12 & Ch.10)

Note: next lecture is in two weeks (on May 8).
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