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Abstract

This paper presents a computational study of a well-known cue, predictability statistics, for learning and finding lexical units in
continuous speech. Certain statistical properties of the naturally occurring speech stream allow predicting syllables or phonemes
from their context in varying degrees. These properties have been shown to be used by humans for segmenting continuous speech
as early as eight-months of age. However, the interest in direct use of this cue in computational models of segmentation is relatively
scarce so that the cue is under explored. This study is an attempt to fill this gap by demonstrating the utility of predictability statistics
in the segmentation task by corpus analysis and computational simulations. The computational simulations are carried out using
an incremental model on child-directed speech corpora. The results show that one can achieve good segmentation performance
by using only the predictability cue. The accuracy of the results rivals state-of-the-art systems even though the only cue exploited
involves predictability and the system presented is both unsupervised and strictly incremental, unlikely most other systems that
have been examined. Besides an in-depth analysis of predictability, the model presented in this study also offers a natural way to
combine multiple cues for solving the segmentation problem.
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1. Introduction

Segmenting continuous speech into lexical units is one of
the early tasks an infant needs to tackle during language acqui-
sition. The segmentation problem is more difficult than may
be appreciated at first sight. Children need to find words in a
continuous stream of speech, with no knowledge of words to
start with. Fortunately, experimental studies suggest that chil-
dren are not helpless in this task. They are sensitive to, and
make use of, some properties of naturally occurring speech very
early in the acquisition process, which lead to relatively simple
computational strategies for segmenting input utterances. Chil-
dren are known to attend to a number of cues that are useful
for discovering lexical units. These cues include, but are not
limited to, lexical stress (Cutler and Butterfield, 1992; Jusczyk
et al., 1999b), phonotactics (Jusczyk et al., 1993), predictability
statistics (Saffran et al., 1996a), allophonic differences (Jusczyk
et al., 1999a), and coarticulation (Johnson and Jusczyk, 2001).
However, most of these cues are language specific and can be
useful only after the learner has a lexicon populated with some
of the words of the target language. This suggests that some
cues, particularly predictability, are better candidates for boot-
strapping the acquisition of lexical units.

The principle behind the predictability-based segmentation
strategy is simple: the basic units (e.g., syllables or phonemes)
within a lexical unit predict one another in sequence, while units
across boundaries do not . The reason why predictability is use-
ful for discovering boundaries and the lexical units has to do
with the fact that the input to the learner is constructed from
a set of reoccurring lexical units which tend to follow certain
regularities. This process is invariant with respect to the lan-

guage(s) children are exposed to. As a result, predictability is
a language-general cue that can be put into operation without
any language-specific information. Naturally, we expect chil-
dren to use language-specific cues as well, but only after they
tune into particular aspects of the language(s) they are exposed
to. Predictability statistics is the best candidate we know for the
first step into building a lexicon and enabling the use of other,
language-specific, cues. Therefore, a better understanding of
this cue and computational mechanisms exploiting it is impor-
tant for understanding how children start extracting their first
lexical units from continuous speech input.

Predictability statistics, as a way of discovering lexical units,
has been a topic of interest in quantitative and computational
linguistics for a long time, at least dating back to Harris (1955).
Furthermore, this strategy is shown to be used by humans in
many tasks including segmentation. The seminal work by Saf-
fran et al. (1996a) showed that eight-month-old infants use the
predictability of consecutive syllables to extract word-like units
from an artificial sound sequence where all other cues were re-
moved. Following this study, a large number of experimen-
tal studies have confirmed that predictability-based strategies
are used by adults and children for learning different aspects of
language (e.g., Aslin et al., 1998; Thiessen and Saffran, 2003;
Newport and Aslin, 2004; Graf Estes et al., 2007; Thompson
and Newport, 2007; Perruchet and Desaulty, 2008).

Besides direct experimentation, computational modeling and
simulation has been a fruitful method for studying cognitive
phenomena, among which segmentation is not an exception.
There have been an increasing number of models of segmen-
tation particularly within the last two decades. Earlier influen-
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tial models of segmentation were based on connectionist mod-
els (e.g., Elman, 1990; Aslin, 1993; Christiansen et al., 1998).
These models have been instrumental in understanding the seg-
mentation process. Particularly, these models clearly demon-
strate the usefulness of predictability statistics and combina-
tion of multiple cues. However, connectionist systems, in gen-
eral, have been subject to the criticism that what a connectionist
model learns is rather difficult to interpret. Furthermore, even
though connectionist models perform better than random pro-
cesses, the segmentation performance that can be achieved us-
ing connectionist models is lower than what we expect from
adult segmentation performance. Models that use explicit rep-
resentations in combination with statistical procedures (e.g., Brent
and Cartwright, 1996; Brent, 1999; Venkataraman, 2001; Gold-
water et al., 2009; Johnson and Goldwater, 2009; Monaghan
and Christiansen, 2010) avoid both problems: these models typ-
ically perform well, and it is easier to reason about what they
learn. However, these models lack at least two aspects of con-
nectionist models that fit human processing better. First, even
though we know that human segmentation is incremental and
predictive, most of these models process their input either in a
batch fashion, or they require the complete utterance to be pre-
sented before attempting to discover any boundaries or units.
Second, even though the models can be augmented to use a set
of cues, it is difficult to incorporate arbitrary cues into most of
these models.

The present study will introduce an incremental framework
of segmentation that follows human performance as closely as
the former models do, while using an explicit statistical proce-
dure and performing comparably to the state-of-the-art models.
The focus of the current study is investigating the use of the pre-
dictability statistics in depth. As a result, we will not explore
the use of other cues. However, the framework described here
offers a natural way of combining cues from multiple sources.
This paper, first, reports on an in-depth investigation of com-
mon predictability measures for segmentation and the relations
between them. Second, it describes a novel predictability-based
model that can easily be extended to include other cues for seg-
mentation, and reports on the simulation results obtained with
this model on a well-known child-directed speech corpus. The
model described here follows what we know about human per-
formance in the segmentation task closely while performing
competitively with the state-of-the-art segmentation models.

The remainder of this paper is organized as follows. The
next section will briefly discuss predictability statistics and its
use in the segmentation task by humans and the computational
models in the literature. The ways of quantifying predictability
differ, so Section 3 takes a closer look at some of the ways pre-
dictability can be quantified and offers a few extensions to the
way it is commonly used in the literature. Besides describing
the data used in this study, Section 4 discusses a set of metrics
to assess the success of a computational model of segmenta-
tion. Section 5 introduces two reference models, and Section 6
describes a predictability-based segmentation model, and the
results of the simulations on a transcribed child-directed speech
corpus. Section 7 provides a summary and concludes.

2. Predictability and distributional regularities

Predicting things to come is a natural activity of the hu-
man brain. Our cognitive machinery constantly predicts the
next state of the environment at many levels. An interesting
aspect of human cognition is not only how we set expectations
about the next step on a task, but how we react when expecta-
tions fail and we are surprised. We remember and we learn most
from surprising events. It seems that prediction is an important
aspect of human cognition, and when it fails, it has further con-
sequences on the cognitive system.

Besides this common-sense notion of predictability in hu-
man cognition, children and adults use it for language process-
ing. An earlier use of the cue in linguistics is due to Har-
ris (1955). Harris suggested using a measure of predictabil-
ity to segment a given utterance into morphemes by positing
boundaries after an initial utterance segment which may be fol-
lowed by many different phoneme types—in other words, when
it is difficult to predict which phoneme comes next. The idea
has been used in natural language processing after Harris (e.g.,
Hafer and Weiss, 1974). However investigations of predictabil-
ity as a cue for discovering lexical units was delayed until 1990’s
in the psycholinguistics and cognitive science literature, and
gained popularity after an influential study by Saffran et al.
(1996a).

Saffran et al. (1996a) familiarized eight-month-old infants
with stimuli constructed from three-syllabic artificial words. In
the stimuli used during the familiarization phase the transition
of syllables within the words was deterministic, while the tran-
sition probability between the words was lower (1/3). Crucially,
the stimuli did not contain any other cues to ‘word’ bound-
aries. After only two minutes of familiarization, infants were
able to distinguish a novel sequence constructed from the arti-
ficial words in the familiarization phase from another sequence
formed by part-words with the same frequency of occurrence
of the syllables as in the training stimuli. The computational
principle children apply to the task seems to be the same: the
syllable segments that predict each other well are identified as
(lexical) units, positing boundaries where it is difficult to pre-
dict the next syllable.

The reason why this simple principle works for segmen-
tation has to do with the way natural language utterances are
generated. Utterances are strings of words from the speaker’s
lexicon. Words tend to reoccur, and the formation of words fol-
lows certain regularities. On the other hand, the sequence of
words is relatively unpredictable. As a result, the basic units
(e.g., phonemes or syllables) within words predict each other,
while it is more difficult to predict the next basic unit on a word
boundary.1

This fact has led a large number of successful segmenta-
tion algorithms to focus on the generative side of the process.

1To enable comparison with earlier research, we use a phonemically-
transcribed reference corpus in this paper. However, the assumption of a cer-
tain basic unit, such as the phoneme or the syllable, is not essential for a
predictability-based segmentation strategy. The strategy works with any basic
unit, even with non-linguistic collections of acoustic events (Räsänen, 2011).
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These systems define a generative model that is conjectured to
produce the input corpus, and find the segmentation with the
highest probability under the model (e.g., Brent and Cartwright,
1996; Brent, 1999; Goldwater et al., 2009; Johnson and Gold-
water, 2009). These models typically perform better than the
models that make use of the cues that are known to be used by
humans on the task directly, and they are instrumental in an-
swering many questions about the segmentation process. How-
ever, the models that operate on cues available to the learner,
and do not assume any knowledge of the system that gener-
ates the input take the learner’s perspective with higher fidelity.
Such models, at least in principle, can provide explanations at
lower levels (e.g., Marr’s (1982) algorithmic level in compari-
son to computational level).

Models that take the learner’s perspective and use predictabil-
ity as a segmentation strategy are rarely studied in depth. The
most common use of predictability for modeling learning seg-
mentation are connectionist models that implement the strat-
egy implicitly. For example, the popular simple recurrent net-
work s (SRN, Elman, 1990) are typically trained for predicting
the next input unit. Non-connectionist examples of the use of
predictability in psychologically motivated computational mod-
els of segmentation are rather scarce, and offer little detail. For
example, Brent (1999) employs simple uses of transitional prob-
abilities and pointwise mutual information as baselines for com-
parison with the proposed model in his study, and Swingley
(2005) uses pointwise mutual information in his batch segmen-
tation method. The only detailed treatment of a predictabil-
ity measure, entropy, for segmentation is the study by Cohen
et al. (2007). The segmentation algorithm described in Cohen
et al. (2007) shares a number of similarities with the model pre-
sented in Section 6 of this study. Besides the differences in
the measures used and the ways in which they are combined
and weighted, the present study also differs from Cohen et al.
(2007) in its its design, structured to allow the combination of
other cues that are known to be used by humans in discovering
lexical items from continuous speech.

The next section provides a corpus analysis for investigating
the usefulness of a number of ways to quantify predictability
and the relations between them.

3. Measures of predictability for segmentation

It is clear from the psycholinguistics literature that predictabil-
ity is used by humans for the task of segmentation. Particularly,
it seems, when consecutive units do not predict each other, even
eight-month-olds tend to assume that there is a word bound-
ary (Saffran et al., 1996a). This section will formally intro-
duce four measures of (un)predictability, namely, transitional
probability and successor variety, pointwise mutual informa-
tion and boundary entropy, and present an analysis of child-
directed speech that investigates usefulness of these measures
as indications of word boundaries.

Before analyzing the measures listed above, another mea-
sure previously studied by Hockema (2006) will be presented.
This measure is not suitable for unsupervised learning, and hence,
to model how children learn to segment. Nevertheless, the study

uncovers an interesting property of speech sequences relevant
to the segmentation problem.

3.1. Boundary probability

Hockema (2006) analyzed a large corpus of child-directed
speech according to a measure he called conditional boundary
probability, which is defined as the probability of observing a
word boundary between two phonemes l and r,

Pwb(l, r) = P(boundary|lr)

where lr is the phoneme bigram obtained by concatenating the
phonemes l and r.

He transcribed all child-directed utterances in the American
English section of the CHILDES that were available at the time
using the Carnegie Mellon Pronouncing Dictionary (Carnegie
Mellon University, 1998). For each possible phoneme pair lr,
he estimated Pwb(l, r), and plotted the histogram of these proba-
bility values. The result showed that the distribution is strongly
bimodal. Phoneme pairs show a high tendency to occur either
word-internally or at word boundaries.

Figure 1 presents graphs produced by the same procedure
using the child-directed speech in the corpus collected by Bern-
stein Ratner (1987) (henceforth, BR corpus). The differences
between data used for producing these graphs and Figure 2 in
Hockema (2006) are in the size of the corpus and the num-
ber of phonemes used for transcribing the corpus. Hockema’s
data consisted of 8,078,540 phoneme pairs transcribed using
a 39-phoneme alphabet. In contrast, the analysis used here
is based on 86,019 phoneme pairs that are transcribed with a
50-phoneme alphabet. Despite the differences, the same trends
hold: the distribution of phoneme pairs is strongly bimodal.

The presentation of the data is also different. All histograms
presented in this section are like Hockema’s normalized his-
tograms: they represent token frequencies, counting of the rele-
vant values as many times as the they occur in the corpus. As a
result, compared to a histogram that is based on phoneme-pair
types, these histograms are better representations of the distri-
butions that a child would hear.

Figure 1a presents the histogram of Pwb(l, r) for all phoneme
pairs that were observed in the corpus. Large portions of the
probability mass are lumped together either at the very first bin
where the probability of a word boundary is zero or close to
zero, or on the opposite end of the scale, where the probabil-
ity of a word boundary is one or close to one. This clearly
shows that there is a tendency for some phoneme pairs to ap-
pear only word internally, and some others to appear on word
boundaries. Figure 1b–c presents the two separate histograms
of the same quantity. In Figure 1b only the probabilities of
phoneme pairs that straddle word boundaries are shown, while
in Figure 1c only word-internal phoneme pairs are considered.
These histograms clearly show that bimodality of the measure
is indeed due to the differences between the phoneme pairs that
occur at the word boundaries and the word internal positions.
Figure 1d presents the segmentation performance of a simple
segmentation algorithm that segments between phoneme pairs
for which Pwb(l, r) is greater than a threshold value. The graph
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presents precision, recall and F-score for varying threshold val-
ues. The results indicate that a very high level of performance
is attainable for a large range of threshold values. For example,
for a threshold of 0.5, we get 91.2% precision, 87.3% recall
which amounts to an F-score of 89.2%. These figures seem to
be somewhat lower (86.5% precision, 76.0% recall) for Hock-
ema’s larger CDS data set.

Considering that this segmentation performance can be achieved
using only statistics over phoneme pairs, it is an impressive re-
sult. However, there are two major problems with this analy-
sis. First, the learner has no access to the information needed
(the knowledge of word boundaries) to build this distribution.
As a result, even though it uncovers a nice regularity about
the data, it is of little direct use for an unsupervised segmen-
tation algorithm. Second, since the method is based only on
phoneme pairs, there is no way of distinguishing occurrences
of a phoneme pair that occurs both word-internally, and at word
boundaries. This becomes particularly problematic for some of
the frequent phoneme pairs. For example, /sI/,2 occurs 153
times on a word boundary, such as in what’s it, and 163 times
word internally, such as in sit, in the BR corpus. The method
suggests that either all occurrences of the word sit and the words
including the phoneme pair /sI/ will be oversegmented, or phrases
like what’s it will be undersegmented.

The analysis provided above indicates that given a correctly
segmented corpus, one can come up with relatively accurate
segmentation based on the likelihood that a phoneme pair oc-
curs at word boundaries. Even though this is not immediately
useful to a learner without access to an already segmented cor-
pus, similar results may be obtained based on various measures
of predictability that do not require a segmented corpus. The
rest of this section provides similar analyses for four such mea-
sures.

3.2. Transitional probability

As a measure of predictability, most studies in the psycholin-
guistic literature use conditional probability—or transitional prob-
ability (TP), as it is known in this field (e.g., Saffran et al.,
1996a). Transitional probability of two phonemes l and r is
defined as

TP(l, r) = P(r|l) =
P(lr)
P(l)

≈
f requency(lr)
f requency(l)

(1)

Note that this is the same measure used by Saffran et al.
(1996a), except we use phonemes (and later sequences of phonemes)
instead of syllables.

Intuitively, if the phoneme pair lr is highly probable, it is
likely that l and r are part of a word for two reasons. First, words
repeat, and that makes parts of the words repeat as well. Sec-
ond, since words are not formed randomly, certain sequences
are more likely to be within words. These observations indicate
that the joint probability, P(lr), is a useful measure. However,

2The symbols used for phonemes in these examples and for the rest of this
paper follow the conventions used by Brent and Cartwright (1996) in transcrib-
ing the BR corpus.

if l is very frequent, the reason that lr is also frequent may often
be just by chance. For example, since the phoneme /i/ is rather
frequent in English, the sequence /iI/ occurs frequently even
though it rarely occurs within words. On the other hand, even
though the phoneme sequence /WI/ occurs exclusively within
words in the BR corpus, the probability estimate of P(/iI/) is
3.67 times P(/WI/). As Equation 1 suggests, transitional proba-
bility is high if joint probability is high. The division by P(l) in
the definition of TP, reduces this ‘chance effect’ to some extent.
For the same example, even though it is still higher, TP(/i/, /I/)
is only 1.71 times TP(/W/, /I/).

Figure 2a presents distribution of transitional probability
values. Unfortunately, there is no clear indication of a bimodal
distribution. If we plot histograms of the transitional probabil-
ities at boundaries and word-internal positions separately (Fig-
ure 2b–c), we can see that the distributions are somewhat differ-
ent. As expected, the probability mass for boundaries is found
more towards the lower end of the distribution. However, even
though the distribution of word-internal transitional probabili-
ties tends more towards the higher values, there is still a large
number of word-internal positions with low transitional proba-
bilities. Figure 2d presents the performance scores for a strat-
egy that segments at the locations where transitional probability
is lower than a threshold. The gray line in this graph presents
the performance of a segmentation strategy where boundaries
are inserted randomly with the constraint that the number of
boundaries inserted is the same as the number of boundaries
in the gold-standard segmentation. The random segmentation
strategy is explained in Section 5. Since precision and recall
scores of the random segmentation are the same, the F-score
is also the same. As a result they appear as a single line in
Figure 2d. It should be noted that even though the boundaries
are chosen at random, this particular segmentation strategy is a
rather informed baseline: it knows the number of boundaries.

This analysis indicates that even though it is not as im-
pressive as the measure suggested by Hockema (2006), a naive
segmentation strategy based on TP performs consistently better
than random. Crucially, this measure is more suitable for unsu-
pervised methods, since calculation of transitional probabilities
does not require the knowledge of word boundaries.

Using threshold values for unsupervised segmentation is
problematic because it requires a non-trivial way to set a thresh-
old value without knowing which value is a good option. This
problem and possible solutions will be discussed further in Sec-
tion 6 where an explicit unsupervised algorithm for segmen-
tation will be described. The analysis provided in Figure 2d
serves as an indication that this measure is useful, and allows
us to compare it with the other measures.

Using the transitional probability measure as presented here
has two other weaknesses. First, like the Pwb measure discussed
above, TP calculated on only two consecutive phonemes cannot
handle effects of larger sequences of phonemes or non-adjacent
phonemes. This is not an intrinsic property of the measure, and
use of larger phoneme context will be discussed in Section 3.6.
Second, as is also noted in Brent (1999), the conditional proba-
bility is asymmetric, P(l|r) is not the same as P(r|l), and P(l|r)
can also provide useful information for segmentation. The util-
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Figure 1: (a) The bi-modal histogram of Pwb(l, r) values. (b–c) Histograms of Pwb for all pairs that occur at word boundaries (b),
and word-internal positions (c). (d) Precision, recall and F-score values for against changing threshold.
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Figure 2: (a) Distribution of transitional probabilities. (b–c) Distribution of TP for boundaries and word-internal positions, respec-
tively. (d) Performance of algorithms that segment at locations where P(r|l) is lower than a threshold value. The solid gray line in
(d) represents the precision, recall and F-score of a pseudo-random segmentation method that inserts as many boundaries as in the
gold-standard segmentation.
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ity of the backward version of the measure will be discussed in
Section 3.7.

3.3. Pointwise mutual information
Pointwise (or specific) mutual information is an informa-

tion theoretic measure of association between two random vari-
ables. It is used in many natural language processing tasks,
and its use in segmentation, albeit rare, is not exceptional (e.g.,
Brent, 1999; Swingley, 2005). Pointwise mutual information
(MI) is defined as,3

MI(l, r) = log2
P(l, r)

P(l)P(r)
Neglecting the logarithm for now, in this definition, the joint

probability is divided by P(l) × P(r). As a result, the high asso-
ciation one would get by chance for highly frequent phonemes
is reduced just as in the case of TP. Unlike TP, the MI score is
affected by frequencies of both phonemes, and it is symmetri-
cal. The logarithm defines the unit of the measure. The binary
logarithm (base two) is commonly used in information theory,
and the resulting unit is called bit .

There has been some work on computational modeling of
segmentation which used MI (Brent, 1999; Swingley, 2005).
However, it is virtually unmentioned in the psycholinguistic lit-
erature.

Figure 3 presents the same analysis for MI that Figure 2
presents for the TP. The first difference to note is that the shape
of the graph is different from TP. This is because of the fact
that the probability values are estimated from frequencies of
phonemes and phoneme bigrams. Like many other frequency
distributions on linguistic units, distribution of probability val-
ues, such as TP, follows an exponential trend. On the other
hand, MI is the logarithm of a combination of probability val-
ues,4 and the logarithm function transforms the exponential-like
distribution into a roughly normal distribution. In addition, the
difference between the distributions of MI values for boundary
and non-boundary phoneme pairs seems to be slightly better
separated. This is also evident from the differences of perfor-
mance graphs in Figure 2d and Figure 3d. F-score for TP barely
exceeds 50%, while F-score for MI is well over 60% for some
threshold values. Before providing a more detailed comparison,
two more measures will be introduced.

3.4. Successor variety
Among the measures we consider in this paper, the succes-

sor variety (SV) (Harris, 1955) is probably the earliest measure
suggested for lexical segmentation. SV is defined as

SV(l) =
∑
r∈A

c(l, r)

3Mutual information is a related but different information theoretic measure.
However, in this paper, following the related work in computational models
of segmentation, the term mutual information and the abbreviation MI always
refers to pointwise mutual information between two consecutive sequences.

4It should be noted that the quantity P(l,r)
P(l)P(r) is not a probability. For posi-

tively correlated phonemes this value is greater than one, and MI score is posi-
tive.

where,

c(l, r) =

1 if substring lr occurs in the corpus
0 otherwise

and A is the list of phonemes (the alphabet).
Unlike the measures discussed previously, SV is only a func-

tion of the initial sequence, l. In Harris (1955), this sequence
is the sequence from the beginning of the utterance to the po-
sition to be evaluated. Figure 4 presents the successor values
for the utterance /hizkwIkR/ ‘he’s quicker’. The SV value after
the word he’s is the highest, and a reasonable algorithm based
on SV would segment this utterance correctly. However, Fig-
ure 4 also points to a problem. As the initial sequence gets
longer, the likelihood that it has never occurred before in the
input increases. As a result, even for child-directed speech,
which is characteristically repetitive, the SV values drop to 0
and become useless after a short initial sequence. A segmenta-
tion algorithm based on the SV values calculated as in Figure 4
is likely to fail to find boundaries after a few initial bound-
aries. There are ways to solve this problem, but even in its
simple form, SV has been popular in morphological segmenta-
tion literature (e.g., Hafer and Weiss, 1974; Déjean, 1998; Al-
Shalabi et al., 2005; Bordag, 2005; Goldsmith, 2006; Bordag,
2007; Demberg, 2007; Stein and Potthast, 2008). Morpholog-
ical segmentation is the task of segmenting words into mor-
phemes, it is useful in many natural language processing tasks
ranging from stemming to machine translation of agglutinative
languages. Since words are more repetitive than utterances, the
measure works better for morphological segmentation. How-
ever, the measure may benefit from some improvements in this
task as well (Çöltekin, 2010).

To adapt the SV measure to the segmentation of utterances
into lexical units, the discussion here is based on calculations
made using a varying size phoneme context. It is not very useful
to use SV as a segmentation measure calculated using a single-
phoneme context. For example, in BR corpus, SV after the
phoneme /W/ is 7 and SV after the phoneme /t/ is 46. A thresh-
old value between these numbers will always segment after the
phoneme /t/ and will never segment after /W/. However, to pro-
vide a comparison with the other measures, Figure 5 presents
an analysis of SV values where boundaries are classified us-
ing the SV value of a single preceding phoneme. Nevertheless,
Figure 5 indicates that, even in this form, the measure performs
similarly to others.

Some improvements to make SV-like measures more effec-
tive will be discussed in Section 3.6 and 3.7. The next sec-
tion finalizes the discussion of individual predictability mea-
sures with a similar but theoretically more attractive and better
studied measure.

3.5. Boundary entropy
Entropy (also called Shannon entropy when there is a need

to distinguish from entropy in thermodynamics) is the information-
theoretic measure of average uncertainty.5 Entropy is also known

5The inventor of the measure, Claude Shannon initially named the quantity
‘uncertainty’, but based on suggestion of John von Neumann, another pioneer

6



(a)

MI

D
en

si
ty

-6 -4 -2 0 2 4 6

0.
00

0.
10

0.
20

0.
30

(b)

MI

D
en

si
ty

-6 -4 -2 0 2 4 6

0.
0

0.
3

(c)

MI
D
en

si
ty

-6 -4 -2 0 2 4 6

0.
0

0.
3

-6 -4 -2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 (d)

threshold

precision
recall
f-score
random

Figure 3: (a) Distribution of MI. (b–c) Distribution of MI for boundaries and word-internal positions, respectively. (d) Performance
of algorithms that segment at locations where MI is lower than a threshold value. The solid gray line in (d) represents precision,
recall and F-score of a pseudo-random segmentation method that inserts as many boundaries as in the gold-standard segmentation.
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Figure 4: Successor variety values calculated from BR corpus for the utterance /he’s quicker/.
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as average surprisal , where surprisal (−logP(l)) is another in-
formation theoretic measure suggested by Shannon (1948). As
a result, entropy is one of the natural choices for measuring
(un)predictability. However, in psychologically motivated mod-
els of segmentation entropy is rarely mentioned. The use of en-
tropy is common in segmentation of written text, particularly
for languages like Chinese and Japanese, which are typical ex-
amples of languages that use writing systems without a word
boundary marker (e.g., Kempe, 1999; Huang and Powers, 2003;
Zhikov et al., 2010). As far as I can determine, Cohen et al.
(2007) is the only study of entropy-based segmentation moti-
vated by human (or human-like) performance.

The measure that will be used in this paper, boundary en-
tropy (H) defined as,6

H(l) = −
∑
r∈A

P(r|l) log2 (P (r|l)) (2)

where the sum ranges over all phonemes in the alphabet, A.
Given the sequence l, this formula gives a measure of how much
uncertainty still exist. As in MI, the binary (base 2) logarithm
makes the unit of the measure the bit . In more intuitive terms,
this quantity measures how many yes/no questions are neces-
sary on average to predict the next phoneme.

Even though it may not be clear at first sight, the entropy
measure has strong similarities with the SV. Both measure the
promiscuity of l. That is, if l combines with many different
phonemes, then both SV and entropy are high. The difference
is that entropy is sensitive to the token frequencies of the se-
quences, while SV only considers types. The difference may
be easier to grasp with an example: Assume we have a corpus
consisting of three words xa, xb and xc, and we are interested
in unpredictability after x. Obviously SV is three, and calculat-
ing entropy using Equation 2 we find that entropy is 1.56 bits.
If we had a corpus where xa occurred twice while the other
two words in our previous corpus occurred once, that would
not make any difference for the SV, it is still three. However,
since the knowledge that a is a more probable phoneme after x
reduces uncertainty, the new value for entropy (1.5 bits) reflects
this.

Like SV, calculating entropy values conditioned on a sin-
gle phoneme is not a good strategy. However, for the sake of
completeness, Figure 6 presents the analysis presented for other
measures for boundary entropy.

3.6. Effects of phoneme context
It is plausible to assume that humans use a predictability

strategy based on a larger phoneme context. Many studies in
psycholinguistics have shown that humans are sensitive to tran-
sitions between syllables, which are typically multi-phoneme

of the field, he named it entropy (Tribus and McIrvine, 1971).
6Boundary entropy defined here is similar to but different from a

well known entropy measure, conditional entropy, which is defined as
−

∑
r∈A P(r, l) log2 (P (r|l)). For example, Moberg et al. (2007) use conditional

entropy to model phonetic recognition in semi-communication. In preliminary
experiments conducted, the results obtained for both measures in segmentation
task were similar. The boundary entropy is adopted here since it was used in
previous research for segmentation (e.g., Hafer and Weiss, 1974).

units. Furthermore, at least at some level, adults seem to be sen-
sitive to expectations about longer and even discontinuous se-
quences of syllables (Dilley and McAuley, 2008). On the other
hand, almost all computational models of segmentation use pre-
dictability measures calculated only on consecutive phonemes.
For example, although Brent (1999) notes that calculating TP
and MI values on single-phoneme context does not reflect their
full utility, he nevertheless calculates these values on the ba-
sis of single-phoneme context. Here, I will extend the analysis
carried out in the previous subsections and discuss the effect of
calculating predictability measures on larger sequences of ini-
tial phonemes.

Figure 7 presents a set of graphs that visualize the effect
of increasing the length of preceding phoneme context, l to
two and three. The figure also provides a direct comparison
of the predictability measures discussed so far. In this figure,
the first three columns display the distribution of the measures
with changing phoneme context size between one and three.
The last column compares the performance of segmentation al-
gorithms using a single measure with varying phoneme con-
text size. Performance comparison is presented using preci-
sion/recall graphs. The horizontal axes of these graphs are pre-
cision values, and the vertical axes are recall values. Perfect
segmentation corresponds to upper right corner where both pre-
cision and recall are one. Otherwise, the closer the curve to the
upper left corner, the better the performance is. In other words,
a large area under curve is indication of a measure that performs
well over a range of threshold values. The first four rows, sepa-
rated by dotted lines, correspond to the measures: TP, MI, SV, H
respectively. Each row contains two sub-rows of histograms, a
top histogram depicts the distribution of the measure at bound-
ary locations and a bottom histogram depicts the distribution of
the measure at word-internal positions. The fifth row presents
precision/recall graphs comparing measures that use the same
context length.

Figure 7 demonstrates that increasing the context size in-
creases the separation between the distributions of boundary
and non-boundary locations. This is particularly visible for
context size two, and measures TP, SV and H. The separation
is not that clear for MI, and for context size of three. Although
there is a general trend of increase with the context size, the in-
crease of phoneme context from two to three does not seem to
have a dramatic effect on the performance.. This trend is visible
from the area under the precision/recall curves. Especially the
precision/recall curves at the bottom row of Figure 7 demon-
strate this clearly. The area under the curves increases in these
graphs from left to right (by increasing phoneme context).

Figure 7 shows that increasing the phoneme context for all
predictability measures affects how well they predict the word
boundaries, making the measure more useful. However, an in-
teresting question to ask is whether they give the same informa-
tion or not. For example, does calculating TP conditioned on
previous two phonemes give us all the information we get from
calculating it by conditioning on a single previous phoneme?
The question is important, because if different context sizes pro-
vide different information, than instead of using the higher con-
text size, one can use both to achieve a better performance com-
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Figure 6: (a) Distribution of entropy. (b–c) Distribution of entropy for boundaries and word-internal positions, respectively. (d)
Performance of algorithms that segment at locations where entropy is higher than a threshold value. The solid gray line in (d)
represents the precision, recall and F-score of a pseudo-random segmentation method that inserts as many boundaries as in the
gold-standard segmentation.

pared to the performance achieved by using the better of them.
Using multiple context sizes is appealing, also because the un-
predictability of word boundaries is due to their being depen-
dent on different linguistic units, such as morphemes, syllables
and phonemes. Changing the phoneme context size may cap-
ture regularities that exist because of different linguistic units.
The relation between the phoneme context size and the linguis-
tic units, of course, is not clear-cut. However, for example, it is
likely that a context size of two or three captures more about re-
lationships between syllables, while context size of one mostly
captures the relationships between single pairs of phonemes. If
we expect regularities at both levels, then we expect combina-
tion of different context sizes to be helpful.

Section 6 will investigate the effect of varying context size
on an unsupervised segmentation algorithm. Here, I will pro-
vide some evidence that different context sizes provide differ-
ent information. The evidence comes from the fact that if two
sources of information contribute independently to evidence in
favor of a certain conclusion, their correlation is expected to be
lower when we know the conclusion is correct. They correlate
in the first place because they measure the same quantity. How-
ever, given the conclusion, they should not be correlated if they
make errors independently. If they are not completely indepen-
dent, but still provide some independent information, we expect
the correlation to be lower when the conclusion is known. Re-
turning to the segmentation problem, if two context sizes, say
one and two, used with the same measure provide independent
information regarding word boundaries, we expect their corre-
lation given we know there is a boundary to be lower than their
correlation independent of the word boundaries.

Table 1 presents correlation coefficients for context sizes be-
tween one and three for all measures, for all possible boundary
positions, and only for word boundaries. With some variability
of the magnitude of the change depending on the measure, the
correlations at word boundaries are lower than the correlations
for the overall corpus. The results indeed indicate that the mea-
sures calculated using each phoneme-context size provide some
information about the word boundaries that the other context-
length options do not provide. This result (based on cases of
genuine boundaries) gives some indication that using statistics

with phoneme sequences of varying lengths may be useful for
the segmentation task. The use of information from multiple
measures calculated using varying context length will be inves-
tigated empirically in Section 6.

3.7. Predicting the past

Except MI, all three predictability measures discussed in
this section are asymmetric. They take an initial sequence of
phonemes, and measure the predictability of the next phoneme.
Moreover, the SV and entropy measures do that without actu-
ally seeing the next phoneme. It is clear that the reverse quan-
tities that measure the predictability of the previous phoneme
given the current phoneme or phoneme sequence provide some
additional information. Taking TP as an example, we know that
P(l|r) , P(r|l). If they are both useful for segmentation, using
both measures is, in principle, better than using only one of
them.

This section will show empirically that the reverse versions
of the measures discussed so far are also good measures for
segmentation. However, for a truly online-predictive system,
predicting past events based on current information may seem
odd. The justification of using reverse predictability measures
for segmentation comes from two sources. First, intuitively, it
seems that what we hear at a particular moment changes our
interpretation of past input, especially if the previous interpre-
tation is uncertain in some way. It is not unusual that when read-
ing some text or listening to someone, things we read or heard
start making sense only after we hear or read more. The sec-
ond, more concrete evidence is from developmental psycholin-
guistics. Pelucchi et al. (2009) showed that eight-month-old
infants (the same age as the infants in Saffran et al. (1996a)
study) were able to track statistical regularities that are only
possible to detect if they were sensitive to some reverse pre-
dictability measure between the successive syllables. Pelucchi
et al. (2009) carefully selected words from a natural but unfa-
miliar language with sequences of syllables that differed only in
their ‘backward’ transitional probabilities. Results were similar
to Saffran et al. (1996a), confirming that infants do use back-
ward predictability.
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1 2 3

1 1.00 0.58 0.40
2 1.00 0.74
3 1.00

(a) TP all

1 2 3

1 1.00 0.67 0.52
2 1.00 0.80
3 1.00

(b) MI all

1 2 3

1 1.00 0.63 0.44
2 1.00 0.74
3 1.00

(c) SV all

1 2 3

1 1.00 0.61 0.43
2 1.00 0.74
3 1.00

(d) H all

1 2 3

1 1.00 0.55 0.33
2 1.00 0.64
3 1.00

(e) TP boundaries

1 2 3

1 1.00 0.64 0.46
2 1.00 0.74
3 1.00

(f) MI Boundaries

1 2 3

1 1.00 0.35 0.27
2 1.00 0.58
3 1.00

(g) SV boundaries

1 2 3

1 1.00 0.38 0.20
2 1.00 0.56
3 1.00

(h) H boundaries

Table 1: Correlation coefficients for different phoneme context sizes for each measures. The top row gives the correlation coef-
ficients over all boundary locations. The bottom row presents the correlation coefficients calculated only at boundary positions.
The correlation coefficients are calculated after a log-transforming TP, SV and H, since log-transforming makes these distributions
roughly normal, and reduces the effect of extreme values.

Since the direction does not make sense for MI,7 only the re-
verse versions of TP, SV and H will be analyzed in this section.
Reverse measures will be indicated by a subscript ‘r’ here. The
reverse of TP and SV are sometimes abbreviated as BTP (back-
wards TP) and PV (for predecessor variety) in the literature. It
is easy to deduce the definitions of reverse measures from the
forward counterparts. The definitions are provided here for the
sake of completeness.

TPr(l, r) = P(l|r) =
P(lr)
P(r)

≈
f requency(lr)
f requency(r)

(3)

SVr(r) =
∑
l∈A

c(l, r) (4)

where,

c(l, r) =

1 if substring lr occurs in the corpus
0 otherwise

and A is the set of phonemes (the alphabet).

Hr(r) = −
∑
l∈A

P(l|r) log2P(l|r) (5)

As can be seen in Figure 8, the reverse measures seem to
achieve similar segmentation performances as their forward coun-
terparts. From their mathematical formulation, it is clear that
the forward and reverse versions of the measures are not equal
to each other. P(l|r) , P(r|l), and SVr and Hr calculations do
not even share the strings that they are calculated on with their
forward counterparts. Like the analysis for varying phoneme-
context length in Section 3.6, we can also check if correlation
between forward and reverse version of these measures provide
independent information. Since both are useful for detecting

7This is not strictly true if phoneme sequences of unequal length are used for
l and r. However, for ease of comparison this section only considers measures
calculated on single phonemes.

boundaries, they will naturally be correlated. However, if they
provide some independent information, we would expect the
correlation of the measures for the boundary locations to be
lower than the correlation for the complete corpus. Indeed, the
correlation coefficients for TP, SV and H and corresponding re-
verse measures on the BR corpus are 0.62, 0.15 and 0.21 re-
spectively. When calculated only on boundary locations, the
correlation coefficients, respectively, are 0.52, -0.01 and -0.06.
The question as how to combine the forward and backward in-
formation efficiently still remains, to which we will return in
Section 6.

3.8. Predictability measures: summary and discussion
So far, this paper has discussed four predictability mea-

sures: transitional probability, mutual information, successor
variety and entropy. The reason all these measures work is that
in an unsegmented speech stream, predictability inside the lexi-
cal units is high and predictability at the lexical unit boundaries
is low. Our analysis is based on two consecutive sequences of
phonemes l and r. In informal terms, TP measures how likely it
is to observe r after l is observed. If TP is high, we expect to be
within a unit, if TP is low it indicates a possible boundary. MI
measures whether l and r are highly associated or not. Again
if MI is high, we expect lr to be a word-internal sequence, oth-
erwise a boundary position. The other two measures, SV and
H, are measures of unpredictability (surprise). Hence, high val-
ues of SV and H indicate word boundaries. Another difference
of these measures is that they are functions of only l. Infor-
mally, they try to answer the question ‘how much do I (not)
know about r after observing l?’. The difference between these
two measures is in their sensitivity to the distribution of the se-
quences that follow l. Entropy is affected by the frequency of
these sequences, while SV is oblivious to it.

All measures discussed in this section so far have some
overlap in what they measure, but they are not the same. Most
psycholinguistic studies consider TP as the measure of pre-
dictability, but the results from these experimental studies are
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Figure 8: The precision/recall curves comparing the forward and reverse predictability measures: (a) TP and TPr, (b) SV and SVr,
(c) H and Hr.

TP MI SV H TPr SVr Hr

/bi-da/ 1.0 3.4 1.0 0.0 1.0 1.0 0.0
/ku-pa/ 0.5 2.4 2.0 1.0 0.5 2.0 1.0

Table 2: The predictability scores for syllable se-
quences /bi-da/ and /ku-pa/, given the sequence
/bidakupadotigolabubidakugolabupadoti/ is observed.
Note that for TP and MI lower values indicate word boundaries,
while for SV and H higher values indicate word boundaries.

compatible with all four. For example, given a sequence similar
to the stimuli presented to the infants in Saffran et al. (1996b)
and subsequent studies, Table 2 presents the values of all mea-
sures discussed so far for two syllable pairs. One of the syllable
pairs /bi-da/ is part of one of the artificial words /bidaku/ that
form this sequence, while the other /ku-pa/ is not. Table 2
shows that, as expected, all measures indicate a higher chance
for a word boundary between /bi-da/ compared to /ku-pa/. It
would be interesting to see experimental results that would be
compatible with only one of the measures but not the others.
However, it is a difficult task to design such an experiment.

The analysis in this section showed that all the measures
discussed here do something relevant to segmentation, all scor-
ing consistently better than a random (but non-trivial) baseline.
The performance analysis done by plotting precision/recall curves
or by plotting precision, recall and F-scores gives an indication
of the potential of a particular measure. The way they are used
in an actual learning algorithm in combination with other infor-
mation may result in different performance. Here, I will pro-
vide another way of looking at the similarities and differences
of these measures before switching to explicit models of seg-
mentation with concrete algorithms. Table 3 presents the corre-
lation coefficients for all (forward) measures calculated on the
BR corpus.

Table 3a confirms that all four measures are correlated. How-
ever, TP and MI are more strongly correlated with each other
compared to their correlations with SV and H. Similarly SV and
H are more strongly correlated with each other. Hence, the four
measures fall into two groups: TP and MI in one, and SV and H
in another. The correlations between the former and the latter

TP MI SV H

TP 1.00 0.77 -0.45 -0.40
MI 1.00 -0.51 -0.43
SV 1.00 0.76
H 1.00

(a) All phoneme pairs.

TP MI SV H

TP 1.00 0.77 -0.10 -0.13
MI 1.00 -0.13 -0.09
SV 1.00 0.82
H 1.00

(b) Boundaries.

Table 3: Correlation coefficients of predictability measures for
all phonemes in BR corpus (a) and for the phoneme pairs that
straddle a word boundary. The coefficients are calculated after
log-transforming the TP, SV and H values.

group of measures is negative, since the former two measure
predictability and the latter two measure unpredictability. Ta-
ble 3b gives the correlation coefficients of the measures where
a boundary is observed. This also reveals an interesting rela-
tionship between these groups of measures. Given boundaries,
the correlations between the groups drop substantially, while
correlations within the groups do not change much. This is an
indication that the measures within the same group are highly
dependent, while being relatively (conditionally) independent
of the measures in the other group. Similar to the analysis pro-
vided for varying phoneme context size in Section 3.6, this is
an indication that a learning algorithm that combines measures
from different groups will gain additional information, while an
algorithm that uses measures of the same sort will not.

This section provided an analysis of four measures of pre-
dictability (or unpredictability) for their use in lexical segmen-
tation. All of them measure something relevant to segmentation
as they all perform better than a random segmentation baseline.
The analysis also showed that the use of additional context im-
proves their performance, and it is useful to consider the reverse
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of the asymmetric measures. Further analysis showed the sim-
ilarities and differences between these measures. Before laying
out an unsupervised model in Section 6, we will first introduce
the data and evaluation method used in study in Section 4, and
two baseline models in Section 5.

4. Data and Evaluation

As with other models of the acquisition of natural languages,
we know rather little about our target, the human lexicon. How-
ever, everything else being equal, we would prefer the models
that perform well against a theoretical gold standard . Further-
more, we need a quantitative measure of evaluation for com-
paring performances of different models. We will introduce the
data used in this study followed by the definition of the evalua-
tion metrics.

4.1. Data
The corpus used for testing the models in this paper is the

corpus used by many recent studies. This corpus was collected
by Bernstein Ratner (1987) and processed by Brent and Cartwright
(1996). Following the convention in the literature the corpus
will be called the BR corpus.

The original orthographic transcription of the corpus was
converted to a phonemic transcription by Brent and Cartwright
(1996). All words are transcribed the same at every occurrence,
and onomatopoeia and interjections are removed. The BR cor-
pus consists of 9790 utterances, 33,387 words, and 95,809 phonemes.
A complete description of the corpus can be found in Brent
(1999).

The BR corpus has been used by many other computational
studies of segmentation. The corpus is also distributed with
the implementation of the models presented by Venkataraman
(2001) and Goldwater et al. (2009). The copies of the corpus in
these sources are identical, and the same copy was used in this
study without any modifications except for 12 boundary mis-
matches between segmentation of two words in the text version
and phonemic transcriptions. The phonemic transcriptions of
10 instances of the word /ebisi/ ‘ABC’ and two instances of
the word /Enim%/ ‘anymore’ have been modified to match the
text version. In all cases, this resulted in removing boundaries
in the instances of /e bi si/ and /Eni m%/.

4.2. Evaluation metrics
Two quantitative measures, precision and recall , originate

in the information retrieval literature and have become the stan-
dards measures of evaluation of computational simulations. Pre-
cision can be seen as a measure of exactness, and it is some-
times called accuracy in the cognitive science literature.8 Re-
call is a measure of completeness, and sometimes called so in
cognitive science literature. In informal terms, high precision
means that the model has found only correct items, but many

8Unfortunately, accuracy is ambiguous in the cognitive science literature.
Accuracy, as it is commonly used in many branches of science is different than
precision.

relevant items might have been missed. High recall, on the
other hand, means that the model has not missed anything, but it
may have suggested many irrelevant items. To have a balanced
indication, a derived measure, F1-score,9 is used, which is the
harmonic mean of precision and recall.

F1-score = 2 ×
precision × recall
precision + recall

As in recent studies of computational segmentation, in this
paper three different types of precision and recall values are
distinguished.

• Boundary precision (BP) and boundary recall (BR) cal-
culations consider the boundaries that match the gold stan-
dard segmentation as a true positive (TP), where the mis-
takenly proposed boundaries that do not exist in the gold
standard are considered false positives (FP) and the bound-
aries that are in gold standard, but not spotted by the
model, are considered false negatives (FN). Since utter-
ance boundaries are clearly marked, not to give credit to
the segmentation models for stating the obvious, the ut-
terance boundaries are not included in calculation of the
boundary scores. The F-score calculated using BP and
BR will be denoted BF.

• Token, or word, precision (WP) and token recall (WR)
scores require both boundaries of a word to be found to
count positively in TP. Likewise, the words that are sug-
gested by the model, but not in the gold standard, are FPs.
The words that the model could not segment correctly
are FNs. The token scores are naturally lower than the
boundary scores. Similarly the F-score calculated from
WP and WR will be denoted WF.

• Type, or lexicon, precision (LP), type recall (LR) and
type F-score (LF) are similar to token scores, however,
the comparisons are done over the word types the model
proposed and word types in the gold standard. These
scores are typically lower than the token scores. If a
model does a good job only at segmenting high-frequency
words (e.g., function words), type scores will be much
lower than the token scores, but if the model is good at
segmenting low frequency words as well, lexical scores
will be closer to the token scores. In case the model is
particularly bad at segmenting high-frequency words, but
good at segmenting low-frequency words, the type scores
can be higher than the token scores.

All segmentation models we are interested use unsupervised
learning methods in the sense that the algorithms do not have
access to information regarding real boundary locations. As a
result, it is common practice to present the results on a single
data set without training–test data separation.

9The subscript ‘1’ indicates that the measure gives equal weights for preci-
sion and recall. In its more generic original formulation, Fα-score gives higher
weight to recall for higher values of α, and lower values give higher weight to
precision (van Rijsbergen, 1979).
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Precision, recall and F-score are the standard measures that
are well understood and widely used in the literature. However,
it is often more insightful to study where the system fails. For
this reason, I will describe two error measures relevant to seg-
mentation, and report these measures along with the precision,
recall and F-score values for the models developed in this study.

A segmentation error can be due to one of two reasons.
First, the model may fail to detect a boundary, causing under-
segmentation. Second, the model may insert a boundary where
there is none, causing oversegmentation. The simple counts
of oversegmentation and undersegmentation errors change de-
pending on the size of the corpus. Hence, they are not compa-
rable across the simulations that run on different corpora. Fur-
thermore, in a typical corpora, there are more word-internal po-
sitions than boundaries. As a result, there are more chances
to make an oversegmentation error compared to an underseg-
mentation error. To overcome these difficulties we will use the
following error measures for oversegmentation and underseg-
mentation respectively:

Eo =
FP

FP + TN

Eu =
FN

FN + TP

where TP, FP, TN and FN are true positives, false positives, true
negatives, and false negatives respectively.

In plain words, Eo is the ratio of the false boundaries in-
serted by the model divided by the total number of word internal
positions in the corpus. Similarly, Eu is the ratio of boundaries
missed to the total number of boundaries. Similar to the defini-
tion of F-score, one could also define a combined, single error
measure, e.g., harmonic mean of Eo and Eu. Since reporting
both measures is more informative, and the combined measures
can be calculated from the two measures trivially, the combined
measure will not be reported in this paper.

The two error measures described above are related to pre-
cision and recall, but the quantities cannot be derived from each
other directly. Undersegmentation will reduce true positives
which, in turn, reduce both precision and recall. Oversegmen-
tation, on the other hand, will cause false positives to increase,
which will affect precision adversely, but will not have an ef-
fect on recall. As a result, good recall and bad precision are
a typical sign of oversegmentation, and bad precision and bad
recall are likely to be due to undersegmentation. So, the error
measures are related precision and recall to some extent, but it
will be useful to examine them directly as well.

A last note about all the performance scores discussed in
this section is that they take values between zero and one. How-
ever, to use the space available for significant digits more effi-
ciently, it is common to present values in percentages. In this
paper, all values in the tables are percentages, and the values in
the graphs are absolute scores (between zero and one).

5. Two reference models

Ideally, the performance of a model of the human cognitive
capacity should be evaluated based on its match with the human
performance. From this perspective we should prefer models
that segment as children do—including the incorrect segmenta-
tions of children. However, we currently lack the theoretical un-
derstanding, the data, and the tools to do this in a realistic way.
In any case, everything else being equal, we prefer models that
perform better at the task in question. This is reasonable, since
language learners eventually segment quite well. To be able to
evaluate our models, we need references that we can compare
our model’s performance to. A trivial way to show that a model
does something relevant to the task at hand is to compare it with
the model that makes random choices. A second method is to
compare the model with a state of the art alternative. This sec-
tion defines two such models that will serve as references for
the models that are developed in this study.

5.1. A random segmentation model

A trivial random model can be defined as one which makes
a random boundary decision for each possible boundary loca-
tion. For a boundary guessing algorithm, performing consis-
tently better than this model would already indicate that the al-
gorithm is finding something relevant for the solution of the
segmentation problem. However, it is customary (since Brent
and Cartwright, 1996) in segmentation literature to set the bar a
little bit higher. The typical random baseline used in computa-
tional segmentation literature inserts boundaries with the prob-
ability of boundaries in the actual corpus. In other words, it in-
serts as many boundaries as in the gold-standard segmentation,
however, at random locations. Throughout this paper, perfor-
mance scores obtained by this particular random model (RM)
will be presented as a baseline reference. Note that the RM
knows an important fact about the language that no other unsu-
pervised models of segmentation know: the average length of
words (estimated from the corpus studied). Although expected
error rates Eo and Eu and boundary scores are easy to calculate
for the RM, the direct calculation of the word and lexicon scores
is not trivial. Table 4 presents all performance scores discussed
in Section 4 for both random procedures.

Since the RM inserts boundaries at random, its performance
is varied. This variation is expected to be small for a large
enough corpus. However, for additional reassurance, the re-
sults reported for RM baseline are obtained by averaging of 50
runs over the relevant corpus.

5.2. A state-of-the-art reference model

Differing theoretical and practical motivations aside, most
successful computational models use a strategy based on lan-
guage models in computational linguistics. Albeit simple, a
typical example of this strategy is described by Equations 6
and 7. The model described here, which we will call LM (for
language-modeling based model), assign probabilities to possi-
ble segmentations as described in Equations 6 and 7.
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boundary word lexicon error

model P R F P R F P R F Eo Eu

random 27.4 50.0 35.4 8.6 13.6 10.5 7.4 38.1 12.4 50.0 50.0
RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0

Table 4: Performance scores and error rates of two random segmentation strategies. The scores in the first row are obtained by a
random algorithm that decides for boundaries with probability 0.5. The RM algorithm, as described, inserts boundaries with the
probability of observing boundaries in the reference BR corpus. The scores presented are average of 50 runs, standard deviations
for all scores were less than 0.01.

P(s) =

n∏
i=1

P(wi) (6)

P(w) =

(1 − α) f (w) if w is known
α
∏m

i=1 P(ai) if w is unknown
(7)

where wi is the ith word in the sequence (utterance or corpus),
ai is the ith sound in the word, and α is the only parameter of
the model. We turn to a description of how α functions.

For the incremental model defined here, a word is ‘known’,
if it was used in a previous segmentation. The model accepts
whole utterances as single words if the utterance does not con-
tain any known words.

Major improvements over the LM in the segmentation lit-
erature include use of larger word context, e.g., bigrams and
trigrams, to calculate the known probabilities (e.g. Goldwater
et al., 2009) or using more elaborate models of phonotactics
(Blanchard et al., 2010). However, these improvements bring
rather small increase in the performance (Table 5 compares per-
formances of some of the models in the literature with the LM).
The performance differences, when observed, are also likely to
be due to processing and search strategies as well as the way
the scores are calculated.

In this modeling setup, α can be interpreted as the weight
given to novel words. If α is large, the novel words get higher
probability. If α is small, known words are more preferable.
This probability can be estimated from type/token ratio (i.e.,
ratio of the number of novel words seen so far to the number
all words seen so far). Some models in the literature (e.g.,
Venkataraman, 2001) use this intuition to remove the free pa-
rameter α. Even though a parameter-free model is indeed more
desirable, the relationship between the value of α and segmen-
tation performance is not trivial. Nevertheless, for most values
of α, the performance of the LM is competitive with the recent
models in the literature, performing better at some scores (see
Çöltekin, 2011, chapter 5 for effects of varying α on segmenta-
tion performance). In this paper, all results reported for the LM
is with α set to 0.5 (although, one can achieve slightly better
performance by fine-tuning α).

The LM, as defined here, shares the basic structure of state-
of-the-art segmentation models, and it achieves competitive re-
sults with other segmentation models on the known benchmark
corpus. As a result, it serves as a good reference model.

As an added benefit of reimplementing the reference model,
Table 5 also reports the error scores described in Section 4.
Furthermore, it also enables us to investigate an incremental
model’s performance over time. Notice that the best perform-
ing model in Table 5 is the batch Bayesian model presented by
Goldwater et al. (2009). Besides the modeling practice used,
there are two more reasons why this model can perform better
than an incremental model. First, since it has access to com-
plete data, in principle, it can arrive at generalizations that are
consistent with the complete corpus. Second, the performance
of the incremental models in the same table includes the ini-
tial output of the learning process where errors are expected.
A batch model, on the other hand, outputs its results after the
learning process is completed. To demonstrate the performance
of the LM with the increasing input, Figure 9 presents the per-
formance scores plotted for each 500-utterance block during the
learning process. The first value of each score in this graph is
calculated using first 500 utterances, the second value is calcu-
lated on 501th utterance to 1000th, and each successive score
is calculated on the next 500-utterance block. Since the cor-
pus contains 9790 utterances, the last scores in this graphs are
calculated using the last 290 utterances. As expected, the per-
formance scores increase and errors drop as the learning pro-
gresses. It also seems that the learning is fast, since, after the
third or fourth block, the scores stabilize. At the end of the last
phase of the learning from this corpus, the performance scores
of the LM are substantially better than the performance scores
calculated on the output of the model during the complete learn-
ing process (BF=89.0%, WF=80.6%, LF=74.0%, Eo=4.4%,
Eu=11.1%). And in fact, these performance scores are also
higher than the performance scores reported in Goldwater et al.
(2009).

A possible objection to reporting the performance scores
for last 290 utterances is that the scores can be a result of id-
iosyncrasies of this particular small sample. Figure 9 shows
that despite slight fluctuations, the scores obtained for earlier
blocks of 500 utterances are also similar, and analysis provided
in Çöltekin (2011) provides further assurances that the results
are not due to chance effects.

The LM and the related models set a high standard of per-
formance to achieve. However, this modeling paractice has a
few shortcomings as a model of of human performance. The
main shortcoming, as argued in Section 1, is that this strategy
does not follow what we know about how humans go about
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model P R F P R F P R F Eo Eu

Brent (1999) 80.3 84.3 82.3 67.0 69.4 68.2 53.6 51.3 52.4 – –
Venkataraman (2001) 81.7 82.5 82.1 68.1 68.6 68.3 54.5 57.0 55.7 – –
Goldwater et al. (2009) 90.3 80.8 85.2 75.2 69.6 72.3 63.5 55.2 59.1 – –
Blanchard et al. (2010) 81.4 82.5 81.9 65.8 66.4 66.1 57.2 55.4 56.3 – –

LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 5: Performance scores and error rates of the baseline model LM (with α = 0.5) in comparison to the other models using
the similar strategy. The performance scores for other models are listed as reported in the related research. If there were multiple
models reported in a study, the model with the highest lexicon F-score is presented. All scores are obtained on the BR corpus.
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Figure 9: (a) Boundary, word token and word type F-scores and (b) oversegmentation and undersegmentation rates of the LM on
the BR corpus for successive blocks of 500 utterances each.
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solving the segmentation problem. The model that we will de-
velop next provides a better fit to humna performance by (1)
directly using a cue, predictability, known to be explited by in-
fants, (2) following a strictly incremental processing model, and
(3) providing an easy way to integrate other arbitrary cues.

6. A predictability based segmentation model

Existing predictability-based computational models of seg-
mentation typically use a single measure of predictability cal-
culated on single phoneme (and rarely syllable) contexts. How-
ever, the analysis of child-directed utterances in Section 3 indi-
cates that the four measures discussed (transitional probability,
mutual information, successor value and boundary entropy) are
useful indicators of word boundaries. This analysis has also
shown that even though these measures are similar in many
ways, they measure different aspects of the input. As a result,
the combination of these measures should help finding bound-
aries more than each measure alone. Another aspect discussed
during this analysis is the effect of the phoneme context, which
is also shown to affect the performance of the measures. Ac-
cording to the analysis, increasing the number of phonemes that
the measures are calculated on, and combining measures calcu-
lated on varying context size is expected to increase the perfor-
mance. Section 3 presented the effectiveness of each measure
using a simple threshold based algorithm, leaving the develop-
ment of an unsupervised algorithm that combines information
from multiple sources for later. This section aims to fulfill this
promise by developing an unsupervised algorithm for learning
lexical units from continuous speech.

Before describing the segmentation method developed in
this study, it should be stressed that the aim of this modeling
practice is twofold. First, we would like achieve good perfor-
mance using only predictability. Second, we would like to pro-
pose a model that is useful for understanding human-like seg-
mentation starting from no initial knowledge of the lexical units
of the target language. The use of predictability, a cue known
to be used by adults and children, takes a step in this direc-
tion. However, there are other aspects that motivate the model-
ing practice here. First, although we focus on predictability in
this study, we keep in mind that humans use multiple cues, and
a plausible model of segmentation should be able to make use
of the cues available to children. Second, an unsupervised and
strictly incremental model should follow what we know about
human segmentation well. The remainder of this section will
describe a model motivated by these concerns in a number of
incremental steps.

6.1. Peaks in unpredictability

Besides the non-trivial problem of choosing a threshold,
the segmentation algorithms based on thresholds do not ex-
ploit the relation between predictability and lexical units fully.
Deciding for a boundary when an unpredictability measure ex-
ceeds a threshold (or equivalently a predictability measure is
less than a threshold) is in line with the idea that predictability
is low between the lexical units. However, the thresholds do

not directly utilize the fact that predictability is high within the
units. In the following pages a completely unsupervised strat-
egy that explicitly attends to high predictability within the units
and low predictability between the units will be discussed. That
is, this strategy posits a boundary if an unpredictability measure
at the position is greater than the measure before and after the
position. Following the previous research (e.g., Harris, 1955;
Hafer and Weiss, 1974), I will call the strategy peak-based pre-
dictability strategy. However, it should be stressed that the term
peak is valid for only unpredictability measures, such as SV
and H. For predictability measures such as TP and MI, we look
for ‘troughs’ rather than peaks. As well as reflecting the in-
tuition ‘high predictability within the words, low predictability
between words’, the peak-based segmentation strategy is also
completely unsupervised: we do not need to tune any param-
eters, or use any labeled data where word boundaries are seg-
mented.

Figure 10a presents values for all the measures discussed in
this paper for each possible boundary position in the utterance
/IzD&t6kIti/ ‘is that a kitty’. The measures calculated for the
beginning and the end of the utterance are useful for discov-
ering peaks at neighboring positions, but, for a segmentation
algorithm, there is no point in trying to discover boundaries at
these locations. The values where the peak strategy suggests a
boundary for each measure are indicated with boldface. Fig-
ure 10b represents the values for MI and H graphically.

The measures presented in Figure 10 are calculated using
single phoneme contexts. That is, the sequence l and when re-
quired the sequence r are taken to be single phonemes. As a re-
sult, the performance of a peak based-segmentation algorithm
is bound to be adversely affected by the short context length.
Since SV, SVr, H, and Hr are functions of only l or only r, their
performance is particularly low. However, unlike the threshold
strategy which gives the same decision before or after a certain
phoneme, the peak strategy considers the surrounding values as
well. As a result, even with short context used for calculating
the measure, the segmentation decision is affected by a larger
surrounding context.

Even though the benefits of peak strategy for discovering
boundaries are clear, there are a few weaknesses to note here.
First, the peak-based boundary decision is rather conservative.
It requires both sides of the boundary candidate to have the right
kind of slope. Even a very sharp increase on one side will be
discarded unless it is followed by a fall. Considering that most
of the measures we discussed here are asymmetric, and their in-
dications are stronger in one direction than the other, the prob-
lem certainly deserves some attention. This problem becomes
more serious for single-phoneme words. Since the peak-based
algorithm never makes two boundary decisions in a row, it never
detects single-phoneme words. This problem will be revisited
in Section 6.4. A second problem that I will leave relatively
unexplored in this study is the fact that peaks do not take into
account how steep the slopes are. Intuitively, the sharper the
slope the higher the expected boundary indication. However,
the peak-based boundary strategy used here ignores this fact.

The peak-based segmentation method that is demonstrated
informally in Figure 10 can easily be implemented as an un-
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I z D & t 6 k I t i

TP 0.05 0.17 0.15 0.29 0.39 0.03 0.06 0.08 0.25 0.03 0.26
MI 0.19 2.80 2.20 3.26 2.59 0.16 0.81 0.90 1.94 -0.15 1.71
SV 38 19 43 10 30 46 36 43 19 46 42
H 4.39 3.16 4.06 2.50 2.90 4.31 3.96 4.07 3.16 4.31 4.03
TPr 0.09 0.29 0.11 0.31 0.18 0.07 0.05 0.06 0.16 0.06 0.09
SVr 42 34 38 40 41 40 40 42 41 33 39
Hr 4.47 3.57 3.80 3.37 3.87 3.50 4.06 4.47 3.87 4.12 4.41

(a) Example predictability scores

I z D & t 6 k I t i

4.0

2.0

0.0

(b) Graphical representation of MI and H values.

Figure 10: Predictability measures for example utterance /IzD&t6kIti/ ‘is that a kitty’. (a) presents all predictability measures
discussed in this paper calculated on the BR corpus using single-phoneme context. The values where unpredictability peaks are
marked with boldface. (b) represents a graphical representation of the MI (solid line) and the H (dashed line) values for the example
utterance. Dotted vertical lines mark expected boundary locations, and the triangles mark the positions where the measures indicate
a boundary according to peak criterion. Note that ‘troughs’ rather than peaks are indications boundaries for MI.

supervised segmentation algorithm for each measure alone. A
possible realization of the peak-based segmentation is described
in Algorithm 1. For all measures, the algorithm essentially
follows the same steps. The predictability measures for each
phoneme position in the utterance are calculated using the def-
initions given in Section 3. Unlike the values presented in Fig-
ure 10, the calculation of measures is not done using the com-
plete corpus. The frequencies of phonemes and phoneme pairs
are updated in an incremental fashion, using only the corpus
seen so far. The beginnings and ends of the utterances are
treated as special phonemes for the calculation of the measures,
and otherwise the utterance boundaries are not used as separate
cues.

Table 6 presents the results obtained on the BR corpus for
each predictability measure by Algorithm 1 in comparison to
the random baseline (RM) and the reference recognition algo-
rithm (LM) described in Section 5.

Results in Table 6 indicate clearly that the performance of
the peak-based prediction strategy as used here is far behind the
LM. However, the results also show that the algorithm performs
consistently better than random for all measures. As it will be
discussed next, this is all we need to know about these measures
for now.

Using peaks in unpredictability, Algorithm 1 exemplifies a
completely unsupervised method of segmentation. However,
two other problems raised in Section 3, combination of mea-
sures and making use of larger phoneme context, are still left

Algorithm 1: A peak-based segmentation algorithm.
Input: A sequence of utterances without word

boundaries
Output: The sequence of utterances with boundaries

1 foreach utterance u in the input do
2 foreach phoneme position i in u do
3 Update frequencies of phonemei, phonemei+1

and phoneme-pairi,i+1;
4 Pi ← predictability value between i and i + 1;
5 if Pi−2 > Pi−1 and Pi−1 < Pi then
6 insert a boundary between phonemei−1 and

phonemei;
7 end
8 end
9 output the segmented utterance ;

10 end
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measure P R F P R F P R F Eo Eu

TP 57.6 68.9 62.7 42.8 48.7 45.6 15.0 37.2 21.3 19.2 31.1
MI 66.3 74.1 70.0 52.2 56.6 54.3 18.5 42.5 25.8 14.3 25.9
SV 49.3 53.4 51.3 34.3 36.3 35.3 12.3 38.1 18.5 20.7 46.6
H 51.3 56.5 53.8 38.1 40.8 39.4 13.8 38.8 20.4 20.3 43.5
TPr 53.3 67.5 59.6 36.3 43.1 39.4 14.4 35.5 20.5 22.4 32.5
SVr 36.7 40.0 38.3 22.7 24.1 23.4 8.4 32.3 13.3 26.0 60.0
Hr 43.5 49.6 46.3 28.9 31.7 30.2 10.1 33.7 15.6 24.4 50.4

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 6: Boundary/word/lexicon precision/recall/F-score values and oversegmentation and undersegmentation errors for the peak-
based segmentation algorithm on the BR corpus. RM represents a pseudo-random segmentation that inserts a word boundary with
the probability of word boundaries in the gold-standard segmentation. The LM is the recognition-based reference model. Both
models are described in Section 5. The performance and error scores are described in Section 4.

unanswered. The next subsection will offer solutions to these
problems, starting with the former.

6.2. Combining multiple measures and varying phoneme con-
text

The discussion so far supports the expectation that using
multiple measures and varying context size may be beneficial
for segmentation performance. Using multiple measures is ex-
pected to be better than a single one, since, even though they
have a lot in common, each measure seems to be measuring
some aspects of the input that the others do not. It was also
shown in Section 3 that the phoneme context size makes a dif-
ference in the performance of all measures. Furthermore, com-
bining the measures calculated on varying phoneme context
size was also conjectured to be useful. Here, Algorithm 1 will
be extended to handle multiple sources of information coming
from multiple measures calculated on varying phoneme-context
length.

In its essence, the peak-based segmentation method pre-
sented in Algorithm 1 is a binary classifier. It classifies each
possible boundary position in an utterance as boundary or non-
boundary. Using different measures results in multiple classi-
fiers that do the same task. Viewing the problem as combining
a number of classifiers for achieving a better performance than
each individual classifier is a relatively well studied problem in
the machine learning literature, where the sets of classifiers are
known as ensembles or committees (e.g., Bishop, 2006, chap-
ter 14). For an effective combination, the classifiers should be
accurate and diverse (Hansen and Salamon, 1990). Accuracy
refers to the requirement that the individual classifiers perform
better than random. Diversity is taken as the requirement that,
to some extent, the classifiers are independent. Most combina-
tion methods in machine learning, such as bagging and boost-
ing, are typically suitable for supervised classifiers. However,
the field offers a set of practical and theoretical tools for the
problem at hand. Here a simple and well-known method, ma-
jority voting, will be used for combining the multiple measures
for segmentation in an unsupervised fashion.

As well as machine learning applications, majority voting
is also a common (and arguably effective) method in everyday
social and political life. As a result it has been well studied,
and known to work well especially if the accuracy and the di-
versity requirements are met. A theoretical justification of ma-
jority voting is given by well-known ‘Condorcet’s jury theo-
rem’ which dates back to late 18th century (Boland, 1989). Pro-
vided that each member’s decision is better than random, and
the votes are cast independently, the Condorcet’s jury theorem
states that the probability that a jury arrives at the correct deci-
sion by majority vote monotonically approaches to one as the
number of members is increased. Informally, this states that in
the long run the decision of a large number of less competent
individuals is better than the decision of a single individual with
the greatest competence. In practice, even though the votes are
almost never independent (especially in the social scene) ma-
jority voting is still an effective way of combining outcomes of
multiple classifiers (see Narasimhamurthy, 2005, for a recent
review and a discussion of the effectiveness of the method).

Majority voting provides a simple way to incorporate infor-
mation from multiple and (somewhat) independent measures
and the information provided by calculating these measures on
varying context size. Instead of calculating a single value for a
measure and for a given context size, we can calculate multiple
values for multiple measures with multiple context sizes. Each
measure–context size pair forms a voter. If there is a peak in
unpredictability according to this pair, we get a boundary vote.
If the majority of the voters vote for a boundary for a possible
segmentation position, we insert a boundary at that position.
Algorithm 2 describes this version of the segmentation method
using majority voting. For the forward measures, context size
defines the length of the sequence l, while for the reverse mea-
sures context size defines the sequence r. For all boundary po-
sitions, the number of votes Algorithm 2 considers is equal to
‘the maximum context size’ times ‘the number of measures’.
For example, assuming that we run the algorithm only for H
and Hr with the maximum context size of two, and the algo-
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Algorithm 2: The majority voting algorithm for multi-
ple measures and multiple context size. The function m()
at line 9 calculates the predictability score (hence, unpre-
dictability measures are multiplied by −1) according to
measure m on given sequences of phonemes. If the re-
quired n-gram is not available, the algorithm backs off to
the n-gram with the highest available rank.

Input: A sequence of utterances without word
boundaries and the maximum context size M

Output: The sequence of utterances with boundaries
1 foreach utterance u in the input do
2 for n = 1 . . . M + 1 do
3 update n-gram frequencies for the n-grams in u;
4 end
5 foreach phoneme position i in u do
6 votecount ← 0;
7 foreach measure m do
8 foreach context size n = 1 . . . M do
9 Pi ← m(n-gram ending at i-1, phonemei)

;
10 if Pi−2 > Pi−1 and Pi−1 < Pi then
11 votecount ← votecount + 1 ;
12 else
13 votecount ← votecount − 1 ;
14 end
15 end
16 end
17 if votecount > 0 then
18 insert a boundary between phonemei−1 and

phonemei;
19 end
20 end
21 output the segmented utterance ;
22 end

rithm is about to decide if there is a boundary after ki in akitty,
it checks each condition

1. H(i) > H(k) and H(i) > H(t)
2. Hr(i) > Hr(k) and Hr(i) > Hr(t)
3. H(ki) > H(ak) and H(ki) > H(it)
4. Hr(ki) > Hr(ak) and Hr(ki) > Hr(it)

Then, the algorithm increases the vote count by one for each
condition met. If the vote count is greater than half of the votes
(two in this case) it inserts a boundary.

The results of combining all measures with varying context
size using majority voting on the BR corpus are presented in
Table 7. Each row in the table lists the common segmentation
scores we use in this paper for context size between one and
eight. Maximum context size one means that the measures are
calculated with single phoneme context. As a result, the scores
in the first line of Table 7 are obtained by the majority decision
of seven voters (TP, MI, SV, H, TPr, SVr and Hr, all calculated
on single phoneme context), while the scores in line two are ob-
tained by the majority decision of 14 voters, each representing
context sizes one or two for all seven measures.

The results certainly improve compared to single-measure
segmentation results presented in Table 6. Some of the scores
also exceed the performance of the LM, the state-of-the-art ref-
erence model. The performance of the majority voting algo-
rithm is good at spotting boundaries and words. The boundary
and word precision scores are consistently better than the cor-
responding recall scores. When increasing maximum context
parameter, both precision and recall increase at first. This is
expected since we incorporate information from higher level
n-gram frequencies that are good predictors of the boundaries.
After context length three, the recall starts to go down, while
precision still gets better with the increased parameter value.
Since the increased number of voters requires a higher con-
sensus, it is natural that the precision is high. However, the
higher number of voters also means that the disagreement on
real boundaries will also increase. As a result recall drops. With
the decreased boundary recall, the word and lexicon precision
start going down as well. One of the reasons for this may be
because higher level n-grams suffer from data sparseness, so
that the voters that use higher level n-grams start to become
less competent. As a result, increasing the number of voters
that calculate the results on higher level n-grams violates the
requirement of the successful combination that the individual
voters need to perform better than random.

Despite being precise at spotting boundaries (and as a re-
sult words) the majority voting algorithm is still bad at lexical
precision. The low lexical scores mostly stem from two causes.
The first reason has to with the fact that this algorithm does not
build and use an explicit lexicon. As a result it does not get any
reward for reusing the previously discovered lexical items. Sec-
ond, the algorithm starts with no prior knowledge at all, and it
takes time to build useful n-gram statistics. Until a reasonable
amount of statistics is collected, many wrong word-types are
inserted into the lexicon, and this affects the lexical precision
adversely.
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boundary word lexicon error

max. context P R F P R F P R F Eo Eu

1 73.6 68.2 70.8 57.3 54.3 55.8 16.7 49.5 24.9 9.2 31.8
2 86.6 72.9 79.2 70.7 62.8 66.6 22.0 58.6 32.0 4.3 27.1
3 89.7 77.5 83.1 75.6 68.3 71.8 27.7 63.3 38.6 3.4 22.5
4 93.4 73.6 82.3 76.4 65.0 70.2 26.1 63.1 36.9 2.0 26.4
5 94.1 72.2 81.7 76.3 63.7 69.4 26.2 64.0 37.2 1.7 27.8
6 94.9 66.1 77.9 73.4 57.7 64.6 22.8 61.7 33.3 1.4 33.9
7 95.1 63.5 76.2 72.4 55.5 62.8 21.4 60.1 31.5 1.2 36.5
8 95.4 58.7 72.7 70.3 51.2 59.2 19.6 58.3 29.3 1.1 41.3

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 7: Performance and error scores for peak-based majority voting algorithm with varying context. Two reference models, the
RM and LM are defined in Section 5. The performance and error scores are described in Section 4.

6.3. Weighing the competence of the voters
The majority voting algorithm presented in Section 6.2 treats

all the voters equally. Even though this may be a virtue in the
social and political context, it is a shortcoming for a learner. A
better learner is expected to identify the value of the information
provided by each source, and increase the weight of the sources
that perform well consistently. Weighted majority voting is an
extension of the majority voting algorithm which weighs the
vote of each source according to their competence (Littlestone
and Warmuth, 1994).

For the particular instantiation of the weighted majority vot-
ing algorithm used here, we will first assign a weight, wi, in
range [0, 1] to each voter. Second, instead of increasing or de-
creasing a vote count by one, we will increase or decrease the
vote count by wi. To do that we replace line 11 in Algorithm 2
with ‘votecount ← votecount + wi’ and replace line 13 with
‘votecount ← votecount − wi’. The rest of the segmentation
algorithm is essentially the same. Note that if all weights are
set to one, the algorithms are equivalent.

So far we have described how to adjust the majority voting
algorithm to be able to weigh its sources of information. How-
ever, we also need a way of setting the weights, so that they
reflect the usefulness of the particular voter’s decision. As with
many examples in the literature, we will set all the weights to
one at the beginning. After each decision, we will update the
weights. In supervised models, where exact error is known, one
can adjust weights in a way to reduce the error. Here we do not
know boundary locations, and we cannot be certain about which
decisions are correct. However, we will take the (weighted)
majority decision as the correct decision. That is, if the voter
agrees with the majority decision, we count this as a correct
decision, and if it disagrees we will assume that it is an error.
To finalize our adjustments to Algorithm 2, we keep count of
errors made by each voter i, ei, which is incremented when the
voter does not agree with the majority decision. After every
boundary decision, first the error counts are updated for each
voter. Then, the weights wi, of all voters are updated using,

wi ← 2
(
0.5 −

ei

N

)

where N is the number of boundary decisions so far, including
the current one.

This update rule sets the weight of a voter that is half the
time wrong (a voter that votes at random) to zero, eliminating
the incompetent voters. If the votes of a voter are in accordance
with the most of the voters almost all the time, the weight stays
close to one.

The performance scores of the weighted majority algorithm
for the maximum phoneme context parameter between one to
eight on the BR corpus are presented in Table 8. In general
weighted majority voting algorithm performs slightly better than
majority voting algorithm. The performance of the algorithm
can be improved by further extensions, for example, by using
a better method for setting weights, or using modified versions
of peak-based boundary detection. However, the purpose of the
current work is not only to find a well-performing performing
segmentation algorithm, but also proposing an explicit model
of segmentation that can combine information from multiple
sources. The weighted version of the algorithm is more attrac-
tive in this regard. First, it makes it easy to include possibly
irrelevant sources of information. If they are irrelevant, they
will be left out by the weight update procedure reducing their
weights to zero. Second, it may explain certain shifts during
learning. For example, a weak cue that is not very useful before
enough input is seen may become stronger in time, as its predic-
tions become more effective with the additional information. In
other words, a weak source of information may be bootstrapped
by other sources if the information it collects is relevant in the
long run.

6.4. Two sides of a peak

Some of the performance scores of both the weighted and
not-weighted version of the models described in this section
exceeds the performance of the LM, but in general the model
described so far is slightly behind the LM in performance com-
parison. This is related to a problem mentioned earlier. Sec-
tion 6.1 pointed out a particular weakness of the peak criterion
defined here. It is too conservative, and in some cases this is a

21



boundary word lexicon error

max. context P R F P R F P R F Eo Eu

1 72.1 71.7 71.9 57.0 56.8 56.9 17.4 48.3 25.6 10.5 28.3
2 83.7 77.6 80.5 70.3 66.6 68.4 25.1 59.4 35.3 5.7 22.4
3 89.3 78.2 83.4 75.6 68.9 72.1 28.0 62.8 38.8 3.5 21.8
4 92.7 76.0 83.5 77.2 67.4 72.0 28.4 65.1 39.6 2.3 24.0
5 94.1 71.4 81.2 75.8 62.8 68.7 26.3 64.8 37.4 1.7 28.6
6 94.7 66.8 78.3 73.9 58.5 65.3 23.5 63.2 34.3 1.4 33.2
7 95.1 62.1 75.2 71.9 54.3 61.8 21.1 60.6 31.3 1.2 37.9
8 95.1 58.5 72.4 70.2 51.1 59.1 19.6 58.5 29.4 1.1 41.5

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 8: Performance and error scores for the peak-based weighted majority voting algorithm with varying context. Two reference
models, the RM and LM are defined in Section 5.

boundary word lexicon error

max. context P R F P R F P R F Eo Eu

1 52.5 89.2 66.1 34.2 51.2 41.0 24.9 30.3 27.3 30.5 10.8
2 63.7 92.5 75.4 49.6 65.4 56.4 34.3 39.7 36.8 19.9 7.5
3 72.4 92.7 81.3 60.5 72.5 66.0 36.8 50.8 42.7 13.3 7.3
4 79.8 90.3 84.7 68.5 74.9 71.5 38.1 60.6 46.8 8.7 9.7
5 84.0 85.6 84.8 71.8 72.8 72.3 34.8 65.9 45.5 6.2 14.4
6 86.2 80.2 83.1 72.5 69.0 70.7 30.2 66.0 41.4 4.8 19.8
7 87.5 75.1 80.9 72.2 64.9 68.4 26.2 63.6 37.1 4.0 24.9
8 88.1 70.8 78.5 71.2 61.3 65.9 23.8 61.7 34.3 3.6 29.2

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 9: Performance and error scores for the peak-based weighted majority voting algorithm that incorporates the information
from local changes at the both sides of the boundary candidate. Two reference models, the RM and LM are defined in Section 5.
The performance and error scores are defined in Section 4.
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serious problem. For example, since there cannot be two peaks
in a row, it can never find single-phoneme words. This is also
evident in the performance scores presented so far, all combina-
tions presented have high precision (and low oversegmentation
error), but low recall (and high undersegmentation error).

The solution to this problem has been delayed up to this
point since the combination methods described in previous sec-
tions provide a natural approach to solve it. We can interpret the
increase or decrease of uncertainty on either side of a bound-
ary separately. The majority voting algorithm can easily in-
corporate these additional voters’ decisions. The weighted ma-
jority voting provides an additional reassurance by eliminating
useless votes. Furthermore, since most of the measures dis-
cussed here are asymmetric, their indication in one direction is
stronger. For example, one expects TP to give better indications
while processing the stream left-to-right, so on the left side of
a boundary candidate. On the contrary, TPr should provide a
better indication on the right side. Weighted combination will
automatically discover the value of these decisions.

As a result, the last improvement to the boundary discovery
algorithm discussed here is to incorporate the local changes on
the two different sides of a boundary candidate as separate vot-
ers in the weighted majority voting algorithm. Table 9 presents
these results for varying maximum context size parameter. As
expected, undersegmentation errors get lower, but this comes
with the cost of higher oversegmentation errors.

In comparison to previously presented results the benefit of
this approach may not be immediately clear. It seems the ap-
proach trades the oversegmentation for reduced undersegmen-
tation. However, as well as in the increased lexical performance
seen in Table 9, the benefit of this more eager segmentation ap-
proach is particularly useful when more varied cues are added.

Following the evaluation strategy described in Section 4,
Figure 11 presents change of F-score and error values for the
final model with maximum context size set to 3 for each 500
utterance block of the BR corpus. For the last 290 utterances,
the performance scores are significantly better than the scores
calculated for the complete corpus (BF=83.8%, WF=69.8%,
LF=60.2%, Eo=13.7%, Eu=3.4%).

7. Summary and discussion

This paper investigated use of predictability for learning
lexical units from unsegmented speech input. Consecutive phonemes
or syllables in natural speech tend to relate to each other in a
way that is useful for predicting which sequences are part of
lexical units (e.g., words) and which sequences straddle lexical
unit boundaries. This tendency leads to a computational strat-
egy that is useful for the segmentation of any natural language.
We also know that this strategy is used by children early on in
this task. Even though we know that adults and children use
multiple cues to segment speech into lexical units, the fact that
predictability is a language-general cue makes it a good can-
didate for one of the cues to bootstrap the lexical acquisition
process. This study contributes to understanding of this partic-
ular cue for segmentation by corpus analysis and computational
simulations.

First, we examined a set of quantitative measures used for
characterizing predictability: transitional probabilities, succes-
sor variety, mutual information and entropy. The findings indi-
cate that these measures are all relevant measures of predictabil-
ity for segmentation task. Furthermore, they are similar in what
they measure, but they are not equivalent. In other words, there
is no single best measure that can replace all others, and their
combination, in principle, leads to better segmentation. Sec-
ond, the analysis also indicates that a more careful, but also
more realistic, use of predictability can improve the segmenta-
tion performance as well. Previous uses of the predictability cue
in the literature tend to use segmentation in a rather simplified
settings which do not exploit its full utility. Particularly, using
multiple phoneme context sizes for the calculation of segmen-
tation is useful. This also corresponds to the fact that different
phoneme lengths should (roughly) correspond to different lin-
guistic units. Hence, using multiple context sizes at once allows
one to arrive at generalizations at multiple levels.

After a careful analysis of these measures and their com-
bination, we described a completely unsupervised method for
combining multiple measures calculated on varying phoneme-
context size. Arguably, we could do with a single measure of
predictability. The reason for the effort spent for combination
of these measures here is twofold. First, as the analysis in Sec-
tion 3 showed, none of the measures alone performs as well
as the combination of multiple measures. With the interest of
getting the most out of the predictability cue, it makes sense
to combine them. In this way, we can also take a step towards
finding the full potential of the cue in segmentation task. We
do not know to what extent the human cognitive system uti-
lizes predictability. However, the findings in this study suggests
that predictability-based segmentation strategy has a higher po-
tential than is typically assumed in the literature, for exam-
ple by characterizing it by transitional probabilities. Second,
the method developed here for combining multiple measures
provides a framework for combining more diverse cues, such
as phonotactics, existing lexical knowledge or stress patterns,
which go beyond predictability.

The segmentation algorithm developed here is completely
unsupervised: it takes a set of unsegmented utterances, and
returns a segmentation for each utterance based only on pre-
dictability statistics. However, the model has a free parameter,
maximum context size. In this paper, we did not attempt to
fix a certain value for this parameter, but reported results us-
ing a range of parameter values. As we increase the parameter
value, we typically get an improvement at first, followed by a
decrease in performance. The computational reason behind this
decrease in performance with increased context size has to do
with sparseness of the data when we calculate relevant statistics
on longer sequences of strings. On the other hand, the value of
the parameter can also be linked to working memory and pro-
cessing limitations. As we increase the value of this parameter,
the number of ‘chunks’ to remember increases, and as a re-
sult one expects realistic settings of this parameter to be related
to what we know about limitations of human processing (See
Miller, 1956, for a relevant discussion).

We compare the results of the model with a non-trivial ran-
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Figure 11: (a) Boundary, word token and word type F-scores and (b) oversegmentation and undersegmentation rates of the
predictability-based segmentation model with maximum context size of 3 on the BR corpus for successive blocks of 500 utter-
ances each.

dom baseline, and a model similar to many successful state-
of-the-art models of segmentation. It is clear that the method
developed here is relevant to segmentation: it performs sub-
stantially better than the baseline segmentation method. When
compared with the performance of the state-of-the-art LM strat-
egy, on the other hand, the performance of the predictability-
based segmentation model is not that impressive. However, it is
not too far behind either. It performs comparably for a range
of parameter values, and even outperforms the LM in some
performance scores, except lexical precision. The low lexical-
precision scores are due to the fact that this model does not
make use of a lexicon. As a result, it does not give any prefer-
ence to the boundary decisions that reuse lexical units.

The performance degradation with respect to LM and simi-
lar models is also likely to be related to the greedy search strat-
egy used in the proposed model. The model does not search
all possible segmentations of an utterance as most successful
segmentation algorithms do. This aspect of the model is in line
with what we expect from human processing. It is hardly plau-
sible that humans consider all possible segmentation of an ut-
terance before finding the lexical units in the utterance. Human
processing is known to be incremental and predictive. In this
respect, the model presented in this paper fits human process-
ing better. We expect that the possible performance deficiency
caused by the greedy nature of the algorithm can be compen-
sated for when other cues are used.

The comparison of the predictability model with the LM
provides an indirect comparison with the state-of-the art mod-
els presented in Table 5. In summary, the predictability-based
segmentation model described here performs comparably to the
other successful models in the literature. Because of the use
of different corpora and different sets of evaluation methods,
it is difficult to compare the performance scores with other re-
lated models that utilize predictability. Nevertheless, the per-
formance scores reported in three earlier studies are presented
here to aid a rough comparison. Graphs presented in in Brent
(1999) indicates about 50%–60% WP and WR and 20%–30%

LP for his baseline model utilizing mutual information on the
BR corpus. Cohen et al. (2007) report 76% BP, and 75% BR on
George Orwell’s 1984. Christiansen et al. (1998) report 37%
WP and 40% WR with an SRN using phonotactics and utter-
ance boundary cues on another child-directed speech corpus
Korman (1984). Although these results are not directly com-
parable, it is clear that the performance scores presented in Ta-
ble 9 are the best scores presented to date for models using only
the predictability cue.

We want our models to achieve better segmentation scores,
as humans eventually segment well. However, for a model of
human cognition, high performance scores are not the only de-
sirable properties. We would also like our models to match
what we know about human cognition well, and provide fur-
ther insight into the process being modeled. In this respect, the
model proposed here has at least four desirable properties. First,
the model is completely unsupervised, as it does not depend on
any prior knowledge of boundaries. This aspect is shared by
almost all other models discussed in this paper. Second, the
model presented in this paper is strictly incremental. Most suc-
cessful models in the literature are either batch (they process a
large set of utterances at once, possibly multiple times), or re-
quire complete utterances to be processed before deciding any
boundaries. Third, the model presented here takes strategies
suggested by psycholinguistic research, rather than mathemati-
cally or computationally attractive strategies. We use a cue, pre-
dictability, known to be used both by adults and children. Fur-
thermore, following the findings that humans use multiple cues
for segmentation, the framework presented here is designed to
deal with combination of arbitrary cues in mind. Finally, the
model here is built on explicit representations, as opposed to a
black-box model of input and output. As a result, model’s be-
havior can easily be traced back to modeling assumptions, and
various modeling assumptions can be modified systematically
and tested.10

10This not to say that contrary modeling practices are completely irrelevant
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This paper presented a cognitively-motivated model of seg-
mentation. It demonstrates that we can get better segmentation
performance by only using predictability statistics compared to
the uses of the method in previous literature. Even though our
focus in this study has been predictability, the modeling frame-
work described here use an incremental and predictive segmen-
tation strategy, and provides a simple mechanism of combining
multiple sources of information. The results of this study also
raise a number of questions for future research, two of which
are particularly interesting. First, integration of other, more
varied cues to the framework described here can shed a light
on the combination and interaction of different cues. As well
as an expected gain in segmentation performance, we expect
such a study to also show the relative importance of various
cues in certain settings of stages of acquisition. Second, alterna-
tive combination methods may provide better results and more
principled modeling practices. The weighted majority voting
method used here is a simple method which has been proven
to be useful. However, other combination techniques such as
Bayesian cue combination methods used in other areas of cog-
nition may allow us to give better answer to the questions re-
garding both acquisition and processing. As a result, studying
other combination methods points to another direction for fu-
ture research.
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