Statistics II
Logistic Regression

Çağrı Çöltekin
University of Groningen, Dept of Information Science

May 29, 2013

More on the exam next week.

Exam date \& time: June 21, 10:00-13:00

(The same day/time planned at the beginning of the semester.)

We return to last week's production experiment example.

- We want to analyze the pauses after three different phrase types: IP, PP and PAR.
- In addition, we are also interested in effect of length of the phrase. Particularly, whether it is single word or multi word.
- We have a 3×2 repeated measures ANOVA.
- We use 5 different examples for each experimental condition resulting in $3 \times 2 \times 5$ utterances recorded for each of our 30 participants.
- Note: we need to randomize the order of the utterances for each subject. Why?

RM-ANOVA example: the data

C. Çöltekin / RuG

RM-ANOVA example: assumptions

- Check each (3×2) group for normality.
- Check for sphericity:

$$
\begin{aligned}
& \text { 'Mauchly's Test for Sphericity' } \\
& \begin{array}{rrrr}
\text { Effect } & \text { W } & \text { p } & \text { p<.05 }
\end{array} \\
& \begin{array}{lrl}
2 & \text { phrase.type } \\
4
\end{array}
\end{aligned}
$$

- Why don't we have a sphericity test for 'length'?
- What if sphericity assumption was violated?
\qquad
RM-ANOVA example: main ANOVA results

R output:
> summary(aov(log(pause) ~ phrase.type*length + Error(subj)))
Error: subj
Residuals Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
Error: Withi
phrase.type Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{lrrrrr} & 2 & 153.3 & 76.67 & 74.893 & <2 \mathrm{e}-16 \\ \text { length } & 1 & 2.9 & 2.86 & 2.790 & 0.0952\end{array}$
$\begin{array}{llllll} & 1 & 2.9 & 2.86 & 2.790 & 0.0952 \text {. } \\ \text { phrase.type: length } & 2 & 9.4 & 4.68 & 4.575 & 0.0106 \text { * }\end{array}$
Residuals

RM-ANOVA example: interaction

C. C.öltekin / RuG Statistics II: Logistic Regression

May 29, $2013 \quad 8 / 37$

Logistic regression: motivation

- For all methods discussed in this class, the response variable is numeric.
- Sometimes we want to analyze/predict categorical responses:
- Alive or dead.
- Grammatical or ungrammatical.
- Correct or incorrect.
- Pass or fail.
- Win or loose.
- Present or absent

Logistic regression is an extension of regression for categorica (typically binary) response variables.

Simple regression: a refresher

$$
y_{i}=a+b x_{i}+e_{i}
$$

y is the response (or outcome, or dependent) variable. The index i represent each unit observation/measurement (sometimes called a 'case').
x is the predictor (or explanatory, or independent) variable.
a is the intercept.
b is the slope of the regression line.
$a+b x$ is the deterministic part of the model (we sometimes use \hat{y}).
e is the residual, error, or the variation that is not accounted for by the model. Assumed to be (approximately) normally distributed with 0 mean (e_{i} are assumed to be i.i.d).
C. Çältekin / RuG

Statistics II: Logistic Regression
May 29, 2013 12/37

Motivation Regression Logistic Regression
Multiple regression

$$
y_{i}=\underbrace{a+b_{1} x_{i, 1}+b_{2} x_{2, i}+\ldots+b_{k} x_{k, i}}_{\hat{y}}+e_{i}
$$

- Multiple regression is a generalization of the simple regression, where we predict the outcome using multiple predictors.
- Multicollinearity causes problems in estimation and interpretation of multiple-regression models.
- Model selection (finding a model that fits the data well, but not more complex than necessary) is important.

RM-ANOVA: a summary and further directions

- RM-ANOVA is an efficient method for experimentation.
- ANOVA design can be 'mixed', where on can analyze multiple between- as well as within-subject factors.
- RM-ANOVA is difficult to please, except in carefully constructed experimental conditions.
- In our example today, we ignored inter-phrase repeated measures. This is a common problem known as 'language-as-a-fixed-effect fallacy' in psycholinguistics.
- A newer alternative is to use linear mixed-effect models (or multilevel models).
c. C̣öltekin / RuG Statistics II: Logistic Regression

May 29, $2013 \quad 9 / 37$

- survival after a surgery depending on age, length of surgery,
- whether purchase occurs depending on age, income, website characteristics, ...
- whether speech errors occur depending on alcohol level
- when linguistic rules apply (final [t] in Dutch) depending on speed of utterance, stress, social group, ...
- whether one votes to a political party (or not) depending on age, income, ethnicity, ...

Regression assumptions

independence cases (observations) should be independent.
linearity the relation between ' y vs. x ' should be linear.
normality residuals should be normally distributed with 0 mean.
constant variance residual variance should be constant.
C. Cöltekin / RuG Statistics II: Logistic Regression May 29, 2013 13/37

Multiple regression: example

We will try to determine reaction time differences in a lexical decision task in two experimental conditions ' C_{1} ' and ' C_{2} ', and also investigate the effect of age. Here is how our data looks like,

Reaction time (ms)	condition	age
563	C_{1}	38
562	C_{2}	35
550	C_{1}	20
573	C_{2}	31
\vdots	\vdots	\vdots

Multiple regression: example (2)

Running multiple regression (R output):

Call:
lm(formula $=\log (r t) ~ \sim ~ a g e ~+~ c o n d i t i o n ~(~) ~$
Residuals
$\begin{array}{rrrrr}\text { Min } & 1 Q & \text { Median } & 3 Q & \text { Max } \\ -0.0088400 & -0.0028946 & -0.0004367 & 0.0024968 & 0.0099490\end{array}$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept) | Estimate | 3246836 |
| ---: | :--- |

$\begin{array}{lllll}\text { age } & 0.0001977 & 0.0001024 & 1.93 & 0.0613 \text {. }\end{array}$
conditionC2 $0.0167303 \quad 0.0014068 \quad 11.89 \quad 3.33 \mathrm{e}-14$ ***
Residual standard error: 0.004374 on 37 degrees of freedom
Multiple R-squared: 0.7927, Adjusted R-squared: 0.7815
F-statistic: 70.74 on 2 and $37 \mathrm{DF}, \mathrm{p}$-value: $2.276 \mathrm{e}-13$

Note: you should do model diagnostics before interpreting the model.

An example for logistic regression

We go back to our lexical decision task example. In similar experiments typically we also whether the reaction was correct or incorrect.
Our data actually looks like this

Reaction time (ms)	condition	age	correct
563	C_{1}	38	1
562	C_{2}	35	1
550	C_{1}	20	1
573	C_{2}	31	0
\vdots	\vdots	\vdots	\vdots

Our aim is to predict probability of correct decision.
C. Cöltekin / RuG

Statistics II: Logistic Regression

Transforming the response variable

- Instead of predicting the probability, p, we can predicts odds.

Odds in favor of an event (e.g., FC Groningen winning against Ajax) is defined based on p, the probability of the event occurring, as

$$
\mathrm{odds}=\frac{\mathrm{p}}{1-\mathrm{p}}
$$

odds are bounded between 0 and infinity, $0 \leq$ odds $\leq \infty$

- further if we take the logarithm of odds

$$
\log \frac{p}{1-p}=\operatorname{logit}(p)
$$

Bounds of logit is $-\infty \leq \operatorname{logit}(p) \leq+\infty$

But, what about the name 'logistic'?
Logistic function is the inverse of the logit function:

- Logistic regression is a special case of regression, where a binary outcome is predicted based on a number of predictors
- The main trick is to predict probability of an event, rather than the outcome directly. This allows converting a categorical variable to a numeric variable (probabilities).
- One needs to overcome difficulties due to regression assumptions.
- Probabilities are strictly bounded between 0 and 1 .
- Error (residuals) with binary (or proportion) response is not normally distributed.

Trying ordinary regression
Model the outcome directly:

Estimated probability of correct response to condition 1 from a 40 -year old is: $0.462+0.016 \times 40-0.210 \times 0=1.102$

Response variable (probability) is not bounded between 0 and 1 .

Logistic regression: are we there yet? Let's look at the residual distribution:

Regression for binary response: problems so far

- Binary data is strictly bounded, probabilities smaller than 0 and larger than 1 are meaningless.
- We solve this by transforming the response variable using logit function (other transformations are also possible).
- When response is binary, the residuals are not normally distributed with 0 mean.
- We estimate the coefficients without assuming normally distributed error.
- The cost of is also giving up the familiar (and uniquely determined) least-squares regression. Estimation is done with more complicated procedures (typically maximum likelihood).
- More precisely, logistic regression is an instance of generalized linear models (GLMs).
C. Çöltekin / RuG Statistics II: Logistic Regression May 29, 2013 25/37

Logistic regression

Logistic regression is similar to (multiple) regression, differences are:

- Categorical response variable.
- Non-normal errors.
- Relationship is non-linear (linear after the transformation).
- Estimation is (typically) done using maximum likelihood estimation. Least-squares regression is not applicable.
C. Çöltekin / RuG

Logistic regression: example
We return to the same example, this time fitting a correct model:

glm(formula $=$ correctDeviance Residuals:				
Min	1Q	Median	3Q	Max
-2.18599	0.00002	0.000050.	32773	1.09422
Coefficients:				
	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
(Intercept)) 14.7647	3620.9079	0.004	0.9967
age	0.1904	0.1073	1.775	0.0759
conditionc2	-19.1351	3620.9069	-0.005	0.9958
(Dispersion parameter for binomial family taken to be 1) Null deviance: 30.142 on 39 degrees of freedom				
Residual deviance: 17.708 on 37 degrees of freedom				
AIC: 23.708				
Number of Fisher Scoring iterations: 19				
Estimated equation is:				

$\operatorname{logit}(\mathrm{P}($ correct $))=14.7647+0.1904 \times$ age $-19.1351 \times$ condition
C. Çöltekin / RuG

Logistic regression: inference and model fit

- In logistic regression the significance testing for coefficients are carried out using z-statistics (also known as 'Wald statistic' or 'Wald's z').
- We do not have r^{2} as measure of fit (approximations exists, but none have all the properties of r^{2}.
- -2 LL (-2 times Log Likelihood, smaller better) is the measure of fit in maximum likelihood estimation.
- Log likelihood is not bounded like r^{2}, comparisons are valid only on the same data set.
- -2 LL is approximately χ^{2} distributed, a model can be tested against null model (similar to F-test for least-squares regression).
C. C̣̈ltekin / RuG

Statistics II: Logistic Regression
May 29, $2013 \quad 27$ / 37

Logistic regression: interpreting the coefficients
$\log \frac{P(\text { correct })}{1-P(\text { correct })}=14.7647+0.1904 \times$ age $-19.1351 \times$ condition
Slope of a variable indicates the change in log odds for unit-change in the predictor (while other predictors kept constant). For example, one unit change in 'age', say from 40 to 41 , means

When age is increased form 40 to 41, odds of correct response increase 1.2 times. Note: the change is non-linear.

Logistic regression: where things may go wrong

- Overdispersion is the case when variance in the data is higher than expected.
- Logistic regression requires response to follow binomial distribution.
- Variance of binomial distribution is predictable from it's mean.
- In case of complete separation, i.e., when predictors perfectly separate cases of success and failure, logistic regression parameters cannot be estimated.
- Logistic regression may also fail to find a solution, especially when data is not evenly distributed.
- Logistic regression is multiple regression, other problems, such as collinearity is also problems for logistic regression.

Logistic regression: another example
We would like to guess whether a child would develop dyslexia or not based on a test applied to pre-verbal children. Here is a simplified problem:

- We test children when they are less than 2 years of age.
- The hypothesis is that the test may be relevant in diagnosing dyslexia.
- We observe the same children when they are in the school age, and note whether they are diagnosed with dyslexia or not
- Our data looks like the following:

Test score	Dyslexia
8.2	0
2.2	1
6.2	1
\vdots	\vdots

The research question is from the longitudinal study by Ben Maasen and his colleagues. Data is fake as usual
C. Çöltekin / RuG Statistics II: Logistic Regression May 29, 2013 32 / 37

Motivation Regression Logistic Regression
Example: interpretation
$\operatorname{logit}(p(d y s l e x i a))=4.4373-0.9419 \times$ score

score	$\operatorname{logit}=\log \frac{p}{1-\mathrm{p}}$	odds $=\frac{\mathrm{p}}{1-\mathrm{p}}$	p
1	3.50	32.96	0.97
3	1.61	5.01	0.83
5	-0.27	0.76	0.43
7	-2.16	0.12	0.10
9	-3.10	0.05	0.04

C. Çöltekin / RuG

Summary

- Logistic regression is applicable when responseis binomial.
- Two major differences from ordinary least-squares regression:
- Response variable is strictly bounded. logit transformation make sure regression output is mapped to range $[0,1]$
- Errors are not normal. GLM framework allows non-norma errors. However, we use maximum likelihood estimation instead of least squares.
- Problems to watch out for:
- overdisperion
- complete separation, or insufficient data for estimation
- like in multiple regression: multicollinearity
- Extensions
- Multinomial logistic regression, when there are more than two categories of the response variable.
- Genralized linear mixed-effect models when observations are not independent.
- A summary of all methods.
- When to use which analysis.
- What to do when assumptions fail.
- Beyond hypothesis testing: effect sizes.
- Time for your questions.

