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Previously in this course... Factorial ANOVA Example

Single ANOVA: step by step

ANOVA is applicable when you have numeric observations on more
than two independent groups.

I Collect your data: observations should be independent!

I Plot your data: typically, using box and whisker plots (box
plots)

I Check for assumptions:

I observations within each group should be approximately normal
I the variances of the observations in each group should be

approximately equal

I (optionally) set your prior contrasts

I calculate F and associated p-value (run ANOVA in a statistical
software)

I (optionally) run pairwise comparisons between each group
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Ç. Çöltekin / RuG Statistics II: RM ANOVA May 22, 2013 1 / 40



Previously in this course... Factorial ANOVA Example

Single ANOVA: step by step

ANOVA is applicable when you have numeric observations on more
than two independent groups.

I Collect your data: observations should be independent!

I Plot your data: typically, using box and whisker plots (box
plots)

I Check for assumptions:
I observations within each group should be approximately normal
I the variances of the observations in each group should be

approximately equal

I (optionally) set your prior contrasts

I calculate F and associated p-value (run ANOVA in a statistical
software)

I (optionally) run pairwise comparisons between each group
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Previously in this course... Factorial ANOVA Example

Logic of ANOVA
0

2
4

6
8

10

group 1 group 2 group 3

F = MSbetween
MSwithin

F =
SSbetween
DFbetween
SSwithin
DFwithin

DFbetween = k− 1
DFwithin = n− k

where k is the number of
groups, and n is the
number of observations.
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Previously in this course... Factorial ANOVA Example

Factorial ANOVA

I Factorial ANOVA is a generalization of single ANOVA (or
t-test).

I Compare groups along more than one dimension.
I Assumptions: the response variable in all groups

I is (approximately) normally distributed
I have (approximately) equal variances

I Efficient in use of subjects.

I Allows to investigate interaction.

Ç. Çöltekin / RuG Statistics II: RM ANOVA May 22, 2013 3 / 40



Previously in this course... Factorial ANOVA Example

Types of interaction (1)
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I both drugs have
positive effects

I combined effect is
additive

I no interaction
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Previously in this course... Factorial ANOVA Example

Types of interaction (2)
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Previously in this course... Factorial ANOVA Example

Types of interaction (3)
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Previously in this course... Factorial ANOVA Example

Types of interaction (4)
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I no interaction
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Previously in this course... Factorial ANOVA Example

Partitioning variance in ANOVA

SST

SSM SSR

MSRMSM

F

Single ANOVA

SST

SSM SSR

MSR

SSA×BSSBSSA

MSA MSB MSA×B

FA FB FA×B

Two-way ANOVA
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Previously in this course... Factorial ANOVA Example

Factorial ANOVA: an example

We will study (yet) another semi-hypothetical example

I A linguist wants to know whether three different theoretical
constructs, namely, intonational phrases (IP) phonological
phrases (PP) and parenthetical expressions (PAR), differ with
respect to being isolated from the sentence they are in.

I She also wants to know whether healthy adults and adults
diagnosed with aphasia differ in processing of these sentences.

I She prepares a sentences for each phrase type, and records 10
people for each combination of phrase type and health (3x2
design).

I She measures the duration of pauses after the phrase of
interest (an obvious sign of isolated phrases) in each recorded
utterance.
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Previously in this course... Factorial ANOVA Example

Factorial ANOVA example: data

We have a numeric response (pause) and two categorical
predictors(phrase type and health condition). The data is
organized as follows:

participant pause (seconds) phrase condition

1 0.29 IP healthy
2 0.55 IP patient
...

...
...

...
20 0.09 PP healthy
21 0.13 PP patient

...
...

...
...

59 0.20 PAR healthy
60 0.25 PAR patient
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Previously in this course... Factorial ANOVA Example

Factorial ANOVA example: data

IP PAR PP
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Anything wrong?
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Previously in this course... Factorial ANOVA Example

Factorial ANOVA example: normality check
Normal Q-Q plots
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Previously in this course... Factorial ANOVA Example

Factorial ANOVA example: assumptions

I The data does not seem to be normally distributed.

I The variances seem to differ too (from the box plots). Also:

Levene ’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 5,54 2.473 0.04341 *

Now what?
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Previously in this course... Factorial ANOVA Example

Factorial ANOVA: when assumptions are violated

I For one-way ANOVA, we’d use a non-parametric alternative
(Kruskal–Wallis test).

I Factorial ANOVA does not have a straightforward
non-parametric alternative.

I There is one more possibility: transforming your data.

I It is not always easy to find a simple data transformation that
corrects the problems. But, when you do, you do not also lose
poser as in non-parametric tests.
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Previously in this course... Factorial ANOVA Example

Another look at the data: histograms

Pauses (s)
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30 I Only positive values.

I Most data clustered
around a narrow range.

I Skewed distribution with
a long tail.

I This type of distributions
(exponential or
power-law) are
commonplace in
linguistics: (word)
frequencies, reaction
times . . .
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Previously in this course... Factorial ANOVA Example

Transforming the data

I Log transformation is
one of the best
common options.

I It generally does a
decent job on
power-law or
exponential
distributions.

I For different data you
may need other
transformations (e.g.,
square-root, or
square) but as
common as
log-transformation.
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Previously in this course... Factorial ANOVA Example

Back to the example: box plots

IP PAR PP
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Previously in this course... Factorial ANOVA Example

Example: Q-Q plots with log transform
Normal Q-Q plots
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Previously in this course... Factorial ANOVA Example

Example: homogeneity with log transform

> leveneTest(log(pause)~ condition*phrase.type , data=pause.data)

Levene ’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 5,54 1.2545 0.297

Levene’s test confirms the box plots: there is no evidence for
non-homogeneity of variances.
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Previously in this course... Factorial ANOVA Example

Example: running ANOVA

R output:

> summary(aov(log(pause)~ condition*phrase.type , data=pause.data))

Df Sum Sq Mean Sq F value Pr(>F)

condition 1 5.83 5.826 6.318 0.015 *

phrase.type 2 24.05 12.024 13.040 2.4e-05 ***

condition:phrase.type 2 1.78 0.891 0.966 0.387

Residuals 54 49.80 0.922

I Significant main effects.

I No significant interaction.

I We could run the analysis using contrasts.

I Now, you may want to do post-hoc comparisons.
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Previously in this course... Factorial ANOVA Example

Visualizing interaction
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Repeated Measures ANOVA

Repeated-measures ANOVA: motivation

I In (factorial) ANOVA, our observations has to be independent.

I Consider our earlier ANOVA example (now we are only
interested in the phrase type).

I If we present the data in this form.

Phrase
Subject IP pp PAR

1 0.29
2 0.55
...

...
...

...
20 0.09
21 0.13
...

...
...

...
59 0.20
60 0.25

It is clear that not measuring every subject in all three
condition is wasteful!
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Repeated Measures ANOVA

RM ANOVA: motivation

I In repeated-measures ANOVA, we measure each subject
(participant) in each condition.

I Independence of observations is not required (or desired).

I A lot more economical in experiment design.

I More powerful, since individual variation is not a problem for
RM ANOVA.

I A generalization of paired t-test to multiple groups.

I Probably, most common analysis method in psycholinguistics
and in general experimental sciences.

I Power comes with a price: more strict assumptions.
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Repeated Measures ANOVA

Example applications
Examples will be similar to single or factorial ANOVA. Repeated
measures can be

over time: testing effects of treatment, teaching method or just
time. Typically you get more than two pretests –
post-tests to

I make sure the pre- or post- tests are stable.
I check short- and long-term effects.
I check whether/how effect diminishes after the

intervention.

no time related. Examples:

I reaction time for different sort of stimuli
I left or right side of the brain in an ERP study
I measurements taken in the same

city/region/country

beware of carry-over effects!.
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Repeated Measures ANOVA

Why not always use RM?

I Carry-over effects: learning or fatigue effects during the
experiment.

I Some conditions are not easy or even possible to repeat: think
about healthy vs. aphasia patient in our example, or, gender
differences.

I RM ANOVA assumptions/requirements are stricter. You
rarely see RM ANOVA used in non-experimental studies.
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Repeated Measures ANOVA

Between subjects and within subjects variance

I A between subjects variance is the variation you observe due
to differences between individuals.

I In independent (single or factorial) ANOVA, all variation
observed is between subjects.

I A within subjects variation is due to variation observed in
repeated measurement over the same subject.

I In a purely repeated design ANOVA, all experimental effect is
confined in within-subjects variance.
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Repeated Measures ANOVA

Partitioning variance in RM ANOVA

SST

SSM SSR

MSRMSM

F

Single ANOVA

SST

SSbetween SSwithin

SSRSSM

MSRMSM

F

Repeated Measures ANOVA
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Repeated Measures ANOVA

Partitioning variance in RM ANOVA (2)
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Repeated Measures ANOVA

Ç. Çöltekin / RuG Statistics II: RM ANOVA May 22, 2013 28 / 40



Repeated Measures ANOVA

Another look at between and within subject variation
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Repeated Measures ANOVA

Degrees of freedom for RM ANOVA

For n observations, m subjects, and k groups (conditions):

DFT = DFM + DFR
n− 1 = k− 1 + n− k− (m− 1)
n− 1 = k− 1 + (k− 1)× (m− 1)

Note: residuals are the interaction between subjects and the
experimental conditions.
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Repeated Measures ANOVA

Assumptions of RM ANOVA

I Normality of response variable in each group.

I Sphericity: variances of pairwise differences between each
experimental condition must be approximately equal.

I Each subjects has to be tested in all conditions.

I RM ANOVA is sensitive to missing values, unequal group
(cell) sizes.
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Repeated Measures ANOVA

Sphericity

Sphericity states that for all levels of within-subjects predictor (the
experimental condition in RM ANOVA), variances of the pairwise
differences of the response variable should have (approximately)
equal variances.
If we had three conditions A, B and C:

Homogeneity: σ2A ≈ σ2B ≈ σ2C
Sphericity: σ2A−B ≈ σ2A−C ≈ σ2B−C

The test for sphericity is called ‘Mauchly’s sphericity test’. As tests
for homogeneity and normality, significant p-value means violation
of the assumption.
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Repeated Measures ANOVA

An example

We will use the earlier example on pauses and phrases, and turn
the experiment into a RM ANOVA design:

I A linguist wants to know whether three different theoretical
constructs, namely, intonational phrases (IP) phonological
phrases (PP) and parenthetical expressions (PAR), differ with
respect to being isolated from the sentence they are in.

I She prepares a sentences for each phrase type, recruits 30
participants.

I Each participant is recorded with all three sentences.

I She measures the duration of pauses after the target phrase in
each recorded utterance.
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Repeated Measures ANOVA

Example: the data

Phrase
Subject IP PAR PP

1 1.70 0.18 0.30
2 2.14 1.30 0.35
...

...
...

...
29 1.38 0.44 0.36
30 0.86 0.55 0.81

Note: we have three times the observations we’d get otherwise.
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Repeated Measures ANOVA

Example: the data

subject pause (seconds) phrase

1 1.70 IP
1 0.18 PAR
1 0.30 PP
...

...
...

30 0.86 IP
30 0.55 PAR
30 0.81 PP
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Repeated Measures ANOVA

Example: box plots

IP PAR PP
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Familiar?
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Repeated Measures ANOVA

Example: box plots (after log transform)

IP PAR PP
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Repeated Measures ANOVA

Example: assumptions

Normality check using Q-Q or P-P plots.

Sphericity Check using Mauchly’s Test (after log transform)

‘Mauchly ’s Test for Sphericity ’

Effect W p p<.05

2 phrase 0.9522092 0.5037942

If sphericity assumption fails, we need to use corrected F scores
(e.g., Greenhouse–Geisser correction).
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Repeated Measures ANOVA

Example: ANOVA result

> summary(aov(log(pause) ~ phrase + Error(subj), data=d))

Error: subj

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 29 32.69 1.127

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

phrase 2 12.82 6.412 7.391 0.00138 **

Residuals 58 50.32 0.868

Next: pairwise comparisons (unless we answered our questions with
prior contrasts).
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Residuals 58 50.32 0.868

Next: pairwise comparisons (unless we answered our questions with
prior contrasts).
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Repeated Measures ANOVA

RM ANOVA: summary

I RM ANOVA is applicable when using multiple correlated
observations (with experimental manipulation).

I RM ANOVA is more efficient:
I Reduced residual variance by accounting for subject variation.
I More efficient use of subjects (multiple observations per

subject).

I RM ANOVA also has more strict requirements, and more
sensitive to unbalanced data.

I RM ANOVA can be factorial
I Multiple within subject predictors.
I within subject and between subject predictors (mixed-ANOVA

design).

Next week: Logistic regression.
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