Statistics II Multiple Regression

Çağrı Çöltekin

University of Groningen Information Science

April 22, 2014

Multiple regression: motivating examples

Often we want to predict a (numeric) variable based on more than one (numeric) predictors. Examples:

- university performance dependent on general intelligence, high school grades, education of parents,...
- income dependent on years of schooling, school performance, general intelligence, income of parents,...
- level of language ability of immigrants depending on
 - leisure contact with natives
 - age at immigration
 - employment-related contact with natives
 - professional qualification
 - duration of stay
 - accommodation

Multiple regression: formulation

$$y_i = \underbrace{a + b_1 x_{i,1} + b_2 x_{2,i} + \ldots + b_k x_{k,i}}_{\hat{y}} + e_i$$

a is the intercept (as before).

 $b_{1..k}$ are the coefficients of the respective predictors.

e is the error term (residual).

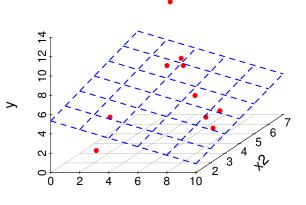
It is a generalization of simple regression with some additional power and complexity.

Multiple regression: issues and difficulties

Multiple regression shares all aspects/assumptions of simple regression, and

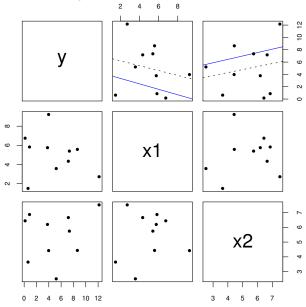
- ► Visual inspection of the data becomes more difficult.
- Multicollinearity causes problems in estimation and interpretation of multiple-regression models.
- Suppression is another possibility, where combination of predictors are more useful than individual predictors.
- Overfitting, occurs when there are large number of predictors.
- Model selection (finding a model that fits the data well, but not more complex than necessary) is important.

Visualizing regression with two predictors



x1

Pairwise scatter plots



Ç. Çöltekin / Informatiekunde

Statistics II: Multiple Regression

Least-squares regression for multiple predictors

As in simple regression, we try to minimize SS_R

$$SS_R = \sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} (y_i - (a + b_1 x_{i,1} + ... + b_k x_{i,k}))^2$$

The parameter values $(a, b_1, ..., b_k)$ that minimize the above expression can, again, be calculated analytically (if n > k).

Model fit: partitioning the variation

Similar to simple regression, we can partition the variance (sums of squares) as,

$$\begin{array}{rcl} \text{Total variation} &= & \text{Explained variation} &+ & \text{Unexplained variation} \\ \sum_{i}(y_{i} - \bar{y}_{i})^{2} &= & \sum_{i}(\hat{y}_{i} - \bar{y}_{i})^{2} &+ & \sum_{i}(y_{i} - \hat{y}_{i})^{2} \\ SS_{T} &= & SS_{M} &+ & SS_{R} \end{array}$$

multiple-
$$r^2 = \frac{SS_M}{SS_T}$$

Like in single regression, we interpret multiple-r² as the ratio of variance explained by the model.

Ç. Çöltekin / Informatiekunde

Inference for multiple regression

Inference also follows single regression, we test significance of the model based on the F statistic distributed with F(k, n - k - 1).

$$F = \frac{MS_M}{MS_R}$$

This is significance test for at least one non-zero b value. The null hypothesis is

$$H_0: b_1 = b_2 = \ldots = b_k = 0$$

As before, the estimates of the individual coefficients (a and $b_{1..k}$) are tested for significance using t-test.

An example multiple regression

We extend last week's example: we want to predict children's cognitive development based on their mother's IQ, and the amount of time they spend in front of TV. The data:

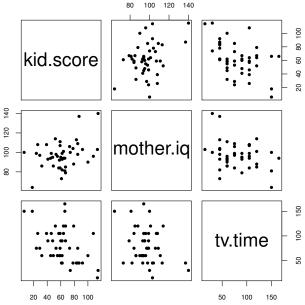
Case	Kid's Score	Mom's IQ
1	109	91
2	99	102
3	96	88
43	108	101
44	110	78
45	97	67

An example multiple regression

We extend last week's example: we want to predict children's cognitive development based on their mother's IQ, and the amount of time they spend in front of TV. The data:

Case	Kid's Score	Mom's IQ	TV time (min/day)
1	109	91	45
2	99	102	90
3	96	88	150
43	108	101	120
44	110	78	75
45	97	67	45

Always plot your data



Ç. Çöltekin / Informatiekunde

Statistics II: Multiple Regression

Regression coefficients

lm(formula = kid.score ~ mother.iq + tv.time)
Coefficients:
(Intercept) mother.iq tv.time
 42.9056 0.4078 -0.2530

How to interpret it?

- Intercept (a) Test score of a kid whose mother has IQ = 0, and who does not watch any TV at all.
- b_{mother.iq} Change in the test score when Mother's IQ is increased one unit, while keeping TV time constant.
 - $b_{tv.time}$ Change in the test score when increasing TV time one unit (minute) while keeping Mother's IQ constant.

Ç. Çöltekin / Informatiekunde

Model fit

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.90562 26.94569 1.592 0.1188
mother.ig 0.40781 0.24186 1.686 0.0992 .
tv.time -0.25302 0.09384 -2.696 0.0100 *
___
Residual standard error: 21.11 on 42 degrees of freedom
Multiple R-squared: 0.251, Adjusted R-squared: 0.2154
F-statistic: 7.039 on 2 and 42 DF, p-value: 0.00231
multiple-r^2 Is percentage of variation explained by the model.
adjusted-r^2 Adding more predictors increase multiple-r^2.
             Adjusted-r<sup>2</sup> (or \bar{r}^2)corrects for by-chance increase due
             to more predictors. \overline{\mathbf{r}}^2 = 1 - \left[\frac{\mathbf{n}-1}{\mathbf{n}-\mathbf{k}-1} \times (1-\mathbf{r}^2)\right].
```

Inference

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.90562 26.94569 1.592 0.1188

mother.iq 0.40781 0.24186 1.686 0.0992 .

tv.time -0.25302 0.09384 -2.696 0.0100 *

----

Residual standard error: 21.11 on 42 degrees of freedom

Multiple R-squared: 0.251, Adjusted R-squared: 0.2154

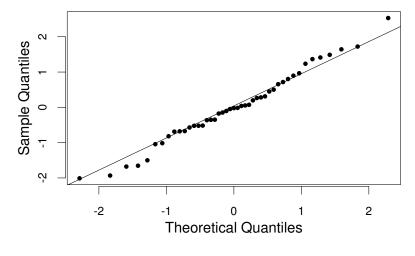
F-statistic: 7.039 on 2 and 42 DF, p-value: 0.00231
```

- T-tests for coefficients show significance of the coefficient estimates.
- F-test indicates the significance of the overall model.

Motivation Definition Example Model selection Multicollinearity Summary Next week

Diagnostics: normality of the residuals

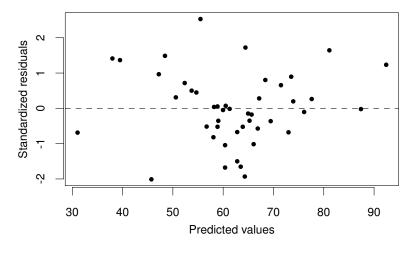
Normal Q-Q plot: residuals



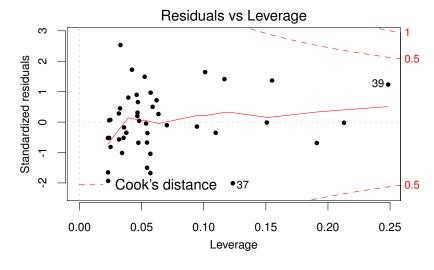
Ç. Çöltekin / Informatiekunde

Statistics II: Multiple Regression

Diagnostics: predicted vs. residuals graph



Diagnostics: residuals vs. leverage



C. Cöltekin / Informatiekunde

Statistics II: Multiple Regression

Which predictors to include: model selection

Given two predictors (x_1, x_2) and a response variable (y), our options are:

$$\begin{split} y_i &= a + e_i \ \text{ the null model, or the 'model of the} \\ & \text{mean' (note that } a = \bar{y}). \end{split}$$
 $\begin{aligned} y_i &= a + b_1 x_{i,1} + e_i \ y \ \text{depends only on } x_1 \\ y_i &= a + b_2 x_{i,2} + e_i \ y \ \text{depends only on } x_2 \end{aligned}$ $\begin{aligned} y_i &= a + b_1 x_{i,1} + b_2 x_{i,2} + e_i \ \text{both } x_1 \ \text{and} \ x_2 \ \text{affect the outcome} \\ & \text{variable.} \end{aligned}$

Model selection: the model fit

Everything being equal, we want the model that explains the data at hand the best (higher r^2). For our example:

predictor	r ²	F-test (p value)	t-test (p-value)
Mother's IQ	0.12	0.0100	0.019
TV time	0.20	0.0021	0.002
Mother's IQ & TV time	0.25	0.0023	0.100 0.010

Model selection: the model fit

Everything being equal, we want the model that explains the data at hand the best (higher r^2). For our example:

predictor	r ²	F-test (p value)	t-test (p-value)
Mother's IQ	0.12	0.0100	0.019
TV time	0.20	0.0021	0.002
Mother's IQ & TV time	0.25	0.0023	0.100 0.010

Things to note

- r²'s do not sum up.
- Significance drops with multiple predictor estimates.

Which model is the best?

We prefer models with high model fit (high r^2). However

- r² is a measure of how well your data fits to the current sample, we want to develop models that are useful beyond the sample at hand.
- Adding more predictors increase model fit.
- If you have as many predictors as data points, you have a saturated model.
- The model selection process is a balance between a model that fits well to the data and a model that is simpler (fewer parameters).

Which model is the best?

We prefer models with high model fit (high r^2). However

- r² is a measure of how well your data fits to the current sample, we want to develop models that are useful beyond the sample at hand.
- Adding more predictors increase model fit.
- If you have as many predictors as data points, you have a saturated model.
- The model selection process is a balance between a model that fits well to the data and a model that is simpler (fewer parameters).

Everything should be made as simple as possible, but no simpler.

Stepwise methods

Ideally, model selection should be based on your theories about the problem.

 You can compare two models using an F-test (as we compare our model to the null model).

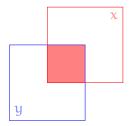
$$F = \frac{MS_{m_1}}{MS_{m_2}}$$

- You can also use more general statistics like 'Akaike information criterion' (AIC).
- Once you have a way to compare two models, you can also ask computer to search for the best model using stepwise methods.

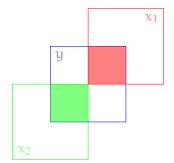
Multicollinearity

Multicollinearity is a problem associated with multiple predictors explaining same portion of the variance in the response variable.

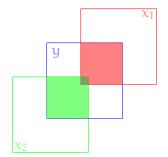
- In case of perfect multicollinearity (when one of the predictors is predicted by others perfectly) regression line cannot be estimated.
- Ideal case is when there is no multicollinearity: this rarely happens.
- High correlation between predictors is a sign of multicollinearity.
- High multicollinearity causes uncertain estimates of the coefficients.



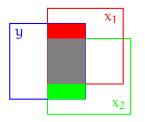
- Single regression y = a + bx + e.
- Filled area: r², variance of y by x, or square of the Pearson's r (correlation coefficient).



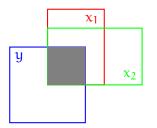
- Multiple regression $y = a + b_1 x_1 + b_2 x_2 + e.$
- No multicollinearity.
- Filled areas:
 - red: $r_{x_1}^2 = 0.25$, due to x_1
 - green: $r_{x_2}^2 = 0.25$, due to x_2
 - Total r² = 0.50, due to model.



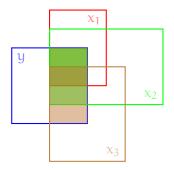
- Multiple regression $y = a + b_1 x_1 + b_2 x_2 + e.$
- Small/mild multicollinearity.
- Filled areas:
 - red: $r_{x_1}^2 = 0.36$, due to x_1
 - green: $r_{x_2}^2 = 0.36$, due to x_2
 - gray: $r_{x_1,x_2}^2 = 0.04$, due to both variables.
 - Total r² = 0.68 (not 0.72), due to model.



- Multiple regression $y = a + b_1 x_1 + b_2 x_2 + e.$
- Large multicollinearity.
- Filled areas:
 - red+gray: $r_{x_1}^2 = 0.4$, due to x_1
 - green+gray: $r_{x_2}^2 = 0.4$, due to x_2
 - gray: $r_{x_1,x_2}^2 = 0.3$, due to both variables.
 - Total r² = 0.5 (not 0.8), due to model.



- Multiple regression $y = a + b_1 x_1 + b_2 x_2 + e.$
- Perfect multicollinearity.
- Regression parameters cannot be estimated in this case.
- Some software will return an error, some will drop one of the predictors.



- Multiple regression $y = a + b_1 x_1 + b_2 x_2 + b_3 x_3 + e.$
- Another example of perfect multicollinearity with 3 variables.
- All explanation x₂ provides is also explained by combination of x₁ and x₃.

Multicollinearity: how to detect it?

- High pairwise correlation is an indication, but not a sufficient one.
- ► No/small increase in r² in the combined model with respect to individual predictors is another indication.
- ► Variance-inflation factor (VIF) statistics.
 - For each predictor, x_j , fit a regression model,

$$x_j = a + \ldots + x_{j-1} + x_{j+1} + \ldots x_k$$

- Calculate the r_i^2 for the model.
- VIF statistics for jth is,

$$\text{VIF}_j = \frac{1}{1-r_j^2}$$

- Interpretation of VIF is also not straightforward.
- ▶ Values over 5 (or 10 for some) is a case for concern.

Ç. Çöltekin / Informatiekunde

Summary: multiple regression

$$y_i = \underbrace{a + b_1 x_{i,1} + b_2 x_{2,i} + \ldots + b_k x_{k,i}}_{\hat{y}} + e_i$$

- Multiple regression is a generalization of the simple regression, where we predict the outcome using multiple predictors.
- Multicollinearity causes problems in estimation and interpretation of multiple-regression models.
- Model selection (finding a model that fits the data well, but not more complex than necessary) is important.

Summary and Next week

Today:

Simple/Multiple regression

Next lecture:

- ▶ Single-factor ANOVA (3e: Ch.10, 4e: 11.1–11.9)
- ► General linear models (3e: 7.11–7.12, 4e: 10.5)