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1 INTRODUCTION

1.1 The Company

Dekonta d.o.o. is the Serbian sister company of the Czechia-based Dekonta a.s., whose
offices are located in Belgrade. It specializes in environmental consulting, engineering and
occupational health and safety services.

My internship here was spread over six weeks in February and March 2019. I was tasked
with constructing an automated system for legal document updates, and was largely able to
define my own work plans and strategy for achieving this goal.

1.2 The Task

When conducting field work, one needs to be aware of the exact laws and regulations of the
country in order to be able to assess whether the client’s operations are in agreement with
the local legal regulations. This is of central importance in Dekonta’s work, and as such, there
is a constant need for up-to-date and clear legal guidelines.

During regular parliamentary proceedings, changes to existing laws are often proposed
and noted down. For the sake of clarity, these changes often need to be included in the
“consolidated” versions of laws, adjusted according to the proposed changes. In Serbia, this
process is currently being performed manually, but in many countries in the region where
Dekonta is operating, these consolidated versions are not created at all. It would therefore be
a tremendous business aid, and a potential product as well, to develop a program that would
be able to perform this task with minimal human supervision.

The task I was assigned during the internship was to develop precisely this system, that
would read and “understand” natural language instructions on how a certain law ought to be
amended, and perform the described amendments in the corresponding legal document.

2 PROJECT

Since there was nobody in the company with higher qualifications in computer science or
linguistics-related fields (most of the employees were engineers and geologists), I was largely
left “to my own devices” in coming up with a work plan. The plan I came up with initially was,
with a few minor deviations, the one I ended up pursuing, and which this report is based on.
It involved:

• translating the natural language instructions into an intermediate language (instruc-
tions in this language henceforth referred to as annotations)

• using the instruction-annotation pairs as input for a sequence-to-sequence (encoder-
decoder) neural network
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• standardizing the HTML of the legal documents, and

• developing a rule-based system for performing the changes described by the annota-
tions in the corresponding HTML file

2.1 Annotations

The first difficulty I perceived was that there was substantial variability in the language of the
instructions. Although the changes must follow a certain structural norm, the exact terms
used and linguistic details such as word order and long-distance anaphoras made a strictly
syntactic approach seem unfeasible, and a semantic approach plausible but daunting. I
therefore opted for adopting a sequence-to-sequence [1] approach, and in order to relate my
work more easily to ongoing research, reframed the legal update problem as a sort of machine
translation task, where each instruction was to be “translated” into a concise, intermediate
language, which would be used to represent freely-worded natural language instructions in
the shortest possible form without introducing ambiguity. This standardized interlanguage
would then be read by a rule-based system, which would be able to parse them with much
less difficulty than their natural language counterparts.

With the above rationale in mind, I designed the language, together with a short “in-
struction manual” (Appendix) containing example translations and discussion of potentially
problematic cases. Being aware that the programming requirements for the task at hand
would be rather time-consuming, my supervisor agreed to hire several annotators for a
few days and translate all the available data, which would eventually serve as input to the
sequence-to-sequence model. The end result were not entirely consistent annotations, but
were nonetheless extremely helpful and provided me with a lot of valuable data, in which I
ironed out the occasional inconsistency upon encountering unexpected results when run-
ning the nascent program.

2.2 Data Set Description

Since the generation of annotated data was quite expensive, the training data turned out to
be rather modest in size - only 865 sentence-annotation pairs were available to the model at
training time, 97 were used for monitoring validation loss (development set), and 398 samples
were used for testing. The lengths of the input sentences had a very large variance, spanning
the range between 17 and 580 characters, with a mean of 61. The annotations, too, saw a very
large disparity in length between the shortest and longest ones; the shortest annotation was
only 2 characters long, the average one had 6.4 characters, whereas the longest one - which
was in fact a concatenation of multiple annotations in the same paragraph - consisted of an
enormous 103 characters. Already here it is clear that the encoder-decoder model could have
a difficult time translating such long sequences, especially since long-distance dependencies
have been shown to cause problems for similar models that were considered state-of-the-art
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at the time [2].1

The distribution of the different operations in the training data was the following; 118
delete instructions, 428 replace instructions, 258 insert instructions and 61 miscellaneous
ones. All the instructions labeled with NNN (unknown annotation) were omitted.

2.3 Preprocessing

The goal of the preprocessing step was to extract the instructions from their respective files,
and associate them with the corresponding annotations. Sections of the instructions that
were enclosed in quotation marks also had to be treated differently, since the annotations
“ignored” them, and were designed to deal with them implicitly. Determining what passages
were enclosed within quotes proved to be quite a difficult task, due to issues such as nested
quotes, inconsistent use of Unicode characters for opening quotes, and in some cases even
unopened/unclosed quotes, which often led to the entire file being parsed incorrectly. An
unexpected benefit of the project thus emerged, in that missing quotation marks, sometimes
causing significant structural ambiguity, could be detected, and temporarily fixed, although
an additional reading from a legal professional might be required in some cases to ensure the
“more intuitive” reading was indeed the intended one.

2.4 Input Representation

The training data for the neural network were the natural language instructions, and the
target data were the annotations. In this way, the problem is largely analogous to machine
translation, for which encoder-decoder networks coupled with a gating mechanism have
been yielding promising results in recent years, as exemplified by the work of Cho et al.
[3] and Bahdanau et al. [4]. Of several different ways of representing the input that were
attempted, including word embeddings and one-hot character encodings, character em-
beddings proved to be most performant. The character embeddings were extracted from
FastText word embeddings [5] and constructed using a “bag-of-characters” technique, that
is by averaging the word vectors in which a certain character appeared, as suggested by
Max Woolf [6], where characters that tended to co-occur in the provided words would end
up with relatively similar embeddings. The resulting embeddings were reduced from the
initial dimensionality of 300 to a more computationally accommodating 64, by means of
principal component analysis. Due to the inordinate quantity of padding dictated by the
longest instructions - 580 characters was the longest instruction length while the average
length was only 61 characters - an approach knows as “bucketing” was adopted, where the
sequences were sorted by length and split into batches, each of which were then padded not
to the length of the longest instruction overall, but only to the length of the longest instruction
within that batch. Splitting the data into batches of size one would have enabled the input

1Although the referenced paper was dealing with word embeddings, unlike the character embeddings treated
here, the problem of long-distance dependencies is likely to be problematic in both cases.
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to be truly variable-length, without any unnecessary padding, however it would have likely
slowed down the training process by a large factor.

2.5 Neural Network

The neural network itself was written in Keras, developed by Chollet [7], closely following
its main developer’s sequence-to-sequence Keras tutorial.2 The input to the network had a
fixed dimensionality due to the specific implementation used, but it represented variable
length input, since the fixed dimensionality was enforced by adding semantically irrelevant
padding, encoded by a predefined random word embedding, similarly as for unknown words.
These vectors were fed to a Gated Recurrent Unit (GRU) layer, a common choice of gating
mechanism for dealing with long-distance dependencies along with LSTM [8], but requiring
less time to train [9]. The central aim of such layers is to improve retainment of information
found significantly earlier in the input, for which regular recurrent neural networks are often
insufficient due to the vanishing gradient problem, as discussed by Hochreiter [10]. The
final state of the encoder was a fixed-length vector with a dimensionality of 256, which was
then further passed to the decoder; another GRU layer, taking the annotations as the second
input, and trained to output the same annotations “offset into the future” by one, so that it
would learn not to predict the currently observed character but the subsequent one. Since
the decoder can be interpreted as repeatedly classifying the most likely output characters
given the characters until then, a softmax activation function was used, in order to transform
the decoder output at each step into a list of probabilities. This decoding process continued
until an explicitly encoded “end-of-sequence” character was input.

Inference was largely analogous to the training, with the difference that the input charac-
ter to the decoder was not provided at each time step, but the decoder’s prediction at each
time step was “recycled” instead, and was used to make the next prediction, obtained by
using argmax. This way the decoder only used the final hidden state of the encoder and a
dummy input character as a starting point, and was responsible for generating all subsequent
characters on its own, until a maximum allowed length was reached or the end-of-sequence
token was output.

The optimizer that was settled on was RMSProp, using Keras’ default learning rate of
0.001. The validation split was set at a fairly low 0.1, since training data was so valuable, and
the model weights were updated upon observing every thirty-second input (batch size 32).
Due to the fact that the model was essentially performing a classification task, the loss used
was categorical cross-entropy.

2https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.
html
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<p class="auto-style12" align="center">
Article<i>38.</i></p>

<p class="clan" style="line-height:1.0500002rem">Article 32
<span lang="sr-cyrl">*</span></p>

<p class="clan">"Official Gazette of the Republic of Serbia",
nr. 86 from 18. November 2011, 50 from 29. June 2018.</p>
<p class="clan">I. BASIC REGULATIONS</p>
<p class="clan">Article 1.</p>

<h4 class="clan">Article 1.</h4>

Figure 1: HTML inconsistencies. Normally, the “clan” class refers to an article, but as can be seen this
is not consistently enforced, and there is no reliable nesting hierarchy. The last HTML snippet is how
articles are represented in the revised HTML form. HTML text translated from Serbian into English
and shortened for easier comprehension.

2.6 HTML Standardization

One of the signs that the update of legal texts was still not being performed automatically was
the unsystematic, inconsistent and semantically opaque nature of the documents’ source
HTML. Examples of this can be found in Figure 1.

The extent of the variability in the HTML representations of nearly all relevant elements
was so large, that parsing the source HTML would have been close to impossible. Therefore,
the need arose to standardize the HTML to allow for an intuitive parsing process, which
could only be reasonably achieved by ignoring the HTML altogether and reconstructing it
from nothing but visual information. The HTML documents were transformed using the
free “HTML 2 PDF” online service,3 and then converted back from the resulting PDF form
to HTML using a similar tool, namely “PDF to HTML”.4 The resulting HTML was crude and
contained no semantic information, but did contain important visual cues such as the size
and weight of fonts, margin sizes and font color. This enabled the development of a script
that could combine these structural elements with some basic semantic content, gleanable
from the text itself, to create a well-formed, consistent and semantically meaningful HTML
representation of the legal documents, visually almost indistinguishable from the original
ones. An example snippet of the resultant HTML can also be seen in Figure 1.

2.7 Annotation Parsing

The last section of the internship involved the interpretation of the annotation instructions
(ideally retrieved as the output of the sequence-to-sequence model), their combination with

3https://html2pdf.com/
4https://www.pdftohtml.net/
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the appropriate quoted passages from the natural language instructions, and ultimately the
appropriate operation (deletion, replacement, insertion) in the legal document, following
the conventions present in the manually performed edits. With a consistent HTML format, it
became considerably easier to recurse into the right section of the HTML, where the desired
change was to be performed. For most common instructions this was undertaken without
issues. However, certain less common types of instructions were still very difficult to ad-
dress, in particular appendices and sections, which were not reliably addressed in the HTML
parsing step, as well as “metainstructions”, which entailed a sophisticated cross-referencing
mechanism that would require a detailed explanation to make sure that the structural rules
of the legal documents were being abided by.

During the internship, no intrinsically ambiguous annotations were encountered, in-
dicating that the performance of this section of the internship could have the potential to
become a fast and reliable way of performing the relevant changes. One larger and as of
yet unresolved issue was that only the instruction text (no markup) was extracted from the
instruction files, which made it impossible to insert larger blocks of text, such as articles,
that would conform to the HTML format. This could, however, be resolved by developing a
script that would standardize the instruction HTML as well, for which plenty of code from
the existing standardization script could be reused. The HTML of each article could then be
individually extracted, and directly injected into the legal documents, since the similarities
in structure between the two types of files could be “abused” to ensure a common HTML
format.

3 EVALUATION

Overall, the model has yet to overcome several major hurdles, the extent of which is so great
that metrics such as the BLEU score would probably not reveal any important information at
this stage. The test set had a size of 398 sentence-annotation pairs, of which 57 represented
deletions, 204 replacements, 123 insertions and 14 other instructions. The model accuracy,
meaning the percentage of annotations that were replicated perfectly, was only 9%. This is
even less impressive considering the fact that some of the test samples are likely to have been
seen in a similar or identical form in the training data, which is corroborated by the fact that
the accuracy dropped to only 6.8% when the formulaic “miscellaneous” instructions were
disregarded, all 14 of which were reconstructed perfectly. These best results were achieved
with a GRU encoder-decoder model described in Section 2.5, run for 120 epochs.

The average Levenshtein distance to the correct annotation paints an equally bleak pic-
ture, in that the predicted annotations had a distance of 3.2 characters to the gold annotations
on average, where the mean predicted and gold annotation lengths were 5.9 and 6.4 charac-
ters, respectively. The one encouraging aspect, however, is that the accuracy in determining
the relevant operation was a comparatively impressive 94.7%, all the more since this infor-
mation was often found close to the beginning of a sentence, which is normally considered
disadvantageous to such networks due to information being increasingly blurred the further
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away it is found from the end of the sequence. The majority baseline would only be 51%, so it
is clear that some learning did take place.

It is worth noting that the flaws were not necessarily tied to the model itself - a meager
865 training samples were used, whereas state-of-the-art machine translation systems often
rely on millions of such samples, notably from the WMT datasets [2], [1]. Still, the creation of
annotated data is far from trivial, and expends such a large amount of human effort that it
might not be worthwhile attempting to improve the results in this way. One of the central
aspects of the model that had a visible impact on the results proved to be the choice of char-
acter representations. The “semantic” character embeddings proved to be rather performant
on detecting the semantics of the instructions themselves, and almost invariably led to the
model correctly guessing the operation to be performed, as well as occasionally capturing
some considerably more complex content from the instructions, such as the presence and
structure of conjunctions, nested locations and valency of the instruction (how many quoted
passages it implicitly required, for example evident in the instruction YC5RR, which calls for
the replacement of a given word(s), presumably in quotation marks, with another word(s),
also in quotation marks). The inconsistencies in delivering these results could indeed be
largely attributed to an insufficient amount of training data, however one hurdle seems
insurmountable - the distinction between numeric characters. The issue with “semantic”
character embeddings is that the context-based vector representations of numeric characters
end up hugely similar, leading the model to reproduce numeric characters not much better
than at random (Figure 2).

This is a critical issue, since the correct operation performed on a wrong section would
edit the law in an undesirable and unpredictable way. A way of countering this could be to
incorporate attention with a copying mechanism [11], which would encourage the network
to replicate items such as named entities, quoted sections, and most relevant in this use
case, numbers, verbatim. This option, however, would greatly increase the model complexity,
and it is questionable whether it would provide any positive impact on the translation itself,
beyond finding the appropriate information to copy.

Coupled with Vasiljević’s [12] observation that the structure of the natural language
instructions is very predictable, as well as that their phrasing must follow certain predefined
requirements, rule-based systems might in fact constitute a more promising approach than
statistical methods in addressing the task at hand.
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Figure 2: Enlarged view of the character embeddings reduced to two-dimensional space. Numeric
characters are colored green, most punctuation is off the scale to the right.
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5 APPENDIX

Following is a set of instructions similar to the ones that the annotators were provided.

Every instruction document is divided into articles. Every article from the document
should be described in the specified annotation file, whose structure would roughly follow
the format:

Article 1
<annotation>
Article 2
<annotation>

Where the annotations are written in an invented, intermediate language. The interme-
diate language understands three basic operations. These are:

• X - deletion

• Y - replacement

• Z - insertion

Every description in the language begins with one of these three characters.

Every operation must be specified according to its exact location in the legal document.
For instance, articles and paragraphs would have to be specified. Below is the “location
lexicon”, with English and Serbian translations.

• C - article (sr. član)

• S - paragraph (sr. stav)

• N - title (sr. naslov)

• A - indent (sr. alineja)

• T - point (sr. tačka)

• PT - subpoint (sr. podtačka)

• G - chapter (sr. poglavlje/glava)

• O - section (sr. odeljak)

• PO - subsection (sr. pododeljak)

• @ - form (sr. obrazac)
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The article/paragraph number would simply be marked by a number, for example article 18
paragraph 2 would be C18S2.

If individual words are being added or replaced instead of entire articles/paragraphs, at
the end of the annotation R or RR should be added, depending on whether the word word
appears once or twice. If words are being inserted within parantheses, (R) should be written,
and if behind a punctuation symbol ?, then ?R. It could happen that the instruction says The
word ’bla’ is being replaced by the words ’bla blu bla’ in parentheses, in which case the end
of the annotation would be R(R). The same logic applies for when parantheses are being
omitted, that is (R)R. When deletion is occurring, the word word should be contained in the
instruction only once, so simply writing R would suffice.

All the above rules apply to numbers (B, sr. broj) and values (I, sr. iznos). Similarly, an
appendix (sr. prilog) is to be marked with P, but it is of relevance to us only if an appendix
number is specified (e.g. Appendix II would become P2). The other appendices can be NNN
(unknown annotation) for now.

If the letter d̄ is encountered, the code for it is $.

If a list of numbers is encountered e.g. 2 to 5 instead of 2, 3, 4 and 5, it is written in one
line using the ˆ symbol. Delete articles 2 to 5 would therefore be annotated as XC2ˆ5.

If multiple operations are noticed within one article (in the instruction document), it
should be “pretended” that a new article has been encountered. For example, if article 3 says
word A is being replaced by word B, and right afterwards word C is being replaced by word D,
in the annotation file it would look as follows:

Article 3
Y-...
Article 3
Y-...

The ellipses, would, of course, be substituted with the exact instructions.

The last article in each set of instructions typically contains a message such as:

This instruction document becomes effective eight days after publication in the “Official
Gazette of the Republic of Serbia”

It should be annotated as 008, where 8 refers to the number of days after publication.

If an article does not have a recognizable structure, the annotation should be NNN. If
something seems to be translatable but it is not clear how, it should be reported or made
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more precise with the help of a comment, which is to be found right next to the annotation,
after the # symbol.
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