Statistics II
 Summary

Çağrı Çöltekin

University of Groningen

Information Science
April 22, 2014

First things first: the exam

Exam date \& time: June 6, 14:00-17:00 room: A. Jacobshal 01.

- A mixture of multiple choice and short-answer questions.
- It should take about 90 minutes, but you can use all 3 hours reserved for the exam.
- An example exam is already on Nestor, under 'course documents'.
- You do not need a calculator, but you are allowed to bring a simple calculator (without network capabilities).

The plan of the day

A summary (with a new/different perspective at times):
Practical stuff
Basics: hypothesis testing, statistical models.
Correlation
Regression
Multiple regression
ANOVA
Factorial ANOVA
Repeated-measures ANOVA
Logistic Regression
...some common problems \& your questions.

Unconditional inference: confidence intervals

- The simplest case of 'inference' is an unconditional estimate, e.g., the population mean estimated from a sample.
- Reliability/uncertainty associated with such an estimate can be quantified using confidence intervals.
- Confidence intervals are related to hypothesis testing: if the interval does not contain the value expected by the null hypothesis, the result is statistically significant at the corresponding level.

Null-hypothesis significance testing procedure

- Define a null hypothesis $\left(\mathrm{H}_{0}\right)$ that expresses when your hypothesis is wrong.
- Define an alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right.$, or $\left.\mathrm{H}_{1}\right)$ as what you expect to find. (well... depending on which NHST procedure you follow.)
- Choose a significance level (α-level) at which to reject the H_{0}. Typical values are $0.05,0.01,0.001$.
- Apply the appropriate test, say t-test, which will yield a p-value, of obtaining the sample you have, if H_{0} was true.
- If $p<\alpha$, we reject the H_{0}, otherwise, we fail to reject the H_{0}.

NHST: problems/suggestions

Beware:

- The p-value is not the probability of null-hypothesis being true.
- Not finding a significant difference does not mean there is none: you can never accept the null hypothesis.
- Statistical significance does not warrant practical importance.

Suggestions:

- Whenever you see a p-value insert 'if null hypothesis was true' in your conclusions.
- Report value of the p (not just $p<.05$).
- Always look for effect sizes, interpret along with (confidence) interval estimates around the effect sizes.

Effect sizes: what are they?

A few examples:

- The estimate of the mean.
- The estimate of the difference between two means. Or, Cohen's $d\left(\frac{\bar{x}_{1}-\bar{x}_{2}}{s}\right)$, if you like standardized measures.
- Ratio or percentage of change (say, in a year, or after treatment).
- Correlation coefficient r (or r^{2}).
- Slope values in a regression analysis.
- Proportion of variance explained by a model: multiple- r^{2} (or adjusted- r^{2}), η^{2} (or ω^{2}).

It is best to interpret effect sizes with respect to the problem studied.

Statistical models

All statistical analyses can be cast into a model:

$$
\text { response }=\text { model }+ \text { error }
$$

- model is what we are interested in.
- error effects the precision (and certainty) of our estimates.
- estimation is about finding a good model that fits/explains the data.
- inference is about assessing uncertainty of our estimates.

What are the models?

- Model of the mean (sometime called the null model):

$$
y=\mu+e
$$

- Model with multiple group means (like in ANOVA):

$$
y=\mu+\delta_{1}+\delta_{2}+e
$$

- Model with a single predictor (regression, but also t-test):

$$
y=a+b x+e
$$

- Model with a single predictor (regression, ANOVA):

$$
y=a+b_{1} x_{1}+b_{2} x_{2}+\ldots+e
$$

Correlation

The correlation coefficient (r) is a standardized symmetric measure of covariance between two variables.

- The correlation coefficient ranges between -1 and 1 .
-1 perfect negative correlation: x decreases as y increase.
0 no relationship.
+1 perfect positive correlation: x increases as y increase.
- Correlation is symmetric.
- Typically between two numeric variables, but also with binary categorical variables (point biserial correlation).

Correlation: how to do it

- The most common correlation coefficient is Pearson's r,

$$
r_{x y}=\frac{1}{n-1} \sum_{i=1}^{n} z_{x_{i}} z_{y_{i}}
$$

r indicates the strength and direction of the correlation.

- Inference can be based on t-distribution, the base on the statistic,

$$
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}
$$

- Assumptions are exactly like linear regression (coming soon).
- When the assumptions fail, non-parametric alternatives Spearman's ρ or Kendall's τ can be used.

The simple regression

$$
y_{i}=a+b x_{i}+e_{i}
$$

y is the outcome (or response, or dependent) variable. The index i represent each unit observation/measurement (sometimes called a 'case').
x is the predictor (or explanatory, or independent) variable.
a is the intercept.
b is the slope of the regression line.
a and b are called coefficients.
$a+b x$ is the deterministic part of the model. It is the model's prediction of $y(\hat{y})$, given x.
e is the residual, error, or the variation that is not accounted for by the model. Assumed to be (approximately) normally distributed with 0 mean (e_{i} are assumed to be i.i.d).

Regression: how to do it

Least-squares regression is the method of determining regression coefficients that minimizes the sum of squared residuals $\left(S S_{R}\right)$.

$$
y_{i}=\underbrace{a+b x_{i}}_{\hat{y}_{i}}+e_{i}
$$

Regression: how to do it

Least-squares regression is the method of determining regression coefficients that minimizes the sum of squared residuals $\left(S S_{R}\right)$.

$$
y_{i}=\underbrace{a+b x_{i}}_{y_{i}}+e_{i}
$$

- We try to find a and b, that minimizes the prediction error:

$$
\sum_{i} e_{i}^{2}=\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i}\left(y_{i}-\left(a+b x_{i}\right)\right)^{2}
$$

- This minimization problem can be solved analytically, yielding:

$$
\begin{aligned}
& b=r \frac{\sigma_{y}}{\sigma_{x}} \\
& a=\bar{y}-b \bar{x}
\end{aligned}
$$

Visualization of regression procedure

Variation explained by regression

Total variation $=$ Unexplained variation + Explained variation

$$
y-\bar{y} \quad=\quad y-\hat{y} \quad+\quad \hat{y}-\bar{y}
$$

Regression: what to watch out for

linearity scatter plot of ' y vs. x ' or 'residuals vs. fitted'. normality (of residuals!) histogram, Q-Q (or P-P) plot. constant variance (of residuals!) 'residuals vs. fitted' plot.
outliers scatter plot of ' y vs. x ' together with regression line, residual histogram or box plot.
influential cases scatter plot of ' y vs. x ', 'residuals vs. fitted', or more specialized statistics like Cook's distance.

Regression: when things are not as expected

When things fail ...
independence use more complex models (e.g., multilevel/mixed-effect models).
linearity transform the input or the response variable, use non-linear regression.
normality transform the input or the response variable, use GLMs with non-normal error.
constant variance transform the input or the response variable, use GLMs.
influential cases remove the observation (if it is a real outlier), or collect more data.

Regression: important concepts

- Coefficient of determination

$$
r^{2}=\frac{\text { Explained variance }}{\text { Total variance }}=\frac{\sum_{i}^{n}\left(\hat{y}_{i}-\bar{y}_{i}\right)^{2}}{\sum_{i}^{n}\left(y_{i}-\bar{y}_{i}\right)^{2}}=\frac{S S_{M}}{S S_{T}}
$$

- r^{2} is the standardized effect size for regression. Estimates of slope(s) indicate effect sizes of individual predictors.
- Inference for the complete model is based on F distribution with $\mathrm{DF}=(\mathrm{k}, \mathrm{n}-\mathrm{k}-1)$

$$
F=\frac{\text { Explained variance }}{\text { Unexplained variance }}=\frac{\frac{1}{k} \sum_{i}^{n}\left(\hat{y}_{i}-\bar{y}_{i}\right)^{2}}{\frac{1}{n-k-1} \sum_{i}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}=\frac{M S_{M}}{M S_{R}}
$$

for n data points and k predictors.

- Inference (confidence intervals or significance testing) for individual coefficients are performed using t-test.

Multiple regression

$$
y_{i}=\underbrace{a+b_{1} x_{i, 1}+b_{2} x_{2, i}+\ldots+b_{k} x_{k, i}}_{\hat{y}}+e_{i}
$$

a is the intercept (as before).
$\mathrm{b}_{1 . . \mathrm{k}}$ are the coefficients of the respective predictors.
e is the error term (residual).
It is a generalization of simple regression with some additional power and complexity.

Multiple regression: issues and difficulties

Multiple regression shares all aspects/assumptions of simple regression, and

- Visual inspection of the data becomes more difficult.
- Multicollinearity causes problems in estimation and interpretation of multiple-regression models.
- Suppression is another possibility, where combination of predictors are more useful than individual predictors.
- Overfitting, occurs when there are large number of predictors.
- Model selection (finding a model that fits the
- Model fit is still measured by r^{2} (but, called multiple- r^{2}). Adjusted- r^{2} corrects by-chance increase in multiple- r^{2} by adding more predictors.

ANOVA

We want to know whether there are any differences between the means of k groups.

- If the variance between the groups is higher than the variance within the groups, there must be a significant group effect.
- Between group variance $\left(M S_{\text {between }}\right.$, or $M S_{M}$ or $\left.M S_{G}\right)$ is characterized by variance between the group means.
- Within group variance $\left(M S_{\text {within }}\right.$, or $M S_{R}$ or $\left.M S_{E}\right)$ is characterized by variance of data round the group means.

Then, the statistic of interest is

$$
F=\frac{M S_{\text {between }}}{M S_{\text {within }}}=\frac{M S_{M}}{M S_{R}}
$$

ANOVA: visualization

$$
\begin{aligned}
& F=\frac{M S_{M}}{M S_{R}} \\
& F=\frac{\frac{S S_{M}}{D F_{M}}}{\frac{S S_{R}}{D F_{R}}}
\end{aligned}
$$

$D F_{M}=k-1$
$D F_{R}=n-k$
where k is the number of groups, and n is the number of observations.

ANOVA: what to watch out for

normality of response in all groups check with,

- box plots,
- histogram,
- Q-Q (or P-P) plot.
homogeniety of variance among the groups.
- Rule of thumb: no variance twice another group's variance.
- Box plots for visual inspection.
- Formal tests include 'Levene' or 'Bartlett' tests of homogeneity of variances.

ANOVA: when things go wrong

independence Use repeated-measures ANOVA, or multilevel/mixed-effect linear models.
normality Transform the response variable, or use non-parametric Kruskal-Wallis test.
homogeniety of variance Use corrected F-ratios, transform the response variable.

Prior contrasts and post-hoc tests

- ANOVA indicates whether there are any differences between any pair of group means.
- A limited set of specific differences (contrasts) can be coded in ANOVA.
- One can also do post-hoc tests for comparing individual group means after ANOVA.
- In exploratory multiple-comparison analysis, you need to adjust your p-values (or your α level), for example using Bonferroni correction.

Factorial ANOVA

- Factorial ANOVA is a generalization of single ANOVA (or t-test).
- Compare groups along more than one dimension.
- Efficient in use of subjects.
- Allows to investigate interaction.
- Same assumptions with single ANOVA.
- independent observations.
- all groups are (approximately) normally distributed
- all groups have (approximately) equal variances

Factorial ANOVA: partitioning the variance

Single ANOVA

Two-way ANOVA

ANOVA: main effects and the interaction(s)

- For two-way ANOVA, with factors A and $B, S S_{M}$ is partitioned as:

$$
S S_{M}=\underbrace{S S_{A}+S S_{B}}_{\text {main effects }}+\underbrace{S S_{A \times B}}_{\text {interaction }}
$$

- For three-way ANOVA, with factors A, B and $C, S S_{M}$ is partitioned as:

$$
S S_{M}=\underbrace{S S_{A}+S S_{B}+S S_{C}}_{\text {main effects }}+\underbrace{S S_{A \times B}+S S_{A \times C}+S S_{B \times C}}_{\text {2-way interctions }}+\underbrace{S S_{A \times B \times C}}_{\text {3-way inter. }}
$$

Factorial ANOVA: degrees of freedom and F-tests

As in single ANOVA:

$$
\begin{aligned}
& \mathrm{DF}_{\mathrm{T}}=D F_{M}+D F_{R} \\
& n-1=k-1+n-k
\end{aligned}
$$

If we have k_{A} levels due to factor A, and k_{B} levels due to factor B, total number of groups is $k=k_{A} \times k_{B}$. We can now further partition the DF_{M} as,

$$
\begin{aligned}
& \mathrm{DF}_{M}=\mathrm{DF}_{A}+\mathrm{DF}_{B}+\mathrm{DF}_{A \times B} \\
& k-1=k_{A}-1+k_{B}-1+\left(k_{A}-1\right) \times\left(k_{B}-1\right)
\end{aligned}
$$

For two-way ANOVA we get three F-tests:

$$
\begin{aligned}
F_{A} & =\frac{M S_{A}}{M S_{R}} \\
F_{B} & =\frac{M S_{B}}{M S_{R}} \\
F_{A \times B} & =\frac{M S_{A \times B}}{M S_{R}}
\end{aligned}
$$

Repeated-measures ANOVA

Essentially, (factorial) ANOVA, with repeated (not independent) measurements.

- A lot more economical in experiment design.
- More powerful, since individual variation is not a problem for RM ANOVA.
- A generalization of paired t-test to multiple groups.

Repeated measures can be,
over time: testing effects of treatment, teaching method or just time. Typically you get more than two pre-tests or post-tests.
not time related. Examples:

- reaction time for different sort of stimuli
- measurements taken in the same city/region/country

RM ANOVA: Between subjects and within subjects variance

- A between subjects variance is the variation you observe due to differences between individuals.
- In independent (single or factorial) ANOVA, all variation observed is between subjects.
- A within subjects variation is due to variation observed in repeated measurement over the same subject.
- In a purely repeated design ANOVA, all experimental effect is confined in within-subjects variance.

Note: measures do not have to be repeated over 'subjects', can be other 'items' present in the experimental setup.

RM ANOVA: Partitioning the variance

Single ANOVA

Repeated Measures ANOVA

RM ANOVA: what to watch out for

- Assumptions
- Normality of response variable in all experimental conditions.
- Sphericity: homogeneity of variances of all pairwise differences.
- RM ANOVA is very sensitive to unbalanced designs, missing values.
- Carry-over effects (e.g., learning or fatigue) in experiment sequence.

RM ANOVA: when things fail

normality transformation or more complex models (generalized linear multilevel/mixed-effect models) may help.
sphericity use adjusted F-values or again complex models (generalized linear multilevel/mixed-effect models) may help.
unbalanced data generalized linear multilevel/mixed-effect models, or recollect your data more carefully.
carryover effects randomize the order of stimuli during the experiment, or switch to between-subjects designs, do multiple experiments.

ANOVA and effect size

- ANOVA as a model view:
- $\eta^{2}\left(=r^{2}\right.$, same calculation, same interpretation, just different name).

$$
\eta^{2}=\frac{\text { Explained variance }}{\text { Total variance }}=\frac{S S_{M}}{S S_{T}}
$$

- partial- η^{2} in factorial ANOVA gives variance explained by each factor (or interaction term).
- Analogous to adjusted- r^{2}, ω^{2} is adjusts for by-chance increase in η^{2}. Use/report (partial-) ω^{2} when you can.
- ANOVA as hypothesis testing method:
- Mean differences (or Choen's d) in pairwise comparisons.
- Coefficients of contrasts.

Logistic regression

Logistic regression is an extension of regression (or a case of generalized linear models) where response variable is binary. Two important differences:

- Transform the response variable so that estimated values are between 0 and 1.
- Allow non-normal residuals.

$$
\underbrace{\operatorname{logit}\left(p_{i}\right)}_{\log \frac{p}{1-p}}=a+b_{1} x_{1, i}+\ldots+b_{k} x_{k, i}+e_{i}
$$

Logistic regression: estimation

- Maximum likelihood estimation (MLE) tries to find the set of model parameters, or coefficients, $a, b_{1}, \ldots b_{k}$, which make the data most likely (or minimize the error).
- MLE is an iterative search for the optimum parameter values. There is no exact solution.
- In some cases, MLE may fail to find a solution.
- If errors are normally distributed, MLE is equivalent to least-squares estimation.
- With MLE, r^{2} is not the measure of model fit. Instead we use deviance $=-2$ LogLikelihood to measure model fit (lower, better).
- Unlike r^{2}, deviance is not comparable for models fit on different data.

Logistic regression: what to watch out for

- Overdispersion: when variance diverges from what is expected in binomial data.
- Linear relationship between logit transformed response and predictors.
- MLE related: MLE may fail to find a good fit. In case of
- complete separation.
- unevenly distributed data points.
- Otherwise the same as multiple regression.

Logistic regression: when things fail

overdispersion GLMs with quasi-binomial error.
MLE fails Collect more data, or use Bayesian estimation.
independence Same as regression: multilevel (generalized) linear models.
linearity Same as regression: transform predictor/response or use non-linear regression.

