

As in simple regression, we try to minimize SS_R

$$SS_R = \sum_i (y_i - \hat{y}_i)^2 = \sum_i (y_i - (a + b_1 x_{i,1} + \ldots + b_k x_{i,k}))^2$$

The parameter values (a, b_1, \ldots, b_k) that minimize the above expression can, again, be calculated analytically (if n > k).

squares) as,

$$\begin{array}{rcl} \hline \text{Total variation} &=& \text{Explained variation} &+& \text{Unexplained variation} \\ \hline \Sigma_i (y_i - \bar{y}_i)^2 &=& \sum_i (\hat{y}_i - \bar{y}_i)^2 &+& \sum_i (y_i - \hat{y}_i)^2 \\ SS_T &=& SS_M &+& SS_R \end{array} \\ \\ & \text{multiple-r}^2 = \frac{SS_M}{SS_T} \end{array}$$

 Like in single regression, we interpret multiple-r² as the ratio of variance explained by the model.

2

Inference for multiple regression

Inference also follows single regression, we test significance of the model based on the F statistic distributed with F(k, n - k - 1).

ation Definition Example Model selection Multicollinearity Summary Nex

$$F = \frac{MS_M}{MS_R}$$

This is significance test for at least one non-zero \boldsymbol{b} value. The null hypothesis is

$$H_0: b_1 = b_2 = \ldots = b_k = 0$$

As before, the estimates of the individual coefficients (a and $b_{1..k})$ are tested for significance using t-test.

Motivation Definition Example Model selection Multicollinearity Summary Next week

Model fit

Ç. Çöltekin / Informatiekunde Statistics II: Multiple Regression

April 22, 2014 12 / 30

Diagnostics: normality of the residuals

An example multiple regression

We extend last week's example: we want to predict children's cognitive development based on their mother's IQ, and the amount of time they spend in front of TV. The data:

Case	Kid's Score	Mom's IQ	TV time (min/day)
1	109	91	45
2	99	102	90
3	96	88	150
43	108	101	120
44	110	78	75
45	97	67	45

ics II: Multiple R

Ç. Çöltekin / Informatiekunde

April 22, 2014 9 / 30

Motivation Definition Example Model selection Multicollinearity Summary Next week

Regression coefficients

lm(formula =	kid.score	~ mother.iq + tv.time)		
Coefficients:				
(Intercept)	mother.iq	tv.time		
42,9056	0.4078	-0.2530		

How to interpret it?

- $\label{eq:linear} \begin{array}{l} \mbox{Intercept} \ (a) \mbox{ Test score of a kid whose mother has } IQ = 0, \mbox{ and who} \\ \mbox{ does not watch any TV at all.} \end{array}$
- $b_{mother,iq}$ Change in the test score when Mother's IQ is increased one unit, while keeping TV time constant.
- $b_{t\nu,time} \ \ \, \mbox{Change in the test score when increasing TV time one unit} \\ (minute) \ \ \, \mbox{while keeping Mother's IQ constant.}$

. Çöltekin / Informatiekunde	Statistics II: Multiple Regression	April 22, 2014	11 / 30

Motivation Definition Example Model selection Multicollinearity Summary Next week

```
Inference
```

Ç. Çöltekin / Informatiekunde

c

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.90562 26.94569 1.592 0.1188

mother.iq 0.40781 0.24186 1.686 0.0992 .

tv.time -0.25302 0.09384 -2.696 0.0100 *

---

Residual standard error: 21.11 on 42 degrees of fre

Multiple Recompared: 0.251 Adjusted Recompared: 0.2
```

Residual standard error: 21.11 on 42 degrees of freedom Multiple R-squared: 0.251, Adjusted R-squared: 0.2154 F-statistic: 7.039 on 2 and 42 DF, p-value: 0.00231

 T-tests for coefficients show significance of the coefficient estimates.

Statistics II: Multiple Regression

F-test indicates the significance of the overall model.

Motivation Definition Example Model selection Multicollinearity Summary Next w

Diagnostics: predicted vs. residuals graph

es II: Mult

Ç. Çöltekin / Informatiekunde

April 22, 2014 13 / 30

Diagnostics: residuals vs. leverage

Motivation Definition Example Model selection Multicollinearity Summary Next

Model selection: the model fit

Everything being equal, we want the model that explains the data at hand the best (higher $r^2). \label{eq:relation}$

For our example:

predictor	r ²	F-test (p value)	t-test (p-value)
Mother's IQ	0.12	0.0100	0.019
TV time	0.20	0.0021	0.002
Mother's IQ & TV time	0.25	0.0023	0.100 0.010

Things to note

- r²'s do not sum up.
- Significance drops with multiple predictor estimates.

Motivation Definition Example Model selection Multicollinearity Summary Next w

Stepwise methods

Ç. Çöltekin / Informatiekunde

Ideally, model selection should be based on your theories about the problem.

Statistics II: Multiple Regression

 You can compare two models using an F-test (as we compare our model to the null model).

$$F = \frac{MS_{m_1}}{MS_{m_2}}$$

- You can also use more general statistics like 'Akaike information criterion' (AIC).
- Once you have a way to compare two models, you can also ask computer to search for the best model using stepwise methods.

1.	Çöltekin	/ Informatiekunde	Statistics II: Mu

April 22, 2014 20 / 30

April 22, 2014 18 / 30

tivation Definition Example Model selection Multicollinearity Summary Next week

Multicollinearity: visualization

- Single regression
 y = a + bx + e.
- Filled area: r², variance of y by x, or square of the Pearson's r (correlation coefficient).

Which predictors to include: model selection

Definition Example Model selection Multicollinearity Summary Next

Given two predictors (x_1, x_2) and a response variable (y), our options are: $y_i = a + e_i \text{ the null model, or the 'model of the mean' (note that <math>a = \bar{y}$). $y_i = a + b_1 x_{i,1} + e_i y \text{ depends only on } x_1$ $y_i = a + b_2 x_{i,2} + e_i y \text{ depends only on } x_2$ $y_i = a + b_1 x_{i,1} + b_2 x_{i,2} + e_i \text{ both } x_1 \text{ and } x_2 \text{ affect the outcome variable.}$

Motivation Definition Example Model selection Multicollinearity Summary Next we

Which model is the best?

We prefer models with high model fit (high r^2). However

- \blacktriangleright r² is a measure of how well your data fits to the current sample, we want to develop models that are useful beyond the sample at hand.
- Adding more predictors increase model fit.
- If you have as many predictors as data points, you have a saturated model.
- The model selection process is a balance between a model that fits well to the data and a model that is simpler (fewer parameters).

Everything should be made as simple as possible, but no simpler.

Statistics II: Multiple Regression

Motivation Definition Example Model selection Multicollinearity Summary Next week

Multicollinearity

C. Cöltekin / Informatiekunde

Multicollinearity is a problem associated with multiple predictors explaining same portion of the variance in the response variable.

- In case of perfect multicollinearity (when one of the predictors is predicted by others perfectly) regression line cannot be estimated.
- Ideal case is when there is no multicollinearity: this rarely happens.
- High correlation between predictors is a sign of multicollinearity.
- High multicollinearity causes uncertain estimates of the coefficients.

Ç. Çöltekin / Informatiekunde

Statistics II: Multiple Regression April 22, 2014 21 / 30

April 22, 2014 19 / 30

Motivation Definition Example Model selection Multicollinearity Summary Next wee

Multicollinearity: visualization

- $\mathbf{y} = \mathbf{a} + \mathbf{b}_1 \mathbf{x}_1 + \mathbf{b}_2 \mathbf{x}_2 + \mathbf{e}.$
- No multicollinearity.
- Filled areas:
 - red: $r_{x_1}^2 = 0.25$, due to
 - green: $r_{x_2}^2 = 0.25$, due to
 - x₂
 - Total r² = 0.50, due to model.

Ç. Çöltekin / Informatiekunde

