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Previously in this course...

Correlation

I The correlation coefficient (r) is a standardized symmetric
measure of covariance between two variables.

I The correlation coefficient ranges between -1 and 1.

I Correlation and regression are strongly related.

I The most common correlation coefficient is Pearson’s r, which
assumes a linear relationship between two variables.

I When this assumption is not correct, non-parametric
alternatives Spearman’s ρ or Kendall’s τ can be used.

I Correlation is not causation!
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Previously in this course...

Simple regression

yi = a+ bxi + ei

y is the response (or outcome, or dependent) variable. The
index i represent each unit observation/measurement
(sometimes called a ‘case’).

x is the predictor (or explanatory, or independent) variable.

a is the intercept.

b is the slope of the regression line.

a+ bx is the deterministic part of the model (we sometimes use ŷ).

e is the residual, error, or the variation that is not accounted for
by the model. Assumed to be (approximately) normally
distributed with 0 mean (ei are assumed to be i.i.d).
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Previously in this course...

Regression by (another) example
Assume we want to see the relation between exam scores and
study time.

I If the study time was
the prefect (linear)
predictor of the score,
we’d get a perfect
correlation.

I If the test was
irrelevant, we would
expect no correlation.

I Real world is in
between these two
extremes.
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Previously in this course...

Regression towards the mean

If we did a re-test (without additional study).

I If the study time was the perfect predictor, we expect
everyone to get the exact same scores.

I If we gave the test to monkeys, we would expect a complete
re-shuffling of the scores: most successful monkey is highly
likely to achieve worse, and least-successful monkey is highly
likely to achieve better.

I Real world is in between these two extremes: success in both
tests will be similar, however, extreme scores in the first test
will tend to regress towards the mean.
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Previously in this course...

Regression analysis step by step

1. Collect/check your data: cases should be independent.

2. Fit your model (let the computer do it).

3. Check assumptions or problem indications:
linearity scatter plot of ‘y vs. x’ or ‘residuals vs. fitted’.

normality (of residuals!) histogram, Q-Q (or P-P) plot.
constant variance (of residuals!) ‘residuals vs. fitted’ plot.

outliers scatter plot of ‘y vs. x’ together with regression
line, residual histogram or box plot.

influential cases scatter plot of ‘y vs. x’, ‘residuals vs. fitted’, or
more specialized statistics like Cook’s distance.

4. Interpret your results:
I Model parameters (coefficients): intercept and slope estimates.
I Model fit: coefficient of determination (r2).
I Generalizability of the estimates: F-test for the model, and

t-tests for the coefficients.
I Prediction: confidence intervals for regression line (expected

value of the response variable), and future observations.
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Previously in this course...

Multiple regression

yi =a+ b1xi,1+b2x2,i + . . .+ bkxk,i︸ ︷︷ ︸
ŷ

+ei

I Multiple regression is a generalization of the simple regression,
where we predict the outcome using multiple predictors.

I Multicollinearity causes problems in estimation and
interpretation of multiple-regression models.

I Model selection (finding a model that fits the data well, but
not more complex than necessary) is important.
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Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

Hypothesis testing

Aim: make inferences about the population based on a sample
regarding a research question.
Procedure:

I Formulate your question as two explicit hypotheses:

alternative hypothesis (Ha) supports what you expect to find
in the population.

null hypothesis (H0) is the formulation of the case where your
expectations were wrong.

I Set a probability level (α-level) at which to reject the H0.
Typical values are 0.05, 0.01, 0.001.

I Calculate the probability, p, of obtaining the sample you have,
if H0 was true.

I If p < α, we reject the H0, otherwise, we fail to reject the H0.
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Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

Hypothesis testing: example
We want to know whether the new design of a web page is easier
to use based on responses to a questionnaire from two groups, one
on old design, one on new design.
Procedure:

I Formulate your question as two explicit hypotheses:

Ha the mean response score is different for each
group (µ1 6= µ2).

H0 the mean response score is the same for both
groups (µ1 = µ2).

I We set α = 0.05.

I The p-value for obtaining these samples given H0 is true, can
be calculated using the t-distribution (given the response
scores for both groups are normally distributed, and the
variances are similar).

I If p < α, we reject the H0, otherwise, we fail to reject the H0.
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Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

Hypothesis testing: Type I and Type II errors

Real world
H0 is false H0 is true
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(p < α)
Correct decision
True positive

Type I error
False positive

Fail to reject H0
(p ≥ α)

Type II error
False negative

Correct decision
True negative

I Note that accepting H0 means we will be wrong (committing
a Type I error) with probability α.

I If we set α = 0.05, and repeat an experiment 20 times, we
expect to reject the null hypothesis once even it is true.
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Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

Independent samples t-test

Independent samples t-test is used when,

I we have a numeric variable (e.g., height, test score) measured
for two groups (e.g., male/female, healthy/patient)

I the groups (samples) are independent.
I If related: use paired t-test

I The samples are approximately normal, and variances are
similar.

I If violated: use non-parametric alternatives

What if we have more than two groups?

Ç. Çöltekin / RuG Statistics II: ANOVA May 8, 2013 12 / 37

Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

Example problems for ANOVA

I Compare time needed for lexical recognition in

1. healthy adults
2. patients with Wernicke’s aphasia
3. patients with Broca’s aphasia

I Effect of background color choice in a web site.

I Compare Dutch proficiency scores of second language learners
based on their native language.
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Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

Why not multiple t-tests?

I Multiple comparisons over the same sample increases the
chances of rejecting the null hypothesis (finding an effect
where there is none).

I With α = 0.05, if you do 20 different t-tests on the same
sample, we expect to one of them being significant if the null
hypothesis was true.

I We need
3 comparisons 3 groups,
6 comparisons for 4 groups,
10 comparisons for 5 groups,
45 comparisons for 10 groups,

4950 comparisons for 100 groups.

I In general, for k groups, we need
(
k
2

)
comparisons.
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An extreme demonstration
finding emotional response in a dead salmon’s brain activity

Subject One mature Atlantic Salmon (Salmo salar) participated in the fMRI study. The salmon was approximately
18 inches long, weighed 3.8 lbs, and was not alive at he time of scanning.

Task The task administered to the salmon involved completing an open-end mentalizing task. The salmon was
shown a series of photographs depicting human individuals in social situations with a specified emotional valence.
The salmon was asked to determine what emotion the individual in the photo must have been experiencing.

Results Several active voxels were discovered in a cluster located within the salmon’s brain cavity . . . with a
cluster-level significance of p = 0.001. Out of a search volume of 8064 voxels a total of 16 voxels were
significant.

* From the poster by Bennett et al. (2009).
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ANOVA

I ANOVA (analysis of variance) is a method to compare means
of more than two groups.

I For two groups the result is equivalent to t-test.

I ANOVA indicate whether there is any difference at all. For k
groups:

H0: µ1 = µ2 = . . . = µk
I A limited number and type of comparisons can be carried out

by specifying contrasts.

I Otherwise, post-hoc pairwise comparisons can be carried out
using corrected α-levels.

I ANOVA is strongly related to regression (later today).
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Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

Logic of ANOVA

We want to know whether there are any differences between the
means of k groups.

I If the variance between the groups is higher than the variance
within the groups, there must be a significant group effect.

I Between group variance (MSbetween, or MSM or MSG) is
characterized by variance between the group means.

I Within group variance (MSwithin, or MSR or MSE) is
characterized by variance of data round the group means.

Then, the statistic of interest is

F =
MSbetween
MSwithin

.
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ANOVA: visualization
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F = MSbetween
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F =
SSbetween
DFbetween
SSwithin
DFwithin

DFbetween = k− 1
DFwithin = n− k

where k is the number of
groups, and n is the
number of observations.
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Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

F-distribution

I Ratio of variances
follows F distribution.

I F distribution has two
parameters,
DFnumerator and
DFdenominator.

I If variances are equal,
we get F = 1.

I In ANOVA, we get an
effect if MSbetween is
larger than MSwithin.
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ANOVA: assumptions

I All observations are independent.

I The data for each group follow an approximately normal
distribution.

I The variances for each group are approximately the same.
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Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

ANOVA: example

We have two new designs for RuG web site, want to know which
one is easier to use. We test the new web site prototypes and the
old one on three different group, and get their opinion via a
questionnaire with 7-point scale. The data looks like:

Old New 1 New 2

4.4 6.6 5.9
5.8 6.2 4.9

...
...

...

Mean 4.76 5.03 6.11
Variance 1.11 1.12 0.97

Note: rows in the table are not related!
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Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

Visualizing the data
Box-and-whisker plots (or box plots) are one of the best ways to
visualize this type of data.

old new1 new2

0
1

2
3

4
5

6
7

Note: the vertical bars are medians.
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ANOVA results from software

Analysis of Variance Table

Response: ease

Df Sum Sq Mean Sq F value Pr(>F)

design 2 10.796 5.3978 13.955 5.541e-06 ***

Residuals 87 33.652 0.3868

I There is a significant effect (p-values is 0.0000055)

I but we do not know where the effect is.
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Regression with categorical predictors: some terminology

I We take grouping variables (like design) as a categorical, or
factor, variable.

I The values a grouping variable take are called levels.

I A categorical variable with k levels is converted to k− 1
numeric variables, called ‘indicator’ or ‘dummy’ variables.
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Regression with categorical predictors

We will use an example, where we measured speech rate of phrases
within certain linguistic contexts.

I Consider ‘context’ variable with three levels (‘A’, ‘B’, ‘C’), we
can code it as two variables, ‘contextB’, ‘contextC’ :

level contextB contextC

A 0 0
B 1 0
C 0 1

I Other coding options (contrasts) are possible. With some
constraints, the inferences will not change.
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An example with only two levels

We want to check whether means of two of the contexts differ
(labeled as ‘A’ and ‘C’).
Normally we would do a t-test:

> t.test(rate2 ~ context2 , var.equal=T)

Two Sample t-test

data: rate2 by context2

t = -1.4806, df = 98, p-value = 0.1419

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.5596945 0.2267907

sample estimates:

mean in group A mean in group C

6.428031 7.094483
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Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

Doing t-test with regression

I We have two levels of the predictor (A and C).

I We code ‘A’ as 0 and ‘C’ as 1.

yi = a+ b× contextCi + ei
a (intercept) is the mean of level ‘A’.

b (slope) is the mean difference between ‘A’ and ‘B’.
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Doing t-test with regression: practice

> summary(lm(rate2 ~ context2 ))

Call:

lm(formula = rate2 ~ context2)

Residuals:

Min 1Q Median 3Q Max

-5.0466 -1.3540 -0.4838 1.6895 5.0638

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.4280 0.3183 20.196 <2e-16 ***

context2C 0.6665 0.4501 1.481 0.142

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.251 on 98 degrees of freedom

Multiple R-squared: 0.02188 , Adjusted R-squared: 0.0119

F-statistic: 2.192 on 1 and 98 DF , p-value: 0.1419
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T-test as regression: the picture
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ANOVA as regression

Remembering that we code three levels as two indicator (dummy)
variables:

yi = a+ b1 × contextBi + b2 × contextCi + ei
a (intercept) is the mean of context ‘A’.

b1 (slope of contextB) is the mean difference between ‘A’ and ‘B’.

b2 (slope of contextC) is the mean difference between ‘A’ and ‘C’.
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ANOVA as regression: practice

> summary(lm(rate ~ context ))

Call:

lm(formula = rate ~ context)

Residuals:

Min 1Q Median 3Q Max

-5.0466 -1.3719 -0.4616 1.6664 5.0638

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.4280 0.3128 20.548 < 2e-16 ***

contextB 1.6165 0.4424 3.654 0.000359 ***

contextC 0.6665 0.4424 1.506 0.134105

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.212 on 147 degrees of freedom

Multiple R-squared: 0.08404 , Adjusted R-squared: 0.07158

F-statistic: 6.744 on 2 and 147 DF , p-value: 0.001577
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ANOVA as regression: the picture
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ANOVA as regression: ANOVA table

> anova(lm(rate ~ context ))

Analysis of Variance Table

Response: rate

Df Sum Sq Mean Sq F value Pr(>F)

context 2 66.00 32.998 6.7437 0.001577 **

Residuals 147 719.29 4.893

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that the fitted model is the same, we only summarize the
results differently.
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Contrast coding

I For k levels (or groups) we have k− 1 coefficients.

I We can code some comparisons (contrasts) into these
coefficients to test for differences without running the risk of
committing Type I errors.

I If the contrasts does not inflate the t-value (does not cause
additional Type I error) it is called an orthogonal contrast.

More about contrasts next week.

Ç. Çöltekin / RuG Statistics II: ANOVA May 8, 2013 34 / 37

Hypothesis testing Motivation ANOVA ANOVA as regression Contrasts Summary

Post-hoc comparisons

I In most cases, you will have a specific hypothesis and a
(small) set of comparisons to make.

I You can do pairwise comparisons once you found a significant
ANOVA result.

I Every comparison you make increases finding a significant
difference where there isn’t any (Type I error).

I If you do multiple comparisons you need to correct for it.

I Correction is applied such that your α-level is adjusted (called
family-wise error rate).
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Post-hoc comparisons (2)

Remember: finding a significant difference means that there is a
chance (for example, p = 0.05) of finding a difference when there
is no difference (null hypothesis is true).

I The simplest (and most conservative) correction is called
‘Bonferroni’ correction, which is obtained by dividing α to
number of comparisons. If you have α = 0.05 and n
comparisons your family-wise α should be 0.05

n .

I Bonferroni correction is safe in all cases, but increases the
Type II error rate.

I There are other multiple-comparison methods that tare more
powerful, but they typically apply only in specific cases.
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Summary

I Single ANOVA is used when we have a single grouping
variable with more than two groups.

I ANOVA tests whether there is a difference between means of
the groups by comparing the variance within the groups, and
variance of the means of the groups.

I The ratio of variances follow F distribution.

I ANOVA only tests for ‘any difference’, you can inspect specific
differences through planned contrasts, or post-hoc
comparisons.

I ANOVA is a specific case of regression.

Next week: more ANOVA. Reading: Ch. 12, ‘factorial ANOVA’.
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