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Çağrı Çöltekin
geboren op 28 februari 1972

Çıldır, Turkije



Promotor: Prof. dr. ir. J. Nerbonne

Beoordelingscommissie: Prof. dr. A. van den Bosch
Prof. dr. P. Hendriks
Prof. dr. P. Monaghan

ISBN (electronic version): 978-90-367-5259-6
ISBN (print version): 978-90-367-5232-9



Preface

I started my PhD project with a more ambitious goal than what might have been
achieved in this dissertation. I wanted to touch most issues of language acquisition,
developing computational models for a wider range of phenomena. In particular, I
wanted to focus on models of learning linguistic ‘structure’, as it is typically observed
in morphology and syntax. As a result, segmentation was one of the annoying tasks that
I could not easily step over because I was also interested in morphology. So, I decided
to write a chapter on segmentation. Despite the fact that segmentation is considered
relatively easy (in comparison to learning syntax, for example) by many people, and
it is studied relatively well, every step I took for modeling this task revealed another
interesting problem I could not just gloss over. At the end, the initial ‘chapter’ became
the dissertation you have in front of you. I believe I have a far better understanding of
the problem now, but I also have many more questions than what I started with.

The structure of the project, and my wanderings in the landscape of language
acquisition did not allow me to work with many other people. As a result, this
dissertation has been completed in a more independent setting than most other PhD
dissertations. Nevertheless, this thesis benefited from my interactions with others. I
will try to acknowledge the direct or indirect help I had during this work, but it is likely
that I will fail to mention all. I apologize in advance to anyone whom I might have
unintentionally left out.

First of all, my sincere thanks goes to my supervisor John Nerbonne. Here, I
do not use the word sincere for stylistic reasons. All PhD students acknowledge the
supervisor(s), but if you think they all mean it, you probably have not talked to many
of them. Besides the valuable comments on the content of my work, I got the attention
and encouragement I needed, when I needed it. He patiently read all my early drafts on
short notice, even correcting my never-ending English mistakes.

I would also like to thank Antal van den Bosch, Petra Hendriks and Padraic
Monaghan for agreeing to read and evaluate my thesis. Their comments and criticisms
improved the final draft, and made me look at the issues discussed in the thesis from
different perspectives. In earlier stages of my PhD project, I also received valuable
comments and criticisms from Kees de Bot and Tamás Biró. Although focus of the
project changed substantially, the benefit of their comments remain. Later, regular
discussions with fellow PhD students Barbara Plank, Dörte Hessler and Peter Nabende
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kept me on track, and I particularly got valuable comments from Barbara on some of
the content presented here. Barbara and Dörte also get additional thanks for agreeing
to be my paranimphs during the defense.

A substantial part of completing a PhD requires writing. Writing at a reasonable
academic level is a difficult task, writing in a foreign language is even more difficult and
writing in a language in which you barely understand the basics is almost impossible.
First, thanks to Daniël de Kok for helping me with the impossible, and translating the
summary to Dutch. Second, I shamelessly used some people close to me for proof
reading, on short notice, without much display of appreciation. My many mistakes
in earlier drafts of this dissertation were eliminated by the help of Joanna Krawczyk-
Çöltekin, Arzu Çöltekin, Barbara Plank and Asena and Giray Devlet. I am grateful for
their help, as well as their friendship.

My interest in language and language acquisition that lead to this rather late PhD
goes back to my undergraduate years in Middle East Technical University. I am likely
to omit many people here because of many years past since. However, the help I got
and things that I learned from Cem Bozşahin and Deniz Zeyrek are difficult to forget. I
am particularly grateful to Cem Bozşahin for his encouragement and his patience in
supervising my many MSc thesis attempts.

This thesis also owes a lot to people that I cannot all name here. I would like to
thank to those who share their data, their code, and their wisdom. This thesis would not
be possible without many freely available sources of information, tools and data that we
take for granted nowadays—just to name a few: GNU utilities, R, LATEX, CHILDES.

There is more to life than research, and you realize it more if you move to a new
city. Many people made the life in Groningen more pleasant during my PhD time
here. First, I feel fortunate to be in Alfa-informatica. Besides my colleagues in the
department, people of foreign guest club and international service desk of the university
made my life more pleasant and less painful. I am reluctant to name people individually
because of certainty of omissions. Nevertheless here is an incomplete list of people that
I feel lucky to have met during this time, sorted randomly: Ellen and John Nerbonne,
Kostadin Cholakov, Laura Fahnenbruck, Dörte Hessler, Ildikó Berzlánovich, Gisi
Cannizzaro, Tim Van de Cruys, Daniël de Kok, Martijn Wieling, Jelena Prokić, Aysa
Arylova, Barbara Plank, Martin Meraner, Gideon Kotzé, Zhenya Markovskaya, Radek
Šimík, Jörg Tiedemann, Tal Caspi, Jelle Wouda.

My parents, Hoşnaz and Selçuk Çöltekin, have always been supportive, but also
encouraged my curiosity from the very start. My interest in linguistics likely goes
back to a description of Turkish morphology among my father’s notes. I still pursue
the same fascination I felt when I realized there was a neat explanation to something
I knew intuitively. My sister, Arzu, has always been there for me, not only as a
supportive family member, but I also benefited a lot from our discussions about my
work, sometimes making me feel that she should have been doing what I do. Lastly,
many thanks to two people who suffered most from my work on the thesis by being
closest to me, Aska and Franek, for their help, support and patience.
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1 Introduction

A witty saying proves nothing.

Voltaire

The aim of language acquisition research is to understand how children learn
languages spoken in their environment. This study contributes to this purpose by
investigating one of the first steps of the language acquisition process, the discovery of
words in the speech stream directed to children, by means of computational simulations.

We take words for granted, we identify them effortlessly when listening to others
speaking a language we understand, and we use them to construct utterances possibly
never uttered before. We learn the sound forms of the words, associate them with
meanings, discover how to use them appropriately in company of other words, and in
presence of different people. Despite apparent ease with which we process and learn
words, learning a proper set of words, a lexicon, to effectively communicate with our
environment is a challenging task. The challenge starts with identifying these words in
a continuous speech stream. Unlike written text where we typically put white spaces
between the words, the speech signal does not contain analogous reliable markers for
word boundaries.

A competent language user is aided, to some extent, by his/her knowledge of
words to extract them from a continuous stream: itisannoyingbutyouprobablycanfigure-
outthewordsinthissequence. However, at the beginning of their journey to becoming
competent speakers, children do not know the words in the language they are acquir-
ing. As a result they cannot make use of words. If this is not convincing, try to
locate the word boundaries in this sentence: eğertürkçebilmiyorsanızbudizidekisözcük-
leribulmanızçokzor. This is approximately what happens when you hear an unfamiliar
language (in this case, Turkish). Without knowing the words of the input language,
discovering words in a continuous speech stream does not seem possible, which leads
to a chicken-and-egg problem. In spoken language, we are not as helpless as in the
written stream of letters. There are several acoustic cues that indicate word boundaries.
However, although these cues correlate with the boundaries, they are known to be
insufficient, noisy and sometimes in conflict with each other. Furthermore, the cues are
language dependent, that is, one needs to know the boundaries to learn when and how
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2 Introduction

these cues correlate with the boundaries. We are back to the chicken-and-egg problem
again.

Fortunately, there are also some simple and general segmentation strategies that
seem to work universally for all languages. A byproduct of the fact that the natural
speech stream is formed by concatenating words, the flow of basic units (such as
syllables or phonemes) in an utterance follows certain statistical regularities. Particu-
larly, the basic units within words predict one another in sequence, while units across
boundaries do not. It is even more encouraging that children seem to be sensitive to
these statistics at a very young age. Another source of information for word boundaries
that does not require knowledge of words in advance comes from utterance bound-
aries. Utterance boundaries are also word boundaries, and words are formed by certain
regularities, for example they share common beginnings and endings. This provides
another source for discovering words before knowing them. Once we start discovering
words using these general strategies, we can also learn to use the language-specific
cues.

This is a good point at which to summarize the problem:

Given a list of unsegmented utterances formed using an unknown set of
words, and a set of incomplete, noisy and sometimes conflicting cues
that correlate with the word boundaries in unknown ways, find the word
boundaries.

If you have ever taken a programming class, this might look familiar: it looks like a
rather tricky programming exercise. And if you have taken a class in machine learning,
you may already have some ideas on how to go about solving it. Regardless of whether
it is solved by a human brain or a computer, this is a computational (or information
processing) problem. This statement is true for many cognitive processes. As a result,
a common method of studying cognitive processes, including language acquisition, is
to model them formally, and study the model using computational simulations. The
methodology in this study follows this general practice. In a nutshell, a computational
model helps us understand the natural phenomenon it models by: (1) finding parallels
between the natural phenomenon and the computational model, (2) testing hypotheses
that are difficult or impossible to test directly, and (3) providing more insight into the
problem by describing it in detail.

I will present computational models of segmentation that offer solutions to the
segmentation problem guided by the strategies mentioned in the discussion above,
namely, predictability statistics and utterance boundaries followed by cues that are
available from the words discovered previously. Special attention will be paid to be
consistent with what we do know about child language acquisition. The models will
be tested using transcriptions of actual child-directed speech. The modeling effort
will follow the cues mentioned in the discussion above. I will start presenting models
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and results of computational simulations with language-neutral methods, or cues, and
demonstrate their usefulness in combination with other language-specific cues.

Before presenting the computational models of segmentation outlined above, the
next two chapters will discuss some general issues in the field of language acquisition
literature and computational modeling of language acquisition processes. The problem
of language acquisition in general, and the debates and issues in the broader field
will be discussed Chapter 2. After a discussion of a central debate in the field, the
nature–nurture debate, the chapter will review a number of general theories about
language acquisition and the solutions they offer for the problem.

Chapter 3 will discuss the computational modeling practice in detail, and how this
approach can be helpful in answering questions about cognitive phenomena in general,
and language acquisition in particular. The chapter will discuss the differences and
similarities between two separate but related methods to study computational models,
namely, mathematical analysis of the models and computational simulations. I will
argue that these two methods are complementary, yet, in some cases computational
simulations may avoid the difficulties faced by analytic methods by adopting sometimes
loose, and sometimes more accurate formalizations of certain aspects of the problem
being modeled. In studying language acquisition processes, the computational simula-
tions are at an advantage modeling the input to the learner. Even though it is difficult
to model the utterances a child hears during language acquisition by mathematical
formulas, it is relatively easier and more accurate to model them using appropriately
large amounts of child-directed speech corpora. There will be some discussion on the
nature–nurture debate in this chapter as well, this time focusing on the formal aspects
of it.

Chapter 4 will focus on the problem of segmentation. I will demonstrate the
problem in detail, review the relevant developmental psycholinguistic literature, and
introduce the cues that are known or believed to be used by children in solving this
problem.

Chapter 5 discusses the computational problem of segmentation in more detail.
Along with descriptions of different ways of modeling the segmentation problem
computationally, I will review relevant previous studies. The chapter discusses the
general issues with computational models of segmentation such as the questions
they answer, how to evaluate their performance, and how to interpret their results.
Furthermore, this chapter will present a reference computational model of segmentation
that follows a successful strategy different from the strategy advocated in this study.
This model will be used as a reference throughout the rest of the thesis for comparison
of the performance of the models developed during this study.

Chapter 6 takes the first step towards the intended computational models of segmen-
tation in this work. After a detailed analysis of a number of measures of predictability
(or uncertainty), a predictability-based segmentation model will be presented. The
model has two main components. First, given a certain predictability measure based
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on statistical information extracted from previous input utterances, the model uses an
unsupervised method for finding word boundaries in the current utterance. Second,
the model uses a method to combine the decisions obtained from a set of individual
boundary indicators, or measures. These two components will be used in the following
two chapters while incorporating additional indications of word boundaries.

Chapter 7 and Chapter 8, extend the model described in Chapter 6 using information
from utterance boundaries and already discovered words, respectively. These two
chapters demonstrate that information from different sources are useful in combination,
and the cues that are language specific may start being useful once we start learning
some words in the input language.

Chapter 9 summarizes the segmentation models presented in the preceding three
chapters, provides a qualitative analysis, compares the results among these models and
the other models presented in the literature, and finally suggests possible extensions in
the future work.

Chapter 10 gives a brief general summary and concludes.



2 The Problem of Language Acquisition

The most essential characteristic of
scientific technique is that it proceeds from
experiment, not from tradition.

Bertrand Russell

A typical introduction in many books and articles on language acquisition starts
with defining language acquisition with expressions like, ‘the greatest intellectual
achievement of one’s lifetime’, ‘endlessly fascinating’, ‘a snap’, ‘an astonishing pro-
cess’, a ‘fascinating feat’, ‘a monumental achievement’, or ‘a great gift’.1 Clearly, we
are impressed with the way children acquire the languages spoken around them. The
difficulty of learning languages in general, and the apparent ease with which children
acquire them is what lies behind these big words of appreciation. For those of us who
have tried learning a second language, it is clear that learning a language is a difficult
task. Children, on the other hand, seem to learn languages, even multiple languages,
spoken in their environment in an effortless way. They do not rehearse word lists, they
do not need aid from teachers, they do not spend time in language labs, they do not do
any grammar exercises, nor do they use any other training material that adult second
language learners typically use.

The difficulty of learning languages and the impressive performance children
show in this task make research on language acquisition an interesting inquiry. Our
knowledge about how children achieve this impressive task is limited, and the theories
in the field drastically disagree. As well as providing a broader introduction to main
issues in language acquisition literature, the aim of this chapter is to clarify the place
of the present study in respect to influential theories or viewpoints in the broader
field of language acquisition. The next section will have a closer look at the major
disagreement about what enables children to learn languages quickly and effortlessly.

1The phrases quoted above are only a few of the words of astonishment that reoccur in the literature
with slight variation in wording. The first one can be sourced to Bloomfield (1933, p.29). The others, at
least, appeared in Pinker (1995, p.175), Crain and Pietroski (2002), Guasti (2002, p.2) and Akmajian et al.
(2010, p.481), in order presented above, and Saxton (2010, p.3) successfully fits the last three into a single
paragraph.
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6 The Problem of Language Acquisition

Section 2.2 will briefly summarize some of the popular theories of language acquisition,
and Section 2.3 will conclude after a brief discussion.

2.1 The nature–nurture debate
Stating that ‘the aim of language acquisition research is understanding how children

acquire languages’ may sound like a tautology. However, to a large extent, the research
in language acquisition focuses on providing evidence for or against the existence of
an innate language capacity. The underlying purpose of this divergence is to support
one of the two philosophical viewpoints on human cognition: nativism or empiricism .
These viewpoints have been under constant debate (also known as the nature–nurture
debate) as far as known human intellectual history extends, and language acquisition
research has been the battlefield of this debate for the last 50 years. This thesis takes
no side in this debate, and I find it counter-productive to keep the debate at the main
focus of the research agenda. Nevertheless, the debate is too central to the field to go
unmentioned.2 This section presents a brief discussion of the nature–nurture debate in
the context of language acquisition, and provides arguments against taking an a priori
side in it.

Nativism is the view that certain skills, abilities or knowledge are innate, that
they are not learned from the environment. The roots of nativism can be traced, at
least, back to Plato, and Descartes was probably the most influential thinker for the
modern nativist (or rationalist) standpoint. However, modern linguistic nativism gained
popularity because of Chomsky’s ideas on language acquisition (Chomsky, 1959b,
1965). According to linguistic nativism, humans are born with an innate endowment
specific to language, commonly referred to as language faculty, language acquisition
device (LAD) or universal grammar (UG). The UG enables acquisition of languages,
while environmental factors are regarded as making a minor contribution. As Chomsky
(1980) puts it,

[ . . . ] in certain fundamental respects we do not really learn language;
rather, grammar grows in the mind.

When the heart, or the visual system, or other organs of the body develop
to their mature form, we speak of growth rather than of learning. [ . . . ]
In both cases, it seems, the final structure attained and its integration
into a complex system of organs is largely predetermined by our genetic
program, which provides a highly restrictive schematism that is fleshed
out and articulated through interaction with the environment (embryonical
or postnatal). (Chomsky, 1980, p.134)

2The terms ‘acquisition’, ‘learning’ and ‘development’ often indicate the side a researcher has taken in
this debate. In parallel with the arguments in this chapter and Chpater 3, this thesis does not make any clear
distinctions between these terms.
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Empiricism, on the other hand, is the opposing position that individuals are born
without any innate knowledge (the term tabula rasa or blank slate is frequently used to
define this state), that the knowledge comes from perception and experience. This view
can be traced as far back as Aristotle, and Locke is the most influential philosopher
in this camp. However, current empiricist (or non-nativist) theories of language
acquisition diverge from the historical empiricism. In the language acquisition literature,
connectionist models and theories of language acquisition (see, e.g., Elman et al., 1996)
have been the main representatives of this viewpoint. Contemporary non-nativist
theories do not exclude all forms of innate capacities. However, the role of environment
and domain-general learning mechanisms are regarded as more important from this
perspective.

Indisputably, acquiring languages requires some biological mechanism that we are
born with: any normally developing child learns the language(s) he/she is exposed to,
but the kitten born and raised in the same environment does not. Likewise, languages
are learned: children born in different language environments learn different languages.
Hence, besides the domain-specificity of the innate capacity, the disagreement is on
the degree—rather than existence— of the innate knowledge or mechanisms.

As can be guessed from phrases like ‘largely predetermined’ or ‘more important’,
the distinction is a fuzzy one.3 In language acquisition, the role of genetic factors or
importance of the environment are not easily quantifiable. Even in their qualitative
sense, they seem to be moving targets. For example, while earlier proposals by
Chomsky (1981) suggested a complex innate linguistic knowledge in the form of
principles and parameters theory (P&P, see Section 2.2.1), his later view seems to be
reduced only to recursion (Hauser, Chomsky and Fitch, 2002). Even if we could state
how much and what type of innate knowledge proves a certain point, our knowledge
of language and how it is acquired is not sufficient to solve the debate: we know
very little about the nature of our linguistic knowledge, and how we acquire it. This
information should eventually come from neuroscience. However, we are a long way
from a full characterization of neurological processes involved in language acquisition
and language use.

Providing a detailed account of the debate is beyond the scope of this thesis.4

Besides presenting a short overview of common arguments of the debate, the main
point of this section is to argue that taking the nativist–empiricist debate as the main
focus of language acquisition research is often counter-productive.

3There are a number of testable arguments as well, such as ‘argument from poverty of stimulus’ to
which we will return to in Chapter 3.

4A popular reference on nativist side of the debate is Pinker (1994), and Sampson (1999) gives an
accessible empiricist response to linguistic nativism. Most textbooks on language acquisition take clear sides
on this debate. For a recent textbook that provides a balanced account of the debate along with the issues in
language acquisition see Saxton (2010).
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2.1.1 Difficulty of learning languages
The perception that learning a natural language is a difficult task is hardly controver-

sial. However, the difficulty of learning languages as an argument in the nature–nurture
debate requires more scrutiny than it typically receives. In this section I will briefly
review a few aspects of natural languages that are assumed to be difficult to learn, and
relate it to the debate. Some points which will be discussed in detail in later chapters
will also briefly mentioned here. The discussion related to input and formal learnability
theory will be left for Chapter 3, and the segmentation problem will be discussed in
depth in later chapters.

The difficulties of learning a language start with this very first step: segmenting flu-
ent speech into discrete units is a difficult task (see Chapter 4 for a detailed discussion).
Despite its difficulties, children take first steps towards the solution of the segmentation
problem as early as their first few months of life, and by their first birthdays they get
very close to the solution (Jusczyk, 1999). The segmentation problem rarely makes
its way into the nature–nurture debate. However, segmentation is a necessary step for
identifying linguistic units like phonemes, syllables or words from a continuous stream
of acoustic input. Learning to identify words, or lexical units, is the main focus of this
thesis, and the problem will be discussed in detail in Chapter 4 and the chapters that
follow.

Even if the segmentation problem is solved, learning words of a language alone
is a challenging task. Words are arbitrary and ambiguous sound units. Nevertheless,
children around 6 months of age start recognizing the words they hear frequently,
such as their names (Bortfeld et al., 2005). With a large individual variation, children
start producing their first words around their first birthday, but it is estimated that
they understand much more (about 80 words, Fenson et al., 1994). It is a common
assumption that sometime between ages 1;65 and 2;6 an explosive growth of lexicon,
so called vocabulary spurt , starts (Bloom, 1976). Despite empirical evidence against
certain forms of vocabulary spurt (Ganger and Brent, 2004), it is clear that children
learn new words at an increasingly high rate. An estimate that is frequently cited in
the literature for the rate of word learning in preschool children is 10 words per day
(based on Carey, 1978). However, caution is needed for interpreting this number. Even
if the number may be accurate for the complete process, reporting a single number
can be misleading: a two-year-old’s word learning speed is nowhere near ten words
a day. The estimates in the literature suggest a slow start, about 1.6 words per day
in the second year of life. The rate reaches to its peak, 12.1 words per day, between
ages eight to 10 (Saxton, 2010, p.146 presents estimates of learning rate between ages
one to 17). Estimation of lexicon size at age six varies between 10,000 (Bloom and
Markson, 1998) to 14,000 (Clark, 1993; Templin, 1957) words. Estimated number of

5The age notation follows the standard age notation in language acquisition literature. The ages of
children are indicated using three numbers ‘year;month .day’, separated by semicolon and dot in this order.
For example 1;3.10 means one year, three months and ten days.
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words in the lexicon of an 18-year-old is around 60,000 (Aitchison, 1994). The figures
reported here are based on the average values calculated for children learning English.
Precise estimation of the vocabulary size is far from trivial (Miller, 1996, pp.134–137),
and acquisition paths of children show a large individual variation. As a result, the
estimates in the literature tend to show large variation as well. However, it is clear
that lexical acquisition starts before the first year of life, and the rate of words learned
increases until school years, with an overall rate of eight to ten words per day.

Even with conservative estimates, the ability to learn words that quickly is indeed
impressive. However, since word learning also means learning their meaning and
usage, the problem is even more difficult than storing sequences of phonemes. An
apparent difficulty related to word learning is referential uncertainty. It is claimed
that when a learner hears a word (or any other linguistic unit), finding the correct
referent of the unit in the real world is intractable. The philosophical discussion of this
problem can be traced back to Quine (1960, Chapter 2). Quine discusses a hypothetical
problem where a linguist who is trying to learn an indigenous language hears the word
‘gavagai’ referring to a rabbit. The question is ‘how can the linguist conclude that the
word means rabbit?’ He argues that it may as well mean ‘the tail of the rabbit’, ‘this
particular rabbit’, ‘any mammal’, ‘color of the rabbit’, ‘tasty!’, ‘nice day’ or (infinitely)
many other possibilities. The problem of associating words with their meanings is a
popular subject in the linguistic literature, and it is addressed by a large number of
researchers from a broad perspective (e.g., Bloom, 2000; Markman, 1989; Siskind,
1996; Tomasello, 2001; Xu and Tenenbaum, 2007).6 Quine’s original discussion, and
many appearances of the problem in the literature are rather informal. However, it is
clear that in many circumstances, possible referents of a novel word are ambiguous.
Despite this problem, people seem to learn words quickly. In most cases, only a few, or
even a single exposure, are enough for people to learn meanings of newly-heard words.

The difficulty of word learning, particularly the problem of assigning meanings to
words from the information available in the environment, is sometimes put forward as
an argument for nativism. However, no concrete proposals exist for what sort of innate
linguistic mechanisms may aid word learning. Words are, after all, arbitrary sound
sequences, and specific to the particular language being acquired.

The main arena of the nature–nurture debate is learning syntax. Natural language
sentences are not just random collection of words that are stringed together. To use a
language properly, one needs to learn how to combine words together to form gram-
matical utterances. Certain assumptions about the nature of the utterances children
hear during the acquisition process, the input , and negative learnability results from
computational learning theory are frequently put together as an argument for linguistic
nativism. The formal results from the computational learning theory and their impli-

6As well as the attention it received in the linguistic literature, the appearance of the problem in
SpecGram (van der Sandt, 2005) is probably a good indication of the popularity of the problem in the
linguistic literature.

http://specgram.com
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cations on difficulty of learning languages are discussed in more detail in Chapter 3.
For now, it suffices to note that these arguments are misguided because, (1) the input is
more structured and richer than portrayed by these arguments; (2) the results from com-
putational learning theory are based on restricted learning settings, such as a concept of
learning requiring an ability to distinguish the language learned perfectly, and formal
languages, neither of which is satisfied in the case of child language acquisition.

2.1.2 How quick is quick enough?

It is a common assumption that children learn languages very quickly. Most of the
language acquisition studies cover only the first two or three years of life. The reason
behind this is partially the fact that this period covers most of the interesting language
acquisition phenomena. However, it is also widely assumed that by the age of three or
four, children acquire most of the language. The claims go even further to assume that
they show ‘adult competence’ by three or four (McGilvray, 2006). Even though the
observation that a four-year-old child uses language effectively is hardly controversial,
the stronger version of the claim that they show adult competence does not seem to hold.
The facts about vocabulary learning presented in the previous section already point that
most active period for acquiring new lexical items is a lot later than this period (between
the ages eight to 10). The vocabulary learning aside, the language acquisition literature
is full of examples of late-acquired linguistic phenomena. For example, it is well
known that children acquiring Dutch show difficulties with interpretations of pronouns
until age six (see, for example, Hendriks et al., 2007; van Rij et al., 2010). Similarly,
children acquiring German do not seem to show adult competence in interpretation of
case marking until age of seven (Dittmar et al., 2008). Even more dramatically, Omar
(1973) reports that children acquiring Egyptian Arabic had difficulties with acquisition
of noun plural at the age 15. In the light of this evidence, it is difficult to dismiss the
importance of the later acquisition process, and (for example, as Crain and Pietroski,
2002, do) claim that the language acquisition process is ‘a snap’.

Language acquisition seems to span a larger time period than most researchers
commonly assume. However, the general agreement is that by the age of three or four,
children’s use of the languages resembles adult competence to a large extent. Now, we
can return to the question of whether children learn languages in a short time or not.
Claiming that a process takes a short time requires some reference amount of time it
should take. In other words, how quick is enough for announcing victory for nativism,
or how slow is enough for announcing victory for empiricism?

A possible path to take is to compare children with adults. However, this compari-
son is problematic for at least two reasons. First, children have rather limited cognitive
capabilities compared to adults. Second, the learning settings are very different. Chil-
dren acquire languages while communicating with adults and other children in their
environment without explicit training. However, typically, adults learn languages using
various training aids and with hard work. If we attempt to compare children and adults
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despite these differences, it is doubtful that we would find it impressive that an adult
gains a four-year-old competence in a non-native language in four years. For example,
in some universities, students who do not speak the language of education are required
to reach an academic-level competence in a year or even a shorter time.7

It should be noted that neither argument puts adults in a more privileged posi-
tion than children. There is no evidence that the methods used in second language
acquisition are more effective than the child language acquisition setting. Possible
interferences from the adult’s first language aside, a second language learner rarely has
the time and the motivation of a child trying to communicate with his/her environment.
Furthermore, the limited capabilities of children may provide some ‘maturational con-
straints’ which in turn may help acquisition of languages (Krueger and Dayan, 2009;
Newport, 1988, 1990, 1993).

Again, even if we reliably establish that children are faster or slower language
learners, it does not necessarily answer the question of innateness. Age affects many
cognitive tasks in complicated ways, and even if we can isolate effects of other cognitive
functions, we return to a slightly modified version of the same question: How do faster
or slower learning rates prove a certain view point?

A possible criticism for the above comparison between adult and child learning is
that we are comparing first and second language acquisition processes. Comparing
child language acquisition to delayed first language acquisition is, in principle, what
we need to do for a fair comparison. And there have been claims based on delayed
first language acquisition observed on so-called feral children.8 However, these cases
are far from normal in other aspects of the biological and cognitive development, and
(fortunately) these cases are too few to serve for reliable conclusions.

2.1.3 Critical periods
The comparison between adult and child language learning brings us to another

popular subject in the debate: critical periods. Existence of a critical period for
language acquisition has been popularized by Lenneberg (1967). Critical period
hypothesis states that successful language acquisition is only possible if the child is
exposed to language within an early time window.9 The critical periods are known
to exist in other domains of biological development. A well known example of this
kind is filial imprinting. Members of many bird species attach to a moving figure they
observe shortly (typically in the first few days) after they were born and follow it as
their parent. Similarly, in their Nobel prize winning work, Hubel and Wiesel (1970)
found that cats can develop a normal vision only if they were exposed to visual stimuli

7It should be noted, however, that adult second language learners normally do not achieve native-like
performance in some aspects of the language.

8Genie, who was deprived of normal human contact until age 13, is the most popular example docu-
mented in the literature (Curtiss, 1977, but see also, Rymer, 1994).

9 According to Lenneberg (1967), before puberty. But more recent proposals suggest even earlier ages.
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in the first 10–12 weeks of life. If a cat is deprived of vision during this period, it
becomes permanently blind.

The critical periods are typically used as an argument for nativism: since critical
periods are biologically determined, and if human language acquisition is also subject
to critical periods, it must be biologically determined.

The problem with this argument is that it is far from being well established that
the language acquisition is subject to a critical period. As discussed previously, like
many other cognitive functions, language learning ability is linked to age. However,
second language acquisition creates an interesting case: people can learn languages
even at later ages. People not only are capable of learning languages during adulthood,
limited use of the first language may even cause it to deteriorate and even loose its
dominance, a process commonly called language attrition (Schmid, 2009). Unlike
well-established cases of critical periods, the ability to learn languages seems to show
a gradual deterioration, not a complete inability to learn after a certain age. The
evidence from delayed learning cases, on the other hand, seems to be indecisive (for a
thorough discussion see Saxton, 2010, chapter 3), and the data is interpreted differently
depending on the inclinations of the researcher presenting it (Jones, 1995).

2.1.4 Summary

The nature–nurture debate is an exciting philosophical debate which has gained a
central position in language acquisition literature. However, the empirical evidence
put forward in favor of either theory in the language acquisition literature are far from
being conclusive. Furthermore, most of these arguments are often not well defined, or
very difficult (or sometimes impossible) to test concretely.

Taking positions based on fuzzy philosophical viewpoints may cause theories to
be put forward and data to be interpreted in heavily biased ways. For example, the
main motivation of the popular P&P theory of language acquisition is largely based
on accepting the nativist viewpoint from the beginning, rather than on available data.
Decades of research tried hard to support the theory, yet it has largely been abandoned
by its inventors and most of its supporters (see Lappin and Shieber, 2007, for a
discussion). Meanwhile, statistical approaches which were popular among structural
linguists of the 1950’s (e.g., Harris, 1955) had been neglected due to the dominant
position of the nativist viewpoint until the 1990s. Saffran, Aslin and Newport (1996a)
and subsequent research showed that children are good statistical learners and use
statistical learning methods in various tasks in language acquisition, rekindling new
interest in these methods.

Arguably, the debate can be fruitful as it may stimulate research and result in an
active field. However, it also polarizes the field heavily, causing biased interpretation
of scientific findings, making the field more susceptible to problems with the current
scientific practice, such as confirmation bias (Nickerson, 1997) and publication bias
(Dickersin, 1990). The confirmation bias is the tendency of people to favor the results
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that confirms their beliefs. The reflection to this psychological phenomenon in science
occurs when scientists resist new discoveries or methods, selectively cite evidence that
favors their presumptions. The publication bias is the tendency of publishing research
with positive results. The studies that do not support the initial hypothesis tend to be
neglected and stay unpublished.

The discussion above already touched on a number of these cases. For example,
the case of the feral child known with the name Genie has been interpreted differently
depending on who analyzed the case. Genie was kept in a closed space and deprived of
normal human contact until she was discovered at the age of 13. A summary of mostly
non-linguistic aspects of Genie’s case can be found in Rymer (1994), and Curtiss (1977)
is the most comprehensive overview of the case from a linguistic perspective. Starting
with Curtiss (1977), the linguistic development of Genie has been used as a strong
argument in favor of the critical periods in language development. However, Jones
(1995) argues, based on the data presented in Curtiss (1977), that Genie’s development
was not as bad as it was portrayed by research with a nativist inclination. Furthermore,
the linguistic data collected and presented in the literature seems too scarce to serve
as concluding evidence. And last but not least, as Rymer (1994) clearly demonstrates,
Genie’s psychological development was far from normal. She not only had a traumatic
start to her life, but the trauma continued in the foster homes after she was discovered.
These aspects are never mentioned when Genie is brought up as an example that proves
the existence of critical periods.

Another, less traumatic, case is the ongoing debate with learning regular and
irregular forms, such as the past tense forms of verbs in English. Since the study of
Rumelhart and McClelland (1986) there has been a constant debate as to whether
the irregular forms are learned using a different mechanism than the regular forms.10

The problem itself is interesting. However, the motivation in this debate is fueled by
the bigger debate of innateness. Although there are no clear reasons for symbolic
systems to prove a nativist standpoint (or statistical learning mechanisms to prove an
empiricist one), since Chomsky’s rejection of statistical methods (Chomsky, 1957),
symbolic and rule-based methods of explaining linguistic phenomena have been in
favor in nativist linguistic literature. The heated discussion caused this problem to be
investigated well. However, the reason behind the missing consensus on how people
learn these forms is not the lack of data. A closer look at the research on the subject
shows that most researchers start with one of the conclusions and aim at supporting
it. Arguably, a more neutral approach would allow us to learn more about the issue.
Another unfortunate effect of this debate is due to the fact that it is commonly taken as
the problem of learning morphology, causing a large number of interesting aspects of
learning morphology to be overlooked behind the dominant interest in this particular
problem.

10For an analysis of child language data from an alternative approach in this debate, so-called single-route
vs. dual-route learning, see Marcus et al. (1992).
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There are numerous other questions in the field that have been affected by the biases
of the researchers studying it. Not all of the conclusions are contested by opponents or
less biased researchers. However, a number of the cases where disagreement surfaced
can be identified by reading Pinker (1994) and Sampson (1999) side by side.

Having said all this, I do not claim that the nativism–empiricism debate is irrelevant
to language acquisition research. The long-lasting debate indeed shows that this
question about human nature is an intriguing one, but it is also clear that it is far from
being resolved yet (see Scholz and Pullum, 2006, for a relevant discussion). Like any
other study of human cognition, the language acquisition research may also contribute
to this debate. However, it is fruitless to take any a priori sides in this debate, or even a
hasty one (as a ‘working hypothesis’). Instead of this largely philosophical question, it
is more productive to focus on specific questions and theories of the field.

2.2 Theories of language acquisition
Theorizing about nature plays an important role in our scientific inquiry. We

typically build formal, testable theories of natural phenomena to explain, understand
and predict the phenomena being modeled. Language acquisition is not an exception.
Researchers put forward a number of theories with the aim of explaining the child
acquisition data, providing more insight into the language acquisition process, and,
hopefully, predicting yet unobserved, or unobservable aspects of language acquisition.

In this section I will review three influential theories, or rather frameworks, namely
the principles and parameters theory , connectionist networks , and usage-based theories
that are used in language acquisition research. A fourth approach, statistical modeling ,
will be discussed next.

Before describing these frameworks, a few notes are in order. First, in principle,
the frameworks described here are not necessarily mutually exclusive, it is possible,
and not uncommon to see models that cross-cut this classification in some ways. Some
examples of these models will be presented in Section 2.2.4. Second, it is well known
that all learning systems have to start with certain initial assumptions about the nature of
the problem. In other words, there is no ‘general-purpose’ learning algorithm (see the
‘no free lunch’ theorem, Wolpert and MacReady, 1997). However, initial assumptions
or knowledge do not always entail innate knowledge. For this reason, unless there is a
clear theoretical commitment that a certain aspect is innate, borrowing the term from
machine learning, I will refer to the initial assumptions of a model as inductive bias .

2.2.1 Parametric theories
The nativist conclusion that human languages are not learnable without rich innate

linguistic knowledge led researchers to adopt theories that posit an innate UG. In
these theories, the UG plays a central role by constraining the learning. The common
path taken in these theories is reducing the acquisition process to adjusting a set of
parameters. In parametric theories, the learner is assumed to (innately) know what the
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parameters are. The learning task is setting these parameters to one of the allowed
values by observing relevant aspects of the input. Probably the most influential theory
of this form is the principles and parameters theory (P&P, Chomsky, 1981) that I will
describe here. Another well known theory of this form is optimality theory (OT, Prince
and Smolensky, 1993/2004). P&P and OT differ in their theoretical backgrounds,
the linguistic questions they are typically applied to, and the nature of the parameters
used.11 However, from a computational perspective, both theories view learning process
as finding values for a number of linguistically motivated parameters.

The solution to the learnability problem proposed by the P&P is based on a set of
universal principles and parameters that all possible languages share. The principles
are considered to be shared by all human languages. The parameters are also universal,
however, the particular values the parameters take define a particular language.

A frequently cited example of universal principle is that the rules of the grammar
have structure sensitivity . For example, assuming that English interrogative sentences
are formed from their declarative versions, the correct way to turn the declarative
sentence the dog that is in the corner is hungry to an interrogative question is moving
the second is to the front. That is, the correct question sentence is is the dog that is in
the corner hungry? We move the second is instead of the first one, because we need
to move the auxiliary in the main clause, and this can only be achieved by structure,
e.g., clause , sensitive rules. Furthermore, it is claimed that this cannot be learned from
the linguistic input, and hence, it must be an innate principle (Chomsky, 1965; Crain
and Nakayama, 1987). Principles are not learned, and do not vary among different
languages.

Like the principles, the specifications of the parameters are also assumed to be
innate and universal. However, their values are set during the acquisition process.
Parameters are set in one particular way when the child learns one language, and they
set another way when another language is learned. The parameters proposed are almost
exclusively binary. So, for N parameters it is possible to hypothesize 2N grammars. A
common example of parameters is null-subject , or pro-drop , parameter. This parameter
defines whether it is allowed to skip the pronominal subjects in the language. This is
true for languages like Italian, but not for English. So, children in an English speaking
environment determine at some point that their language does not allow null-subjects
and set the parameter to false, while children learning Italian set the parameter to
true. Combination of many such parameters define different possible grammars. The
language acquisition proceeds by setting these parameters based on the linguistic input
received.

Among attempts to formally define P&P-based language acquisition procedures
are Gibson and Wexler (1994) and Fodor (1998). Both procedures are rule based, they
make parameter changes based on single examples. This allows the algorithms to

11OT stems from an empiricist tradition, and researchers working in OT framework do not typically
share the nativist conclusion. The classification here signifies the similarities regarding parametric structure.
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generalize quickly using fewer examples. However, they are sensitive to noise and it is
not clear if they would recover from an incorrectly learned grammar (see also Niyogi,
2006, for a formal analysis.).

Yang (2002) presents one of the rare P&P-based models that combines statistical
techniques with the classical P&P approach. Yang’s variational learner learns a set of
parameters by a statistical system inspired by evolutionary selection. The variational
learner alters the weights of all grammars in the space of possible grammars based on
input. The simple statistical augmentation compared to previous rule based approaches
makes the variational learner more robust against the noise. However, the criticisms
listed below are valid for Yang’s (2002) variational learner as well.

From the perspective of language acquisition, the main motivation behind P&P
approach is that it makes learning easier. One can obtain a large number of possi-
ble languages defined by a relatively small set of parameters. Then, the learning
task is reduced to setting these small number of parameters. However, if P&P learn-
ing procedures are analyzed more carefully, one observes that this certain form of
parametrization is neither necessary, nor sufficient for successful learning (see, Clark
and Lappin, 2011a; Lappin and Shieber, 2007). However, even if we are convinced
that a form of P&P approach makes learning problem easier, there are still a number of
issues.

• Despite popularity of the P&P theory in the literature for decades, there is no
explicit list of established parameters. Even the highly popular and widely
accepted parameters cannot be applied to all languages reliably. For example,
another example of a highly, if not most, cited parameter is the head-direction
parameter that is set as head-initial for languages like English, and head-final for
languages like Japanese. However, the place of Dutch and German is not clear
with regard to this parameter. As pointed out by others, for example Newmeyer
(2004, 2006) and Trask (2002), the attempts to come up with a list of parameters,
e.g. Baker (2001), did not succeed. In Trask’s words, ‘. . . “all grammars leak”,
but the parametric approach begins to look uncomfortably like a sieve’.

• Even if a set of parameters is found to explain the differences between languages,
it is not clear how these parameters lead to an actual language processing system.
For example, there are no explanations for how one can arrive at a generative
grammar, e.g., in form of a phrase-structure grammar, from a set of parameter
values. As a result, most work on language acquisition with the P&P framework
focuses on showing that the learner choose one sort of grammar rather generally,
and detailed models following P&P framework do not go beyond ‘proof of
concept’.

• Most of the P&P-style learning procedures learn from particular aspects of the
languages, commonly called triggers. The explanation of why learners are
sensitive to these particular aspects of the input is left unexplained.

• The parameters commonly listed in the literature generally depend on knowledge
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that is likely to be learned. For example the head-direction parameter discussed
above requires the abstract linguistic concept of head , for which even linguists
are not in full agreement. Hence, the P&P approaches need to explain how this
knowledge is obtained by the learners.

• P&P is typically applied to learning syntax. It is not clear how other aspects of
language acquisition, such as word learning or segmentation can be learned by a
P&P learner.

These problems have led P&P theory to lose popularity over the last decade. How-
ever, it is still rather influential particularly in the theoretical linguistics literature, and
supported by many researchers (Boeckx, 2009; Niyogi, 2006; Yang, 2004, exemplifies
some recent work on P&P).

2.2.2 Connectionist models
Connectionist systems have been the typical representatives of empiricist models

of language acquisition. Unlike P&P-like models of language acquisition, connec-
tionist models do not assume a specialized UG. The learning is achieved through
general purpose learning mechanisms that are also useful in other domains of cognitive
development.

Connectionist systems, or artificial neural networks (ANNs) are inspired by the
functioning of biological neural networks. An individual neuron in an ANN receives a
number of activations (numerical inputs). The weighted sum of the inputs is sent to
a threshold function, which determines whether the neuron should ‘fire’ or not. The
learning in an ANN is achieved by algorithms (such as backpropagation) that adjust
the weights of the connections. In a way, one might regard the parameters of the
connectionist systems to be the weights. It should be noted that this is a very different
concept of parameter than P&P framework.

A typical ANN (backpropagation network) contains 3 layers: The input layer
consists of neurons that receive the input. The input layer is fully connected to another
set of neurons in the hidden layer, which in turn are connected to the output layer.
Each neuron acts according to a simple threshold function depending on the inputs it
receives and the weights of the input connections. Learning updates the weights of the
connections between input layer and hidden layer, as well as hidden layer and output
layer. Multiple hidden layers are possible, but rarely used in practice (however, see the
discussion of simple recurrent networks below). The function of the hidden layer or
layers can be conceptualized as forming an internal representation of the problem.

Probably the most common example of connectionist language acquisition system
is English past tense learning system of Rumelhart and McClelland (1986). Rumelhart
and McClelland (1986) presented a backpropagation network which learns past tense
forms of English verbs. An interesting aspect of the system is that it shows some of the
errors children acquiring English make. The model mimics the changes in the rate and
the nature of the errors that children make during language acquisition.
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One of the weaknesses of standard backpropagation networks is that they cannot
generalize beyond simple associations. However, addition of a recursive layer allows
ANNs to learn relations between inputs over a time period. A particular type of
recursive network, called simple recursive network (SRN, Elman, 1990), has been
popular in modeling various cognitive phenomena. SRNs will further be discussed in
the context of modeling segmentation in Section 5.2.1.

Connectionist systems have been instrumental in modeling many cognitive phe-
nomena, and diverse aspects of language acquisition such as, learning phonotactics
(e.g., Stoianov and Nerbonne, 2000), speech segmentation (e.g., Christiansen et al.,
1998), learning grammatical structure (Elman, 1991). A short but more comprehensive
review can be found in Elman (2005).

However there are also a number of criticisms against the use of connectionist
systems in modeling cognitive processes. The main points of criticism against con-
nectionist systems as models of language acquisition (or other cognitive functions)
are, (1) it is not easy to interpret what the networks learn, and (2) the amount of input
needed to train these networks is too large for simulating some aspects of the language
acquisition (e.g., word learning).

It should also be noted that contrary to common view, connectionist systems are not
free of inductive bias. Most of the inductive bias of a connectionist system is encoded
in the network structure and input/output representation. The weight updating systems
are also subject to manipulation, and provide additional inductive bias.

2.2.3 Usage based theories

A non-nativist theory of language acquisition that has been gaining popularity for
the last decade or so is the usage-based theory of language acquisition (Tomasello,
2003, 2009). The emphasis in usage-based theory of language acquisition is on its use
in social and communicative context. Unlike nativist theories such as P&P that claim
the major part of linguistic knowledge is innately specified, usage-based theory posits
that the linguistic structure emerges from language use. According to usage-based
theory, what children bring to the language acquisition process is their willingness to
communicate, particularly, the ability to read intentions of others, and being able to
find patterns in the linguistic input.

The usage-based approaches to language acquisition assume that children learn
whole utterances as communicative units at the beginning. In time, the pattern-finding
mechanism kicks in, and children start learning linguistic constructions which enables
them to use language creatively. This aspect of usage-based theory blurs the borders of
the lexicon and the grammar, which is another aspect that sets it apart from the nativist
theories of language acquisition. Starting from fixed expressions, children develop
increasingly general or abstract constructions by observing similar patterns in the input.
Typically, it is assumed that children use distributional information and analogy as
tools to achieve this, and the role of input frequency is emphasized.
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Compared to other frameworks described in this section, the research in usage
based theories have a higher tendency to rely on empirical studies. Even though
there are several formal flavors of the theory (e.g., Croft, 2001; Goldberg, 2006), and
explicit computational models inspired by the theory exist (e.g., Solan et al., 2005), the
mainstream usage-based theory is less formally oriented compared to the frameworks
previously reviewed. Since the usage-based theory is more empirically oriented, it
tends to explain the observed empirical data better. However, the fact that the usage-
based theory is not as formally oriented as others, it is difficult to verify its predictions
formally, and it is less suitable for computational studies.

2.2.4 Statistical models
Last two decades witnessed a surge of models of language acquisition that do not

necessarily follow any of the general theories discussed above. These new models
have been influenced by the developments and methods in the fields of computational
linguistics and machine learning, typically using statistical learning methods.

Related to the statistical learning methods in modeling language acquisition, there
is another debate between symbolic and statistical approaches to learning. The nativist
approaches to language acquisition traditionally downplay the role of statistics in
language acquisition and use (e.g., Chomsky, 1957, p. 17). Researchers in the empiricist
tradition, on the other hand, downplay the role of symbol-like, e.g., linguistic-specific,
representations and domain specific learning methods. The connectionist systems
summarized in Section 2.2.2 are essentially statistical learners. The representations in
connectionist systems are distributed over the weights, and are not easily interpretable.
Even though the combination of statistical learning with symbolic-like representations
is possible, the polarization in the field led researchers to focus only on one or the
other.

Before nativism gained a dominant status in linguistics, in combination with
structured, linguistically informed representations, statistics was one of the tools
of the structural linguists (e.g., Harris, 1951, 1955). The dominant status of nativist
approach in linguistics caused statistical learning methods to be largely ignored until
1990s. After 1990s, many researchers began to investigate the problem of language
acquisition using statistical methods (see Abney, 1996, for a thorough discussion of this
shift).12 Furthermore, unlike connectionist systems, these statistical approaches do not
reject the use of symbolic/structured or domain-specific knowledge and mechanisms.
The models presented in this thesis can be placed in this relatively new tradition. The
learning strategies used in this thesis are general purpose statistical methods. However,
language-specific mechanisms and representations are used where they help modeling
the phenomenon of interest.

12This shift affected the nativist approaches to language acquisition as well. Statistical learning and
statistical learning frameworks are used by some recent studies with clear statements of nativism (Niyogi,
2006; Yang, 2002).
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2.3 Summary and discussion

Language acquisition is a long and complex process interacting with many other
cognitive and social phenomena. As a result, defining and testing a precise theory of
the complete process of language acquisition is not (yet) an attainable goal. In practice,
we put forward theories and create models of parts of the language acquisition process.
The general theories of language acquisition discussed in the previous section do not
actually describe a complete formal model of the language acquisition process in detail.
Rather, they define some general principles and convictions regarding the nature of the
problem. The precise models of a particular aspect of language acquisition subscribing
to one of these theories tend to follow these principles and convictions. The merits of
the general theory are not testable directly, but we can examine how well they explain
smaller, more concrete aspects of language acquisition.

A few examples of particular questions of language acquisition, and a few repre-
sentative examples of research into these question are listed below.

• How do children segment fluent speech into lexical units? (Saffran et al., 1996a,
and many others reviewed in Chapter 4)

• Does exposure to isolated words help word learning? (Brent and Siskind, 2001)

• Is Bayesian learning plausible for explaining word learning? (e.g., Xu and
Tenenbaum, 2007)

• Is there a difference in learning regular and irregular aspects of the language?
(Marcus et al., 1992, among others)

• Is it possible to learn morphology (e.g., Goldsmith, 2001), or syntax (Klein and
Manning, 2004) in an unsupervised fashion?

The research cited in this list uses a diverse set of methods, including psycholin-
guistics experiments, corpus analysis, and computational modeling and simulation.
Nevertheless, each of them try to answer a particular question by testing a specific and
well-defined theory. It should also be noted that these questions are interesting by their
own right, and the answers to these questions do not necessarily support or oppose
any of the general theories of language acquisition discussed in Section 2.2. Even
though it is common in the literature to suggest conclusions about the nature–nurture
debate based on research done on a particular aspect of the language acquisition, these
conclusions are, in principle, problematic. Any modeling attempt of a part of a long and
complex process has to make some assumptions about the other parts of the process that
are not modeled. The assumptions of inductive biases in these models do not warrant a
nativist conclusion: the knowledge or mechanisms may have been learned in a previous
step. On the other hand, even if a certain aspect of the language acquisition is possible
with minimal assumptions that seem to warrant an empiricist conclusion, this does not
disprove nativism since it will not show that the complete language acquisition process
can be modeled with the same assumptions.
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This chapter started with a review of the nature–nurture debate, a debate that has
been very influential on the language acquisition literature for the last 50 years. After
reviewing various arguments for each side, I argued (1) that despite early victories
announced by the supporters of one side or the other, the debate is open, and unlikely to
be resolved soon, and (2) even though it has had a central role in shaping the language
acquisition research, it says little about the way children learn languages, and keeping
this debate as the main focus of the research may even have counter-productive effects
(Section 2.1.4). As a result, the modeling practice that will be followed in this thesis is
agnostic about what is innate and what is learned, taking no side in the nature–nurture
debate. Section 2.2 briefly reviewed four approaches to language acquisition, namely
principles and parameters theory, connectionist systems, usage-based theory and the
statistical modeling. In closing, a few specific questions about language acquisition
and common methods of studying these questions were exemplified. The next chapter
will discuss the computational approaches for modeling language acquisition.





3 Formal Models of Language Acquisition

Essentially, all models are wrong, but some
are useful.

Box and Draper (1986, p. 424)

Modeling natural phenomena is one of the basic activities in science. We build
models of a natural phenomenon to gain a better insight into the phenomenon being
modeled, and predict aspects that we do not know about it. Models are used in a wide
range of research in science, but they are also used in many disciplines that are not
research oriented. Just to name a few well-known examples, we note Galilean model of
solar system in astronomy; Bohr model of atom in physics; animal models in medicine
that are used for studying human diseases on non-human animals; econometric models
in economics; the formal models of atmospheric conditions used for weather forecasts;
scaled physical models of bridges, cars, and other objects that are used frequently in
engineering.

Similar to the models listed above, this thesis makes use of models of some aspects
of language acquisition. The particular type of models that are interesting for modeling
language acquisition are computational models. In this chapter I will identify two
methods to study such models. The first method is the mathematical, or analytical,
study of the formal models of learning. The second method is using computational
simulations, which is the primary method that this thesis follows. Besides introducing
both methods of the study, I will pay special attention to the interaction of these
methods and the division of labor between the methods for studying models of language
acquisition. Throughout the chapter some of the themes and discussions introduced in
Chapter 2 will be revisited, and some that are left for this chapter will be discussed in
detail.

The organization of this chapter is as follows. The next section will provide a brief
overview of use of models in science, and place the models of language acquisition we
are interested within these models. After an introduction to well-known frameworks of
computational learning theory in Section 3.2, Section 3.3 will relate these frameworks
and the later work in the field with the question of the learnability of natural languages.
Section 3.4 provides an introduction to a particular classification of computational
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models that will be instrumental in interpreting the results of the models described
in this thesis. Section 3.5 compares two methods of studying computational models,
namely the method of formal analysis employed in computational learning theory, and
the computational simulations. Here, I will describe the interactions of the models,
and argue that in certain cases, computational simulations provide easier and possibly
better answers. Section 3.6 provides a summary.

3.1 Formal models in science
As in many practical disciplines, models are indispensable tools in science. There is

no clear recipe for building and using models to understand the phenomena of interest,
and use of models in science still keeps the philosophers of science busy (Frigg and
Hartmann, 2009). However, modeling is a well-attested method of studying a broad
range of subjects in science.

An important fact often overlooked is that models are not equivalent to the phe-
nomena they model. There are always some simplifying assumptions (for example,
physicists frequently assume no friction). As long as the effects of these assumptions
are taken into consideration, the model can be used to gain useful insights into the
phenomena being modeled. If the relation between the model and the real phenomena
is well understood, we can derive conclusions about the experiments that we do on the
model instead of in the real world. Such experiments on models are particularly useful,
if the experiment in real world is not feasible because of economical (for example,
space shuttle launches) or ethical reasons (for example, testing effects of a nuclear
plant meltdown). Similarly, if our knowledge about language acquisition allowed us to
build models that we are confident about, we would be in a better position to answer
some questions that we otherwise cannot test with direct experiments, for example,
determining validity or nature of the critical periods discussed in Section 2.1.3.

We do not always need a highly tested model with a well understood relationship
with the phenomena it models. Even with relatively naive models, the formal modeling
effort may still provide further insight into the problem by forcing us to describe our
assumptions and theories1 about the phenomenon with scrutiny, by systematic testing
of alternative models, and sometimes testing model’s predictions with the help of
real-world experiments.

In modeling language acquisition phenomena, we are particularly interested in
computational models. In other words, we model a particular cognitive process by a
computational process. Not surprisingly, this is one of the main tenets of cognitive
sciences (see e.g., Miller, 2003). Once we have a formally defined model of the

1The distinction between the terms theory and model is in general unclear (see, for example, Frigg and
Hartmann, 2009), and their use among in different disciplines vary. In linguistics, the term theory tends to
refer to a relatively general set of principles with some underspecified elements. I will follow the same use
in this thesis, while using the term model only for precisely spelled out representation of the phenomenon of
interest.



3.2. Computational learning theory 25

phenomenon we are interested in, an obvious method of working with a formal model is
to investigate the relevant questions by analytical methods. A mathematical justification
(e.g., a formal proof) of a certain question about the model may help us transfer this
knowledge to the modeled phenomena for making predictions or understanding it better.
However, in many cases finding analytical solutions is difficult, either because of the
complexity of the model, or aspects of the phenomenon that are difficult to formalize. A
possible solution to these problems is to make some simplifying assumptions at the cost
of reduced correspondence between the model and the phenomenon. An alternative
approach is to use computational simulations. Computational methods can be used
to obtain solutions to certain problems iteratively, where analytical solutions are not
available. However, more importantly, computational simulations allow certain aspects
of the phenomenon to be modeled using weaker assumptions. A relevant example we
will discuss is the input to the language learner. An analytical solution would require
strong idealizations, such as well-formed strings generated by a formal grammar with a
probabilistic error rate. However, a computational simulation can take a less-idealized
definition of the input: the transcription of utterances recorded during child–parent
communication.

In formal study of language acquisition, the analytical results come from the field
of computational learning theory. Early results from computational learning theory,
in particular the seminal work of Gold (1967), have been influential in the language
acquisition literature. On the other hand, in parallel with the developments in natural
language processing and machine learning, computational simulations have been
gaining popularity for the past two decades (see Brent, 1996; MacWhinney, 2010, for
snapshots of the state of the art in computational simulations of language acquisition).

3.2 Computational learning theory
Computational learning theory, or learning theory for short, explores the limits of

learnability. The field began with the seminal work by Gold (1967), in which language
acquisition was the central motivation. Not surprisingly, the results from learnability
theory played an important role on the study of language acquisition. These results have
often been used for arguing against learnability of natural languages. Unfortunately,
the results from the learning theory have often been misinterpreted and misused (see
Clark and Lappin, 2011b, for elaboration.).

The typical application of the results from learning theory in the language acqui-
sition literature is related to their implications for learning syntax. We assume that
learning syntax of a certain language is inducing a mental grammar from available
input. Since we do not know exactly how grammars are represented in the human
brain, we use formal grammars that represent certain aspects of natural language syntax
adequately. In addition, since children are capable of learning any natural language,
we expect all possible mental grammars to share some features, forming a class of
grammars. However, since our knowledge is far from characterizing the class of
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Figure 3.1: Chomsky hierarchy of language classes. The dashed ellipse represents so-called
mildly context-sensitive languages, a subset of context-sensitive and a superset of context-free
languages, which is believed to be adequate for representing natural languages. The classes are
also known as type-0 to type-3 from the largest class to the smallest.

natural languages exactly, we turn to formal classes of grammars whose members are
expressive enough to capture the syntax of all known natural languages.

This section presents the necessary formal apparatus for interpreting the results
from learning theory. To make the discussion here accessible to a wider audience, it
is intentionally kept informal—despite the fact the computational learning theory is
a formal field of study. Formal and more comprehensive discussions of the learning
theory can be found in a number of other sources (e.g., Clark and Lappin, 2011a,b; Jain
et al., 1999; Kearns and Vazirani, 1994; Osherson et al., 1984). For the remainder of this
section, I will give a brief informal review of two popular frameworks of learnability in
relation to the problem of language acquisition. However, before starting the discussion
of formal models, a short digression to a related concept, a hierarchy of language
classes defined by Chomsky (1959a) is necessary.

3.2.1 Chomsky hierarchy of languages
The Chomsky hierarchy of languages is one of Chomsky’s most important contri-

butions to both linguistics and computer science (Chomsky, 1959a). This hierarchy
defines a set of formal language classes. Figure 3.1 depicts this hierarchy. Each class
in this hierarchy is the proper subset of the larger class. The larger classes are more
descriptive, but their computational processing is more demanding. This particular
classification of the language classes has some attractive formal properties, and each
class corresponds to a certain type of abstract computational device that is capable
of recognizing and generating the languages in the corresponding class. The details
of these formal language classes and the abstract machines are not important for our
purposes here. They are a well-established part of theories of formal languages and
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described in detail in textbooks such as Hopcroft et al. (2001) or Davis et al. (1994).
Two aspects of this hierarchy are crucial for our discussion here. First, even the smallest
class in this hierarchy, regular languages, includes an infinite number of finite and
non-finite languages. That is, a regular language is a set of either a finite or infinite
number of strings (e.g., sentences), and the class of regular languages has infinitely
many of these languages. Second, in this hierarchy, the class that is adequate enough to
represent all (known) natural languages is considered to be a subset of context-sensitive
languages which is called mildly context sensitive languages (the dashed ellipse in
Figure 3.1).2

Formalizing languages in this manner has proven to be fruitful both in linguistics
and computer science, and this classification is central to formal study of learnability
of languages. However, I want to close this brief description with two cautionary
notes that we will return to in Section 3.3: (1) The Chomsky hierarchy is only one
of the many ways of classifying formal languages. There are many other ways to
define similar hierarchies on formal languages that cross-cut this classification. (2) The
Chomsky hierarchy is a hierarchy of formal languages. Even though it has been an
important tool in the study of language, none of these classes exactly match the class
of natural languages.

3.2.2 Identification in the limit
The most popular results from learning theory in the language acquisition literature

are from Gold (1967). The framework of learning introduced by Gold (1967) is called
identification in the limit (IIL). Although many developments have been suggested
since, the building blocks of this framework are still used in many studies in learning
theory. Furthermore, this paper is the most cited learning theory work in the language
acquisition literature.

In this framework, the learning task is viewed as identifying the correct language
among a class of languages that the input language belongs to.

• The learner is presented with grammatically correct sentences from a target
language he, she or it is supposed to identify.

• The learner knows the set (class) of languages that the target language is drawn
from. It can test if a given string belongs to any of these languages or not.
However, it does not know which language is the target one.

• The learner receives one input sentence at a time. The only restriction regarding
the presentation of the input is that all grammatical sentences have to be presented

2Initially, context-free languages were considered to be adequate for representing natural languages.
However, a small number of linguistic constructions cannot be represented using context-free languages.
A typical example is the cross-serial dependencies found in Dutch (Bresnan et al., 1982) and Swiss-
German (Shieber, 1985). Besides being able to represent these constructions, constructions requiring higher
than context-free power are often used when they match better with linguistic intuitions.
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at least once. Repetitions are allowed and the presentation of any grammatical
sentence can be delayed indefinitely.

• After every input sentence, the learner re-evaluates his or her decision and selects
a possibly different language from the class of languages.

• The learner needs to identify the target language exactly, and after it identifies
the target language, no grammatical sentence should change its mind.

• The learner is expected to identify the target language with a finite amount of
input sentences. However, there is no bound on the number of input sentences.

The most influential result from Gold (1967) is that even the smallest class in the
Chomsky hierarchy is not identifiable in the limit only from positive input . More
precisely, if the target class of languages includes all finite languages, and one non-
finite language, the class is not identifiable in the limit only from positive input. This is
the point in argumentation where all not-formally-oriented researchers get lost, and
ready to accept the conclusion that this means natural languages are not learnable. I
will return to the interpretation of this finding in the context of language acquisition
in Section 3.3. Here, I will give an informal example, where the construction and
consequences of this result can, hopefully, be understood better.

First thing to note about IIL is that it is not specific to language acquisition. Classes
of grammars can be anything that describes a set of objects. Grammars, as a result, are
nothing but sets of objects, not even necessarily sentences as we take it in linguistics.
Observing that we formulate the following problem: in a boring cocktail party, a
mathematician offers a linguist friend to play a game, and explains the rules: the
mathematician picks a set of natural number sequences, something like ‘all sequences
formed by even numbers’, and presents example sequences to the linguist whose task
is to guess the set of the sequences that the example sequences are drawn. To win,
the linguist needs to find the correct set of sequences at some point, and no matter
which sequence from the correct set is presented, he should not change his mind.
Despite not being keen on games on numbers, with some hope that the game may have
some linguistic consequences, the linguists accepts the challenge. The mathematician
presents following sequences,

• 7, 11, 13, 17

• 5, 7, 11, 13

• 13, 17, 19, 23

What is the best bet that the linguist can make at each step? As most mathematicians
would be tempted to suggest, is ‘ordered consecutive sequences of prime numbers’ a
good hypothesis? The answer is no, this is too general based on the given evidence. It
can, for example, be sequences of odd prime numbers (prime numbers except two),
or ordered but not consecutive odd numbers, or just the set of sequences that were
given so far. If the linguist prefers a conservative strategy, the last hypothesis is the
right way to go. However, if the target set is the sequences of ordered consecutive
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prime numbers, then he will never guess it using the conservative approach. There are
infinitely many finite subsets of the target set. On the other hand, if the linguist chooses
a more general hypothesis, e.g., series of prime numbers, then there are infinitely many
sets of sequences that are compatible with his hypothesis. If any of these is the target,
then the linguist will have no reason to narrow down his choice, and he will never
guess the target hypothesis. As a result, there is no guaranteed way for the linguist to
guess correctly which set of numeric sequences is the correct set. He cannot identify,
or learn, the underlying set of sequences the input comes from.

As this informal example demonstrates, the IIL framework does not model language
acquisition narrowly, but rather much more general learning settings. The negative IIL
result just demonstrated is due to the fact that the target class (the set of sequences
of numbers) we choose had at least one infinite set (set of sequences formed by the
ordered, consecutive prime numbers) and an infinite number of finite sets (particularly,
all finite subsets of the infinite set). Since, all linguistically interesting classes of
languages in the Chomsky hierarchy have this property, they are not identifiable in the
limit.

Moreover, IIL has a number of other problems when applied to modeling language
acquisition. The following list summarizes these problems. Some of which (the items
one through three) had already been raised by Gold (1967).

1. The class of natural languages is likely to be much smaller than the language
classes studied by Gold (1967).

2. The child may receive (indirect) negative evidence.

3. In IIL, the learner is expected to learn from any sequence of input strings,
including the ones that are intentionally designed to trick the learner. The input
children receive follows a much more restricted distribution.

4. The identification criterion is too restricted. All speakers of a certain language
do not necessarily share the exact same grammar.

5. Accepting identification in the limit as success is unrealistic. Even if a class
of grammars is identifiable in the limit, it may require an unrealistically large
number of input sentences that cannot be observed in the time frame available
for children to acquire the language.

The subsections that follow will discuss some of these problems, and review some
of the solutions suggested in the literature.

3.2.3 Probably approximately correct learning
Probably approximately correct (PAC) learning (Valiant, 1984) is another popular

learning framework in learning theory literature. The PAC framework differs from
the IIL in three major ways. First, the probably correct learning states that learner is
not required to learn from all possible input sequences. If learner fails to learn from
sequences of inputs with a low probability, it does not count as a failure. Second, the
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approximately correct learning criterion relaxes the exact identification requirement
in the IIL. In PAC learning, it is enough for the learner to converge to a language that
approximates the target language with a small error. The last major difference of PAC
learning from the IIL is that it requires learning to succeed with bounded input.

Compared to IIL, PAC learning is more suitable for many learning applications.
Furthermore, it turns out that the PAC-learnability of a problem can be reduced to a
combinatorial measure called Vapnik-Chervonenkis dimension (VC dimension, Vapnik
and Chervonenkis, 1971). If the hypothesis space has a finite VC dimension, it is
learnable in the PAC framework. This makes it easy to prove learnability results
for certain applications. As a result, the PAC framework has been instrumental in
developing and testing machine learning methods. As well as the PAC learning
framework, detailed explanations of the VC dimension can be found in textbooks such
as Kearns and Vazirani (1994). For our purposes here, it is important to note that
VC dimension can be characterized only with labeled input, for example, in case of
learning syntax, all sentences have to be labeled as grammatical or ungrammatical.

The improvements listed above make PAC learning more suitable for many prac-
tical learning scenarios compared to the IIL. However, it is still difficult to arrive
at conclusions regarding child language acquisition based on models studied in this
framework. I will briefly mention the shortcomings of the framework for modeling
language acquisition. A comprehensive discussion of PAC learning framework from
the perspective of the language acquisition problem can be found in Clark and Lappin
(2011b, chapter 5).

The PAC framework allows learner to fail on some unlikely input sequences, but
it does not restrict the input distribution. In language acquisition, one expects the
distribution of input to have certain restrictions. With respect to the efficiency of
learning, the PAC framework imposes bounds on the input required. However, these
bounds are not restrictive enough for modeling language acquisition. The learner is
expected to converge using input proportional to some polynomial function on the
complexity of the class of concepts, e.g., grammars, to be learned. However, how this
bound relates to the child language acquisition timeline is rather unclear, and in general,
the polynomial bound on the input does not necessarily guarantee efficient learnability.
I will return to these limitations in Section 3.3.

Even though I pointed out that the PAC framework is not perfectly suitable for
modeling language acquisition, the question whether the classes of languages in the
Chomsky hierarchy are learnable under PAC framework is an interesting question on
its own right. The answer is no. This can be concluded easily from the fact that the
class of all finite languages (a subset of regular languages) has infinite VC dimension
(see, for example, Niyogi, 2006, p. 79 for a more formal statement of this result).
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3.3 Learning theory and the learnability of natural languages
In Chapter 2, I discussed the arguments against the learnability of natural languages,

and argued that most of these arguments are informal in nature, and difficult to decide.
However, it is common to argue for a nativist standpoint based on the results from
learning theory. A recent example from a highly influential article by Hauser, Chomsky
and Fitch (2002) suggests that

. . . there are in principle infinitely many target systems (potential
I-languages) consistent with the data of experience, and unless the search
space and acquisition mechanisms are constrained, selection among them
is impossible. A version of the problem has been formalized by Gold
(100) and more recently and rigorously explored by Nowak and colleagues
(72–75).

The argument, in more plain words, is that the results by Gold (1967) and sub-
sequent research in learning theory support the argument that human languages are
not learnable (unless the learner is constrained in certain ways).3 This is just one
of many examples of similar claims (Clark and Lappin, 2011b, present many more
of the similar quotes from the literature). In this section, the question that I would
like to return to is, ‘Do results from learning theory support one of the positions in
the nature–nurture debate?’ Section 3.2.2 pointed out that as valuable as it is as an
early work on learnability the IIL framework, Gold (1967), is not a good model of
practical learning. Later work in learning, such as the PAC framework, improves some
of the unrealistic assumptions of IIL, but it is not unproblematic in modeling language
acquisition. Below, I will revisit these problems, and review some of the more relevant
work from the learning theory literature.

The first problem is that IIL requires exact convergence to the target. In child
language acquisition, this translates to the requirement that child learns exactly the
same grammar his/her parents use. This begs the question of which parent, since it is no
surprise that the child will generalize to a grammar somewhat different than the adults
he/she communicates with. Furthermore, it is reasonable to expect that our grammars
fluctuate even in adulthood. By analyzing Christmas messages of Queen Elisabeth II
for a thirty year period, Harrington et al. (2000) demonstrates that even people whose
language is taken as reference, are subject to this fluctuation. This problem is not
peculiar to language acquisition. In many other learning tasks, approximately correct
learning is what we are happy to accept, and the PAC framework acknowledges this. In
PAC learning the learner is expected to make a small number of mistakes, and the error
rate is required to drop as more input is provided.

3Incidentally, the research by Nowak and colleagues cited in this quote (Nowak and Komarova, 2001;
Nowak et al., 2001, 2002, 2000) is concerned with the evolutionary conditions that would lead to a commu-
nication system with combinatorial syntax. These studies touch some of the issues from learning theory but
they are not the best representative work from learning theory after Gold (1967).
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A second problem is related to the efficiency of learning. The IIL framework
does not impose bounds on the amount of input and time required for learning. This
means that even if we have positive IIL results, if we care about learning in a limited
time and limited exposure to input, we cannot conclude that the result is relevant to
child language acquisition. The PAC framework requires learning to succeed with an
amount of input-data proportional to the complexity of the class being learned. More
precisely, the input is bounded by a polynomial function of the representation size of
the target to be learned. This is also an improvement over IIL. However, it should be
noted that the adequacy of this bound depends on the learning problem at hand. The
complexity indicated by different polynomial functions cover a wide range on required
input. For some problems any polynomial bound, indicated by high-order polynomials,
may be adequate. However, in other cases, the amount of input required by a modest
polynomial bound may not be available. Furthermore, the bound imposed by the
PAC framework is on the input. It determines the informational complexity of the
problem. Even if informational complexity is low, learning may be only possible with
computational resources, such as memory or processing power, that are not available to
children. As a result, the learnability results using either framework do not guarantee
efficient learnability.

Another problem with both frameworks is the way they formalize the input. In
IIL, the learner is expected to learn from any valid sequence of inputs, including
the sequences designed to mislead the learner. Clark and Lappin (2011b) discuss a
made-up example of a child whose only input is repetitions of ‘shut up’. Surely, no one
would be surprised if the child failed to learn to speak by the age of three.4 The PAC
framework does not require learning in such anomalous cases. However, it still requires
learning to be distribution free. The learner is expected to learn from any distribution
of grammatical input sentences. This includes arbitrary distributions, such as samples
from sentences of length six or more, or samples of sentences from scientific literature.
A model’s assumptions about input are important in its correspondence with the real
world learning experience. Both standard IIL and PAC frameworks, in this respect, fail
to constrain input to a relevant set. The characterization of the input is important for
the purposes of this dissertation, and I will revisit the problem in detail, and review
some of the solutions offered in the literature in Section 3.3.2.

Besides some inherent problems regarding the standard learning frameworks, the
above discussion points out another important factor for the formal modeling approach:
the way we model the learning setting matters. To be able to define a learning problem
formally, we at least need to define two aspects of the problem:

1. The object to be learned.

2. The learning environment, particularly the input provided to the learner.

4If we follow IIL strictly, though, we should not be worried. Three years may be too early, it is fine as
long as he/she acquires the language before an age less than infinity.
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To prove that languages are learnable under these assumptions, we need to define
an algorithm with an acceptable time and space complexity that learns the target
object with the available input. A negative result can be obtained proving that no such
algorithm exists. The next two subsections discuss typical choices made in learning
theory literature with respect to these aspects of the language acquisition.

3.3.1 The class of natural languages and learnability
While introducing the Chomsky hierarchy in Section 3.2.1, I have stressed that

despite its usefulness in many areas of research, this hierarchy is most interesting
because of its formal properties, rather than their relevance to human languages.

Even though the class of mildly context sensitive languages is considered to be
adequate for representing syntax of human languages, this does not mean that it is the
only adequate set. There are many other ways of defining formal language classes
with this property. Grammar formalisms such as lexical functional grammar (LFG,
Bresnan, 2001), head-driven phrase structure grammar (HPSG, Pollard and Sag, 1987),
and combinatory categorial grammar (CCG, Steedman, 2000) define examples of such
classes. These formalisms deal with most (if not all) known syntactic phenomena in
natural languages in their own way, but they are not equivalent.5

Besides the fact that there are many adequate formalisms, not all languages in
the class of mildly context sensitive languages, or even in regular languages, are
possible natural languages. For example, by definition, all finite sets are members of
regular languages. Just to give an example, we can define a finite language based on
a cryptographic function over the words in the lexicon. By the virtue of being finite,
this language is a regular language. Since both the IIL and PAC frameworks require
all languages in the class to be learnable, we require learner to be capable of learning
this type of languages as well. However, we do not have any reason to assume that
a language defined as a long but finite set, whose elements are random sequences of
words to be learnable by humans. Taking these facts into consideration, if we could
properly formalize the class of human languages, their relationship with the classes in
the Chomsky hierarchy would not be a proper inclusion relation. Rather, we expect
a proper formalization of the class of human languages to cross cut the Chomsky
hierarchy. Figure 3.2 depicts the place of the class of human languages in the Chomsky
hierarchy.

The conclusion so far is that the mismatch between the classes of human languages
and the classes in the Chomsky hierarchy makes the validity of arguments that depend
on results obtained on Chomsky hierarchy, at best, doubtful.

The question is, then, whether there are other, linguistically interesting, classes of
languages that are learnable. The answer to this question is positive; there are numerous

5Some of these language formalisms are overly expressive, they require power of Turing machines.
However, the main point for our discussion is that these formalisms, and the variations of them, do not
necessarily fit into the Chomsky hierarchy.
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Regular

Context Free

Context Sensitive

Recursively Enumerable

Figure 3.2: The Chomsky hierarchy presented in Figure 3.1 with an indication of the place of
the human languages (the shaded area) in this hierarchy.

results in the learning theory literature with positive results on interesting classes of
languages. For example, using a probabilistic version of IIL, Horning (1969) proved
that the class of probabilistic context-free languages are learnable. The results obtained
by Shinohara (1994) and Kanazawa (1996) are examples of positive IIL results by
imposing rather reasonable constraints on more general grammar formalisms. For
example, Kanazawa (1996) presents a positive IIL result for categorial grammars (a
grammar formalism weakly equivalent to context-free grammars) if the number of
categories assigned to a word has a finite bound. Another relevant strand of work by
Angluin (1982, 1988a,b) presents positive results using modified versions of IIL, on
certain subsets of regular and context-free languages. The language classes studied
by Angluin in these works are not powerful enough to represent human languages.
However, more recently, a similar line of research by Clark and Eyraud (2007) and
Clark (2010) presented positive results for increasingly complex classes of languages.

The positive results obtained in some of these studies (for example, Horning,
1969; Kanazawa, 1996; Shinohara, 1994) are proofs about highly expressive sets of
grammars. However, these proofs are proofs of learnability in principle, and they do
not prove efficient learnability (see, for example, Costa Florêncio, 2003, for an analysis
of Kanazawa’s results). However, the line of research following Angluin (1982) on
increasingly complex subsets of language classes on Chomsky hierarchy provides
proofs of efficient learnability. Admittedly, the proofs are on rather restricted classes of
grammars, and even the classes analyzed in the latest studies (e.g., Clark, 2010) are
probably too small to capture all syntactic phenomena in natural languages. However,
this approach to grammar learning, i.e., defining a restricted class of languages and
finding algorithms that learn the class efficiently, provides insights regarding what is
learnable, and which procedures are efficient at learning them.

Rather than a formal characterization of the language class, another common
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nativist argument is formulated as follows: if the set of possible human languages is
infinite, then choosing the correct language among them is impossible (for example,
the quote in page 31). Note that existence of infinitely many languages in a language
class is not enough by itself for the conclusion that the language class is not learnable
according to IIL. This has to be accompanied by another condition that some of the
languages in the class are infinite. The claim that human languages contain infinitely
many possible sentences serves this purpose.6 Indeed, these two conditions are enough
to conclude that the class is not learnable according to the IIL framework. However, it
does not necessarily make the problem unlearnable in the PAC framework. Neither an
infinite number of sentences, nor an infinite number of hypotheses entails an infinite
VC dimension. However, as argued throughout this chapter, the learnability results
obtained using standard frameworks are far from being conclusive. To be able to arrive
at any conclusions, we need to model the language acquisition process in more detail.

3.3.2 The input to the language learner
In a formal model of learning, the characterization of the input affects our conclu-

sions. Not surprisingly, the nativist claims of unlearnability generally come together
with certain assumptions about inadequacy of the input. This argument, known as
argument from the poverty of stimulus (APS), has been the main motivation for many
nativist theories of language acquisition, and a source of active discussion in the nature–
nurture debate. I will only provide a selective discussion of the APS here. A nativist
introduction can be found in Cowie (2010); in their critique of the argument, Pullum
and Scholz (2002) also summarize various versions of the APS claim found in the
literature; and a book-length treatment of the subject can be found in Clark and Lappin
(2011b).

The APS claims in the literature come in a number of forms. First, it is claimed that
the language children hear is ‘degenerate in quality’ (Chomsky, 1965, p. 31), which
makes the learning task more difficult. Empirical evidence suggests that this claim
is wrong. Contrary to the claim, the child-directed speech seems to contain fewer
errors, and adults seem to be adjusting the complexity of their utterances according
to children’s level of the language (Snow, 1972). Second, it is claimed that evidence
required for learning certain type of grammatical constructions are not available in
the input. Pullum and Scholz (2002) show through corpus analysis that the evidence
that is claimed to be missing can be found in real language data if one looks closer.
Furthermore, a large number of computational simulations show that with modest
assumptions about the learner’s nature, these grammatical constructions can be learned
without the evidence claimed to be necessary (e.g., Clark and Eyraud, 2006; Yao
et al., 2009). Finally, it is claimed that children do not receive negative evidence.
This is based on the observation that children only hear grammatical utterances (with

6The assumption that natural languages are infinite is a widely held assumption in linguistic literature.
However, it is not uncontested. See Pullum and Scholz (2010) for a critical treatment of this assumption.
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some noise) in their language. Nobody gives them examples of ‘what not to say’. A
possible source of negative evidence is the corrections they receive for the mistakes
they make. However, it is argued that children receive no reliable corrections for the
grammatical mistakes they make, and when they do, they do not seem to care about the
corrections (Marcus, 1993; Pinker, 1989). This claim is not without controversy either
(for example, Chouinard and Clark, 2003), however the assumption that children do
not get negative evidence is more widely accepted compared to assumptions regarding
degenerate and insufficient input.

The APS claims about the lack of negative evidence is used in connection with the
results from Gold (1967) that even regular languages are not IIL only from positive
evidence. With negative and positive input, powerful classes of languages become
IIL. For example, the proof that the class of recursive languages (a superset of context
sensitive languages) is IIL was presented in the same article by Gold (1967). The
standard PAC framework assumes availability of both negative and positive evidence,
and the learnability results from IIL framework cannot be carried over to the PAC
framework easily. However, it is clear that availability of both positive and negative
evidence facilitates learning. We may follow the common assumption that there
is no direct negative evidence in the input to children, but, is there another source
of information that may function as negative evidence? If we can identify such an
information source by formal means, then it is an empirical question to verify its use in
language acquisition. The following is a selection from such sources of information
discussed in the literature.

3.3.2.1 Queries

A group of formal studies allows the learner to query additional facts about the
language. I will briefly mention two well-known query methods in the learning theory
literature (due to Angluin, 1987, 1988a). The first one, equivalence queries allows
learner to verify his/her guess about the target language. After every input utterance,
the learner guesses the language (by, e.g., writing down a set of grammar rules, or
naming the language). The learner is allowed to query the validity of his/her guess (e.g.
by asking ‘is it English?’). If the guess is the target language, it is confirmed. If it is
wrong, a counter example that is in the target language, but not in learner’s hypothesis,
is provided. The second one, membership queries , allows learner to generate a string
and check its validity. The membership queries are interesting, since they model a
more actively-communicating learner. It is possible to get efficient learnability results
for larger classes of languages under these assumptions. However, both query methods
are of limited value for modeling the child language acquisition setting.7

7Clark and Lappin (2011b, chapter 6) remark, however, that the membership queries can, at least in
principle, be replaced by probabilistic data. This may mean that under the assumption that input to the
child is probabilistic, learning theory results with membership queries might be representing child language
acquisition better.
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3.3.2.2 Probabilistic input

Language data is probabilistic. Even though precise characterization may be
difficult, the linguistic units follow certain probability distributions. For example,
the Zipfian distribution (Zipf, 1935/1965, see also Miller, 1996), is a time-tested
distribution that models distributions of words in linguistic data quite well. The
language children are exposed to during the acquisition process is not an exception.
Furthermore, increasingly more studies in psycholinguistics show that children make
use of statistical information in the input (e.g., Saffran et al., 1996a; Thompson and
Newport, 2007).

The availability and awareness of probabilistic input may compensate for the need
for negative evidence in the formal models described above. In other words proba-
bilistic data may serve as indirect negative evidence . We have already seen that with
probabilistic assumptions, the class of context free languages are IIL (Horning, 1969).
In general, from a formal perspective, probabilistic data allows stronger learnability
results (see Clark and Lappin, 2011b, chapter 6 for a comprehensive discussion).8 In-
terpreting lack of evidence as negative evidence can also explain some of the language
acquisition phenomena. For example, even though infants up to 6-month old seem
to be sensitive to sound contrasts that do not exist in their language, they lose this
sensitivity around a year of age (Werker and Tees, 1984). This is an indication that
unavailability of evidence is used by children as a source for generalization.

It is clear that input, especially the probabilistic distributions of input, is modeled
poorly by formal models in the literature. Most results in the literature are based on
distribution-free learning, which is clearly unrealistic for the child language acquisition
case. There has been some work on restricting the possible distributions (e.g., Clark and
Thollard, 2004). However, it is difficult to choose justifiable distributions for complex
aspects of language data, and the choices of distributions, or families of distributions,
used in the literature tend to be arbitrary. I will return to this discussion in Section 3.5,
and argue that computational simulations offer a better method of modeling the input
for the child language acquisition: by using real-world linguistic data.

3.3.3 Are natural languages provably (un)learnable?
This section reviewed a number of formal studies on learnability of languages that

relate to the question: based on results from learning theory, are natural languages
provably learnable or unlearnable? The short answer is, there is no definitive proof for
either position.

The usual nativist claim that natural languages are unlearnable based on the results
of Gold (1967) is unwarranted. To be able to get to this conclusion we need to assume:

8In computer science, it is well known that probabilistic assumptions often make otherwise intractable
computational tasks easier. Some problems that are intractable for Turing machines, for example, testing
whether a number is prime or not, are solvable (with high probability) in polynomial time on probabilistic
Turing machines (Solovay and Strassen, 1977).
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1. All users of a language share the same grammar, and children are required to
learn this grammar exactly.

2. The input and time available to the child are unlimited.

3. The target grammar to be learned is a grammar from the Chomsky hierarchy of
grammars(such as mildly context sensitive grammars).

4. Except their grammaticality, there is no restriction on the input utterances chil-
dren receive. Children should learn the language even with misleading input
sequences as long as it is grammatical.

Some of these assumptions have been relaxed, and arguably have been drawn closer
to child acquisition setting. However, the review I provided in this section points out
that we are still a long way from a reasonably formal characterization of the child
language acquisition process. The formalization of the last two, the class of natural
languages and the input to the language learner, are particularly difficult. First, we do
not know how languages are represented in human brain. Despite centuries of hard
work, even for well-studied languages like English, descriptive grammars we come
up with are far from complete. As Sapir (1921) famously puts it, ‘all grammars leak’.
That being said, a particular strand of work in learnability theory that seeks provably
and efficiently learnable grammars (e.g., Angluin, 1982; Clark, 2010) may be very
fruitful in finding good candidate grammar classes, or properties of these classes that
are learnable. Other things being equal, i.e., if there is no empirical evidence against
them, provably learnable representations should be favored for modeling language
acquisition.

Second, formalizing linguistic input is another big challenge for formal models.
The linguistic data tends to be complex and messy (Halevy et al., 2009), and it is
difficult to develop simple and mathematically attractive models of all aspects of the
linguistic data. Expressing language data with formulas is, indeed, difficult, but we are
not helpless. We can model the input to the child using real examples of child-directed
speech, and study these models using computational simulations.

3.4 What do computational models explain?
Like Chapter 2, this chapter may appear to be dominated by the nature–nurture

debate. This is partially due to the central position this debate occupies in the language
acquisition literature. But it is also because of the fact that some formal arguments, such
as the argument from poverty of stimulus discussed in Section 3.3.2, are answered best
with computational models. However, computational models can, in principle, answer
more questions than the question of innateness. A selection of these questions has been
listed in Section 2.3. In this section I will briefly describe a general classification of the
models according to what type of questions they are designed to answer.

In modeling cognitive phenomena (and many other natural phenomena), we seek
answers at different levels. The distinction made by Marr (1982) has been an influential
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way to classify the computational models according to the level at which they provide
explanations. Marr (1982) suggested three levels at which an information processing
system can be studied. First, the computational level seeks answers to the questions
what and why , focusing on the more abstract explanation of the computational system.
Second, the algorithmic level is concerned with the question of how, focusing on
the procedures and input/output representations used by the system. The third level
is the implementation level , which is concerned with how the system is realized
physically. Marr (1982) presented explanations for a cash register at different levels
as an example. At the computational level, an explanation of what the cash register
does can be explained by addition. Notice that this explanation is independent of the
explanation at the algorithmic level, e.g., whether the addition is carried out using
binary or decimal digits. In turn, explanation at the algorithmic level is independent
of the implementation level, for example, whether the hardware is realized using
mechanical parts or electronic circuits.

In descriptions of the models in the literature, it is often not clear at which level the
model is providing explanations. Most computational models of language acquisition
fall into the computational or algorithmic level, even though connectionist systems are
sometimes claimed to seek answers at the implementation level. The models that will
be described in this thesis fit best into Marr’s algorithmic level.

3.5 Computational simulations
The methods discussed in Section 3.2 and 3.3 are studies of language acquisition

that stem from the field of computational learning theory. These studies typically
define the computational system mathematically, and the questions of interest are
investigated using a mathematical analysis of the model. A related method of study is
to define a model formally, but to use computational simulations, instead of studying
it analytically. Like computational learning theory, the early work on computational
simulations started in 1960s (e.g., Olivier, 1968). However, there has been an increasing
number of computational simulations of various aspects of language acquisition for the
last two decades (Brent, 1996; MacWhinney, 2010). While formal analyses are better
suited for finding provably working models, computational simulations are better suited
for modeling aspects of language acquisition where it is difficult to find mathematical
formalizations, such as the input to the child during language acquisition. A subset of
the computational models that are related to the simulations reported in this thesis will
be discussed in Chapter 5.

Both methods, mathematical analysis and computational simulations, require a
careful description of the problem. Arguably, the analytical study of a model provides
better insights into the problem being modeled. Computational simulations can treat
certain parts of the model as a black box, and may not explain what the contents of the
black box are, or how it relates to the problem (this is, for example, one of the criticisms
against artificial neural networks). However, this can also work to the advantage of the
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modeler. For example, one can leave a certain aspect of the model, such as a certain
parameter value, relatively underspecified, and let the simulation explore this aspect.

Furthermore, if some data the model uses is difficult to formalize mathematically,
computational simulations allow modeling the data with a sample. As I argued in Sec-
tion 3.3.3, this particular property of computational simulations is useful in modeling
language acquisition phenomena. We cannot easily express the linguistic input to the
children with mathematical formulas. However, we can easily take an appropriate
sample for the problem at hand from the growing body of child-directed corpora, for
example from CHILDES (MacWhinney and Snow, 1985). The results still depend
on how representative the chosen sample is. However, in most cases the idealizations
caused by samples taken from real-world data are not as restrictive as mathematical
formulations of the data.

Besides the use of real-world data samples, the models designed for computational
simulations can afford to experiment with more complex learning algorithms. Naturally,
learning algorithms with formal proofs of convergence should be used when available.
However, for many complicated problems, obtaining these proofs is difficult.9 With
the availability of cheap and powerful computation, it is easier, in most cases, to test
the performance of the algorithms empirically using computational simulations.

Computational simulations of language acquisition are closely related to the nat-
ural language processing (NLP) applications that are designed for similar purposes.
However, the NLP applications do not have to be compatible with the child language
acquisition process. For example, it is typical in this field to use supervised learning
methods that make use of informative annotations that are unrealistic for modeling
language acquisition. Most learning models in the NLP literature are designed to solve
an engineering problem without any interest in child language acquisition. However,
solutions of similar problems in different fields often inform each other.

Even though most NLP work is not suitable as a model of human language acqui-
sition, the unsupervised models in this field can, in fact, provide explanations to the
language acquisition process at Marr’s computational level described in the preceding
section. An example relevant to the discussions in this chapter is the unsupervised
learning of syntax. For example, Klein and Manning (2004, 2005) presented successful
experiments with learning syntax in an unsupervised manner. Note that these models
do not model how children learn syntactic rules. However, they show that using an
unannotated corpus a certain level of success can be achieved in learning syntactic
structure found in corpus. If we accept the level of success reported in these examples,
this already indicates that the popular negative identification in the limit (IIL) results
are not relevant when a sample of real-world language data is taken as input.10

9Formal proofs can also be discouraging since typically these proofs are concerned with worst-case
scenarios. There are examples of computational tasks with complex worst-case running time, but rather good
typical running times. Examples include well known sorting algorithm quick sort (Knuth, 1997, section
5.2.2) and parse recovery algorithm in a chart parser (Jurafsky and Martin, 2008, chapter 13).

10As a matter of fact, even the supervised models of learning syntax (e.g., Clark and Curran, 2003;
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Similar results can be derived from computational models that specifically model
aspects of human language acquisition. For example, Clark and Eyraud (2006) present
a model that learns the formation of the English interrogative question (introduced in
Section 2.2.1) from a set of sentences that are claimed to be insufficient for learning
this phenomenon. In a similar study, as well as the English interrogative questions,
Yao et al. (2009) presented a model that learns another syntactic phenomenon, English
auxiliary order, that is frequently claimed to be unlearnable from the data available to
children. Crucially, both studies assume relatively simple inductive biases. Although
the question of whether the inductive biases of these models support empiricism or
nativism is difficult (if not impossible) to answer, they demonstrate clearly that once the
phenomenon of interest is modeled carefully, the conclusions from informal arguments
may change drastically.

One last issue I would like to address here is the skepticism towards the utility of
computational models. I believe the models from other fields listed at the introduction
to this chapter present a clear case for modeling practice in general. We rarely doubt
the utility of models, such as a mathematical model of the orbit of a planet, or an animal
model for testing effects of a particular chemical on humans. The parallel modeling
practice in language acquisition is computational models. Admittedly, we do not have
computational models of language acquisition with similar predictive power. On the
other hand, this is not a problem inherent to computational modeling practice. If our
knowledge of language acquisition were as precise as our knowledge of astronomy, for
example, then we would be able to build computational models with highly precise
predictions. This does not mean that we should better stop the modeling practice until
we have a level of knowledge adequate for a certain predictive accuracy. As discussed
throughout this chapter, the predictions are not the only function of the modeling. Even
predictions that arise from rather simple modeling practices can provide further insights,
and raise useful research questions that may otherwise be overlooked. For example, a
decision taken in computational modeling of segmentation by Brent (1999a), was to
insert complete utterances into the lexicon if the input utterance cannot be segmented.
Questioning the relevance of this modeling decision, Dahan and Brent (1999) tested
this experimentally and found parallels between the model and the humans in this task.

The idealizations a computational model makes are another source of skepticism.
Computational simulations generally make certain idealizations about certain aspects
of the process or input to the language learner. However, it should be noted that
idealizations are part of all other methods of study. For example, since use of artificial
languages provide a better controlled experimental setting, many experimental studies
use artificial languages to test human linguistic performance. On a related note, the
experimental methods typically study a very specific question in a well-controlled

Collins, 1999) can be taken as an indication of failure of negative IIL results. For the IIL framework, as long
as negative evidence is not supplied, supervised learning, does not change the conclusions. Learning from
positive examples of a set of sentences, or positive examples of a set of sentences paired with a representation
of their syntax does not make a difference.
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setting. Computational simulations in the literature tend to model a relatively general
phenomena (cf. the experimental study by Saffran et al. (1996a) and the computational
models of segmentation reviewed in Chapter 5). As a result, studies in psycholinguis-
tics tend to provide precise answers to specific questions, while most computational
simulations model a more general question. This difference, rather than indicating a
weakness of computational models, rather suggests complementary use of these two
methods.

The aim of this section has been to reflect on the role of computational simulations
as a method of study of language acquisition. I argued that the formal analysis and
computational simulations are two complementary ways to study models of language
acquisition. However, the simulation approach is at an advantage in modeling aspects
of language acquisition that are particularly difficult to express using mathematical
means. In general, despite their shortcomings, the computational models are a valuable
tool in studying language acquisition. I will return to the issues raised in this section
throughout the rest of this thesis.

3.6 Summary
Modeling is a common practice in science. We build models of natural phenomena

to learn about the phenomena, as well as to make predictions about what we do not
know about them. The computational models that will be presented in this thesis are
examples of this practice.

In this chapter, I distinguished two different ways to study computational models
of language acquisition. First, the formal, analytical studies of these models in com-
putational learning theory, and second, the computational simulation practice that has
become an indispensable method in modeling various cognitive phenomena. The main
bulk of the chapter reviewed the first method of study along with its relation to the
question of whether natural languages are learnable or not. Computational learning
theory has advanced considerably since its inception by Gold (1967). However, with
regard to the learnability question, arriving at any strong conclusion based on work on
learning theory is not yet possible. On the other hand, the function of computational
modeling is not only answering questions of learnability. These models, as they mature,
may provide more insight into other interesting questions about language acquisition,
and provide valuable predictions.

The study of computational models by formal analysis and computational simula-
tions are complementary methods of study. However, as I argued in Section 3.5, the
simulation approach is particularly useful when there are aspects of the phenomenon,
such as input in language acquisition, that are difficult to formalize mathematically.
This difference, however, should not be understood to mean that computational sim-
ulations are based on less-formal models. The difference emphasized in this chapter
is about the method of study. Both methods of study require models to be specified
formally. However, the choice of the method affects how certain idealizations, or
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approximations, can be made during the modeling practice. For example, noise in the
input is likely to be modeled as a probabilistic bound if one choses to study the model
analytically. On the other hand if simulations are to be used, one can explore a larger
range of bounds in more detail, or if real-world data is used, model it with the noise in
the input sample. Section 3.4 described an influential classification of computational
models, (due to Marr, 1982), according to what type of questions they answer.

This chapter concludes our survey of the broader field of formal language acquisi-
tion research. The next chapter introduces the problem of segmentation, the problem
which the modeling effort in this thesis will focus on.





4 Lexical Segmentation: An Introduction

Music is a hidden arithmetic exercise of
the soul, which does not know that it is
counting.

Gottfried Leibniz

Segmentation is crucial in language processing. In a large number of linguistic
tasks one needs to segment a continuous stream into units such as words, morphemes,
syllables and phonemes. The speech signal is continuous, and spoken language input
does not include a single consistent marker similar to white spaces in most writing
systems. However we recognize discrete units at multiple levels, e.g., phonemes,
syllables, morphemes and words.

bljuuz
epzpvuijoljutbljuuz
zpvdbouijoljutbljuuz
jtuibubljuuz
ifsfljuuzljuuztmffqjohljuuz
mpplzpvdbotujdlzpvsgjohfsjouifsf
tujdlzpvsgjohfsjouibuipmfsjhiu
hppehjsm
opxmfuttffxibutuifcbcztbzjoh

pubuztsujjbjujbeuzjltsdbtuofui
oijtptjz
cublitipztbojjbubpfjljufzlv
upjzijmululzpijfjzu
odhvsfzfxjigtuzquuld
msphflluivgluczjbsxobjijfepufjsf
htjupmvszfuz
bjupvuoouuldmumhplouozsphfih
hoofut

Figure 4.1: Two input sequences representing unsegmented linguistic input.

Fluent language users identify the lexical units in speech so effortlessly that it
is difficult to imagine that segmentation is a problem at all. The problem becomes
apparent when one listens to an unfamiliar language, where identifying word-like units
becomes close to impossible. Given that the speech signal does not include reliable
indicators where one lexical unit ends and another begins, how do humans identify the
lexical units, e.g. words?1

1Commonly, words are considered to be the lexical units. However, models that allow sub-word units,
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To motivate the rest of the discussion and have an impression of the problem that
children face, we will first work through an informal example. Consider the sequences
in Figure 4.1.

The strings on the left side of Figure 4.1 are nine consecutive child directed utter-
ances from the CHILDES database (MacWhinney and Snow, 1985). The transcriptions
of the utterances are systematically (but simply!) modified to remove the advantage
of the knowledge of the lexical units in English. The letters are garbled by mapping
each letter systematically to a different one. All word boundaries, except the utterance
boundaries, are removed from the transcriptions. This gives a first impression of the
problem that a learner without knowledge of lexical units faces, e.g., an infant acquiring
language. This example includes some additional information, such as distinction of
letters (or phonemes in child’s case), that an infant does not have at birth. On the other
hand, the example also lacks some cues for boundaries, such as prosody and possible
pauses, which are found in the linguistic input to children. The strings on the right side
of Figure 4.1 are formed by using the same letters, however, sequences of letters and
utterance boundaries are randomized.

Even though it is puzzling at first look, if we examine it carefully enough, we
can find some regularities on the left side of Figure 4.1. First thing to note is that
some substrings, such as ljuuz, bljuuz (which also occurs as an utterance by
itself) and epz repeat multiple times. Another regularity we can observe is that
some characters or character sequences consistently follow (or precede) others. For
example, character sequences like jo, ju and lj are very frequent (with frequency
of 8, 9 and 9, respectively), while some others are rare or not observed at all. 52
two-character sequences are observed only once, and only 91 of the 484 possible
two-character sequences are observed. On the other hand, no matter how long we stare
at the right side of Figure 4.1, we cannot observe similar regularities on the right since
this sequence is formed by random concatenation of the same letters.2

Even in this small sample, we can find a number of regularities that are typical for
natural languages, such as repeated strings, and principled sequences of basic units
(e.g., letters). Furthermore, there are properties of the speech signal that are difficult
to demonstrate on paper. The regularities demonstrated in this example are not all
possible regularities that one can utilize to discover lexical units from natural language
input. We will discuss others in detail, and return from time to time to this example.

The task for the language user, then, is to spot the lexical units in the continuous

i.e., morphemes, as well as multi-word units are better models of the human lexicon (see, for example, the
discussion in Davis, 2006, p. 12, and the references therein). In this thesis the terms word and lexical unit
are used interchangeably. It is explicitly indicated where the difference matters.

2Note that the sample on the right side is not completely arbitrary either. Although their location is
randomized, the letters and the lengths of the utterances are chosen to be identical to the real language
sample. Hence, for example, finding that the letter ‘j’ is the most frequent letter on the right side just as in
the left side is not surprising. For the benefit of those who have not yet discovered the cipher in Figure 4.1,
the same sequences are repeated in Figure 4.2 without garbling the letters.
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akitty
doyouthinkitsakitty
youcanthinkitsakitty
isthatakitty
herekittykittysleepingkitty
lookyoucanstickyourfingerinthere
stickyourfingerinthatholeright
goodgirl
nowletsseewhatsthebabysaying

otatysrtiiaitiadtyiksrcastneth
nhisosiy
btakhshoysaniiataoeikiteyku
toiyhiltktkyohieiyt
ncgureyewihfstypttkc
lrogekkthufktbyiarwnaihiedoteire
gsitoluryety
aitoutnnttkcltlgokntnyrogehg
gnnets

Figure 4.2: The original sequences in Figure 4.1 where the letters are replaced with the succeeding
letter according to ASCII code. The presentation is inspired by Cohen et al. (2007).

speech stream by making use of a number of noisy and sometimes conflicting regu-
larities, or cues. For a competent speaker of a language, the task is somewhat easier:
the (implicit) knowledge of the language, such as the words or possible phoneme
sequences, is useful for segmentation. However, the task becomes more challenging
for a learner who has only partial knowledge about the language to be learned or none
at all.

The next section will provide a brief review of the field of word recognition. The
studies reviewed in this section assume that the words are already known. Naturally,
these studies are model of adult performance in this task. Section 4.2 will review
the psycholinguistic literature most relevant to the computational models that will be
developed throughout the rest of this thesis.

4.1 Word recognition

Even though the models developed in this study do not assume that learner starts the
task of identifying words with a complete lexicon, the study of adult word recognition
is a closely related field of research. Knowing words of the input language helps
recognizing them in the continuous speech stream considerably. The informal example
we have discussed at the beginning of this chapter already demonstrates that. Although
it is almost impossible to identify the words in the left side of Figure 4.1, for speakers
of English, the words in the left side of Figure 4.2 is easier to extract. However, the
recognition of words in real world speech stream is more difficult than it seems in this
example.

The difficulty of identifying words in continuous speech stems from two factors.
First, the listener has to deal with a large number of acoustic hurdles, including
noise and variability of speech signal due to speech rate, dialectal differences and
differences in individual speakers’ voice. Considering, in addition, that the word
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r e k @ n ai s b ii ch
her and I s be
a aren’t ice bee

an eye beach
not

nice
an

aren’t speech
in ice speech

wreck on
reckon

recognize

Figure 4.3: An automatic speech recognizer’s attempt to segment the phrase recognize speech.
Example re-produced from Shillcock (1995).

pronunciation (tokens) differ at least slightly from each other acoustically, even if they
are heard in isolation, recognizing words in speech sound is a difficult task. Second,
the input is generally compatible with multiple segmentations all supporting complete
segmentation of the input utterance. Figure 4.3 demonstrates these difficulties by
presenting segmentations offered by an automatic speech recognition system for the
phrase recognize speech. This is a popular example in speech recognition literature
where, among others, an alternative hypothesis during segmentation of the utterance
recognize speech is wreck a nice beach.

A large body of literature exist on spoken word recognition (see Dahan and Mag-
nuson, 2006; Davis, 2006, for comprehensive reviews). Most studies in the field are
highly involved in the modularity debate. They focus on the manner in which low level
perception is affected by higher level lexical knowledge. A number of phenomena
demonstrate that word recognition is affected by other cognitive tasks or knowledge. In
addition to the lexical knowledge, higher level linguistic processes—syntax, semantics
and discourse— and non-linguistics context, e.g., related visual stimuli, affect the
perception of the sounds, and recognition of the words. Some phenomena that show
effects of higher level knowledge to perception of sounds are listed below.

• The word superiority effect: target phonemes are detected more quickly in words
than in non-words (Rubin et al., 1976).

• The phoneme restoration effect: when certain phonemes are masked, by a cough
or a buzz, listeners report hearing phonemes that are consistent with the lexical
context (Warren, 1970).

• Ganong effect: an ambiguous sound in a phonetic continuum such as /t/ and /d/ is
interpreted in the context that yield a lexical unit. When changed systematically
from /d/ to /t/, the ambiguous sound is interpreted as /t/ earlier in the context



4.2. Lexical segmentation 49

-ask, than in -ash (Ganong, 1980).

• Some phoneme changes (e.g., /bit/ and /pit/) detected by the listeners when a
word is presented in isolation are undetected if the word is embedded in a phrasal
or sentential context (Cole, 1973).

• Helpful visual context facilitates ambiguity resolution (Tanenhaus et al., 1995).
Even though the form and timing of the interaction is debated, it is uncontroversial

that both high-level linguistic knowledge of the speaker, e.g., lexical units, and the
low-level information from the acoustic signal interact in word recognition. All of
the influential models of spoken word recognition, e.g., COHORT (Marslen-Wilson,
1987; Marslen-Wilson and Welsh, 1978), TRACE (McClelland and Elman, 1986),
Shortlist (Norris, 1994), integrate both bottom-up and top-down sources of information.
Differences exist in the way the recognition process incorporates the information, as
well as the processing strategies. However, for our purposes here, these differences are
irrelevant. All word recognition models base the identification of words in the input
stream on the lexical knowledge. Words in the input stream are identified as the initial
segments of the input are matched against already known words in the lexicon. These
models provide varying degrees of success in predicting human performance. The
weakness of word recognition models for our purposes is that they require a relatively
complete lexicon, and they do not explain how infants start spotting unknown words in
continuous speech stream without a lexicon.

Even though they do not offer a way to bootstrap the lexicon, the insights and
mechanisms offered by these models are still relevant after the lexicon is populated by
other means.

4.2 Lexical segmentation
While researchers studying word recognition were busy with the modularity debate,

the focus of speech segmentation literature for the last two decades has been a debate
between the role of prosodic and statistical cues for learning segmentation. Even
though it is known that children are sensitive to a number of other cues, two cues
have been studied extensively in psycholinguistic literature: predictability based on
statistical relationships between consecutive sound segments, and lexical stress . The
former is commonly called statistics , statistical regularities or distributional statistics
in the literature.3 The latter, lexical stress, is the most studied prosodic cue, although
there are a number of other prosodic cues that are helpful for lexical segmentation.

In this section we will review some of the cues that are believed to be used by infants
in constructing their initial lexicon. The cues are simply some aspects of linguistic
input. They are typically low-level perceptual signals such as pauses. However, there

3Although it is very common to see these terms used as if they are equivalent to the predictability-based
cues, statistics or distributional regularities that serve as predictability cues are just one of many other uses
of statistics in language acquisition.
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phoneme h I y z k w I k @ r
SV 9 14 29 29 11 6 10 28 14 28

Figure 4.4: Example successor values for the phrase /hIyzkwIk@r/ ‘he is quicker’ determined by
Harris (1955).

is evidence that a broad range of cues that are derived in a longer time span, such as
statistics over consecutive syllables, are also used in lexical segmentation. For a cue
to be useful in extracting lexical units from continuous speech, we need to establish a
number of facts:

1. The learners are sensitive to the cue.
2. The cue is useful for a learner as it is available in the input.
3. Existence of the cue in the input facilitates the segmentation task.
Although all the questions are addressed by the experimental studies to some extent,

the majority of the studies in the developmental psycholinguistics are concerned with
the first item above. Last two points provide a good case for computational simulations
and corpus analysis.

4.2.1 Predictability and distributional regularities
Natural language utterances are not arbitrary strings of phonemes; instead they are

produced by concatenating lexical units. Because of the way they are formed, natural
language utterances exhibit certain statistical regularities. At least as early as Harris
(1955), it was known that a simple property of natural language utterances can aid
identifying the lexical units that form an unsegmented utterance:

Predictability within the units is high, predictability between the units is low.

Harris operationalized this idea by introducing a measure called successor variety
(SV). SV is simply the number of distinct phonemes that may follow a certain initial
utterance segment. The higher the SV, the lower the predictability of the next phoneme,
and the more likely it is to encounter a boundary after the segment. Figure 4.4 presents
an example from Harris (1955), where successor values are given after each possible
initial substring of the phrase /hIyzkwIk@r/ ‘he is quicker’. According to this strategy,
the higher the successor value, the higher the chance of having a lexical boundary.

There was some early work on using this approach for natural language processing
applications (e.g., Hafer and Weiss, 1974). However, for a long time, the idea was not
investigated in developmental psycholinguistics as a possible source of information
that children may use for segmentation. The influential study by Saffran, Aslin and
Newport (1996a) showed that 8-month-old infants, indeed, are sensitive to this type of
information and that they use it to extract word-like units from an artificial language
stream without any other cues to word boundaries. Saffran et al. (1996a) used another
measure of predictability which they called transitional probability (TP). The TP is
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defined over two successive units. It is simply the conditional probability of seeing a
unit, e.g., a syllable, given the previous unit. Given two units l and r the transitional
probability TP(l, r), sometimes denoted TP(l→ r), is defined as4

TP(l, r) = P(r|l) =
P(lr)

P(l)
≈ frequency(lr)
frequency(l)

(4.1)

For example, given the string ‘bidakupadotigolabubidakugolabupadoti’ the TP
values for pairs of syllables bi–da and ku–pa can be calculated as

TP(bi, da) = P(da|bi) =
frequency(bida)

frequency(da)
=
2

2
= 1.0

TP(ku, pa) = P(pa|ku) =
frequency(kupa)

frequency(ku)
=
1

2
= 0.5

suggesting that it is more likely to have a boundary between ku–pa than bi–da .
Saffran et al. (1996a) used an artificial language stimuli constructed by concate-

nating 3-syllable artificial word-like units. The stimuli is formed such that the word-
internal syllable transitions were completely predictable (TP = 1), while predictability
was lower between the words (TP = 1/3). There were no acoustic cues indicating the
word boundaries. After two minutes of familiarization, the infants reacted significantly
differently to a test stream that was formed with the same words, compared to a speech
stream that included same set of syllables with the same frequency of occurrence but
was formed using concatenation of parts of words of the familiarization phase.

After Saffran et al. (1996a), a large number of studies confirmed that predictability
based strategies are used by adults and children for learning different aspect of language
(e.g., Aslin et al., 1998; Graf Estes et al., 2007; Newport and Aslin, 2004; Perruchet
and Desaulty, 2008; Thiessen and Saffran, 2003; Thompson and Newport, 2007).

An important feature of the predictability based strategy is that it does not require
any initial lexical knowledge, and it is completely language independent. A learner
with the knowledge of the basic units, e.g., phonemes, can readily use a predictability
based strategy to start extracting units from continuous speech.

The measures discussed above, successor variety and transitional probabilities , are
not the only measures of (un)predictability. There are a number of other measures for
quantifying the predictability, such as entropy and mutual information . We will return
to alternative measures in Chapter 6.

4To avoid notational clutter, a somewhat sloppy probability notation is followed throughout this thesis.
The notation P(r|l) means the probability that the syllable in the next position is r, given the current syllable
is l, P(st+1 = r|st = l). The symbols l and r will consistently be used for the sequences of the phonemes
to the left and right of the position in question, respectively.
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The strategy of positing word boundaries where there is an unexpected sequence
of syllables or phonemes is one of the strategies that is in line with the evidence of
the sort provided by Saffran et al. (1996a). Another strategy that is compatible with
the same type of analysis is identifying sequences that frequently occur together in
varying environments as possible words. Even though it is not studied extensively
in the psycholinguistic literature, a large number of computational models of speech
segmentation make use of this strategy (e.g., Brent, 1999a; Goldwater et al., 2009;
Venkataraman, 2001, among others). The main driving force behind these models
are sequences that co-occur frequently in varying contexts. It is strongly related to
predictability based strategies. In their basic form, both strategies depend on the fact
that the speaker generates the utterances using units from his or her lexicon. Both the
unpredictability of syllable sequences and observing frequent sequences in differing
context in the input are artifacts of this process. Most importantly, both strategies are
language independent and do not require knowledge of any lexical units in advance.

4.2.2 Prosodic cues
It is known that even a few day old newborns show sensitivity to overall prosodic

structure of the language they are exposed to before birth (Mehler et al., 1988; Moon
et al., 1993; Ramus, 2002).

The term ‘prosody’ encompasses a relatively large set of acoustic phenomena that
may be useful for segmentation, such as pitch contour that marks some sub-clausal
boundaries and lengthening of final segments of a lexical unit. However, the only
well-studied concrete prosodic segmentation strategy is based on lexical stress .

Since most content words in English follow a strong–weak (trochaic) stress pattern,
it seems that adults (Cutler and Butterfield, 1992) and 7.5 month old children (Jusczyk,
1999; Jusczyk et al., 1999b) use a segmentation strategy that proposes word onsets
before the strong syllables. The lexical stress is useful for segmentation of English
as most content words in English are stressed on their initial syllable.5 However, this
strategy is not equally effective for all languages. The languages vary depending
on where primary stress falls within words as well as consistency of location of the
primary stress. The experimental evidence for use of stress in different languages are
also mixed. On one hand, a similar trochaic pattern preference is found for Dutch
(Vroomen et al., 1996), and Canadian-French speakers seem to make use of the weak-
strong (iambic) stress pattern for segmentation (Polka and Sundara, 2003). On the
other hand, infants learning (European) French and Spanish do not seem to make use
of stress as a segmentation cue (Nazzi et al., 2006).

A more general version of this strategy, the so-called metrical segmentation strategy
(MSS), is advocated particularly by Cutler and her colleagues as both a processing

5Cutler and Carter (1987) reports that 71% of all words, 90% of the content words in MRC Psycholin-
guistics database (Coltheart, 1981; Wilson, 1988) have strong initial syllables. One should note, however,
that most frequent words, e.g., function words, are unstressed, and numbers vary depending on how one
counts them (see Swingley, 2005, for a more careful analysis).
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strategy for adults, and as a ‘bootstrapping’ method for children (Cutler, 1996; Cutler
and Butterfield, 1990; Cutler and Carter, 1987; Cutler and Mehler, 1993). The MSS
relies on the so-called rhythmic classes of languages (Pike, 1945). Despite contrary
empirical evidence (Dauer, 1983; Roach, 1982), the intuition behind the rhythmic
classes is that certain units are produced at approximately equal intervals. In stress-
timed languages (e.g., English and Dutch) this unit appears to be the stressed syllables.
In syllable-timed languages (e.g., French and Spanish) the syllable is assumed to be
the rhythmic unit.6 Then, MSS suggests that once the infants tune into their languages’
rhythmic class, they use it for lexical segmentation. The lexical stress, and how
it can help lexical segmentation is well founded. However, the status of an MSS-
like strategy for syllable-timed languages is rather uncertain. To my knowledge, the
studies advocating syllable-based segmentation do not go further than establishing the
syllable’s role as a perceptual unit which shows cross-linguistic differences (Cutler
et al., 1986). Additionally, even though lexical stress has been used in explicit models
of segmentation (e.g., Christiansen et al., 1998), there is no explicitly stated method
that uses a general MSS like strategy based on syllables (see also the discussion on
units on computational models of segmentation in Section 5.1).

The claim that the MSS can serve as a bootstrapping method to start extracting
lexical units without aid of a lexicon (Cutler, 1996; Cutler and Mehler, 1993) relies
on the fact that children are sensitive to prosody very early in life. However, it is
again unclear how this can be done. Even if it is a very reliable indication to the
word boundaries, the lexical stress patterns differ among languages. For example in
two languages that are observed to have highly regular stress patterns, Finnish words
are stressed on their first syllable while Polish words are stressed on the penultimate
syllable. For a learner to figure out the stress pattern of the ambient language, they
first need to learn a relatively large number of lexical items. There are suggestions
that MSS can be bootstrapped from the lexical units learned either by using statistical
predictability (Swingley, 2005; Thiessen and Saffran, 2004) or possibly by first learning
the isolated words and short utterances (Johnson and Seidl, 2009).7 In any case, the
stress-based segmentation strategy as sole bootstrapping method is not a viable option.

The lexical stress seems to be the only viable rhythmic cue that is present in
the input, and it is used at least by learners of some languages. The other rhythmic
segmentation strategies may be useful for segmenting speech into basic perceptual
units. However, these methods need explicit suggestions of how they can be used for
extracting lexical units from continuous speech.

6Another category found in the literature is based on mora (a sub-syllabic unit, see Mazuka, 2007,
for a recent discussion relevant to segmentation). The only language identified so far that is claimed to be
mora-timed seems to be Japanese.

7Swingley (2005) presents an analysis of very short utterances in the Korman corpus (Korman, 1984)
which largely undermines the second hypothesis. According to this particular analysis, the stress pattern of
short utterances is dominated by strong-strong pattern by a large margin, and for some counts the reverse
(weak-strong) pattern is also more frequent than the expected strong-weak pattern.
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The majority of studies that investigate role of prosody on lexical segmentation
have focused on rhythmic structure of the language. Another aspect of prosody that
received relatively little attention is prosodic marking of sub-clausal units, such as
intonational phrase and phonological phrase .8 Since phrase boundaries are also word
boundaries, they can be useful the same way pauses are useful for segmentation. Adults
are found to be sensitive to intonational boundaries and they use this information in
lexical segmentation (Shukla et al., 2007). It was also found that 6-month-old infants
show sensitivity to prosodic phrase boundaries (Soderstrom et al., 2003). The way the
phrase boundaries can aid lexical segmentation is clear: like utterance boundaries, they
can constrain the hypothesized lexical units, and also give further hints for beginnings
and ends of lexical units.

In summary, certain prosodic cues seem to play a role in segmentation. Concrete
proposals exist for the effects of lexical stress and the sub-sentential units marked
with prosody. However, proposals suggesting contribution of other prosodic cues (for
example, syllable-based rhythmic structure of some languages) are rather unclear.

4.2.3 Phonotactics

In the segmentation literature phonotactic cues refer to the way sounds in a natural
language are organized to form lexical units. For a given language, some sound
patterns do not occur, some tend to occur more at the beginning of the words, some
word internally and some at the end of words. For example, the sound sequence /Tm/
does not occur in English words. If one observes this sequence in an unsegmented
utterance such as withmilk, it can serve as a cue that there is a word boundary between
these two sounds. Commonly, these regularities are assumed to form constraints . That
is, a certain sound sequence is either possible in the context of interest, or not. However,
one can also expect more soft tendencies, where some sequences are more likely than
others.

Combined with the findings that adults (Greenberg and Jenkins, 1964) and infants
as young as 6-month-olds (Jusczyk et al., 1993) are sensitive to sound regularities that
form words in their language, it is reasonable to assume that phonotactics is a possible
source of information that can aid segmentation.

Jusczyk et al. (1993) showed that 9-month-old English learning infants distin-
guished between sound sequences of English and Dutch, two relatively similar lan-
guages. However, 6-month-olds did not show the same distinction, but distinguished
more distinct sound patterns, e.g., sound patterns of Norwegian vs. English. Further-
more, Jusczyk et al. (1994) showed that 9-month-olds learning English were also
sensitive to the frequency with which certain sound sequences occur in English. Thus,

8Intonational phrase refers to the segment of speech that occurs with single prosodic (i.e., pitch or
rhythmic) contour. Prosodic phrase is typically a content word and its associated function words (Nespor
and Vogel, 1986).
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evidence suggests that the infants develop a sense of the sound sequences in their
language early on, and that they do it in a graded manner.

Although it is common to view phonotactics as a set of hard constraints, phono-
tactics is essentially based on the statistics of sound sequences. Hence, it is closely
related to the sensitivity that infants show to the distribution of sound sequences that
signal predictability. However, there are two major differences. First, on one hand,
the predictability cue does not require a repository of already identified words, but in
order to learn phonotactic regularities one needs to identify some words first. On the
other hand, once a set of words are available phonotactics can make generalizations
based on positions in the word, while predictability cue does not. For example, the
phonotactics of English would capture the fact that consonant cluster /kt/ would not
occur word initially. On the other hand, this sequence is not likely to be useful for
predictability-based statistics, since it occurs in other contexts relatively frequently, for
example, in talked as in many other past tense forms of verbs ending with /k/. Second,
phonotactics is a language specific cue. Even though /kt/, does not occur word-initially
in English, it occurs in other languages such as Polish. There is some overlap in the
way predictability and phonotactics may provide cues for segmentation. However,
there are differences in what they predict, and in which conditions they function. As a
result, contributions of phonotactics and predictability together are likely to be more
effective than one of them alone.

4.2.4 Pauses and utterance boundaries
Intuitively, pauses are the most robust cues to word boundaries. However, fluent

speech does not have consistent pauses between words. Even though frequency of
occurrence is unclear, it is also known that pauses may occur within the words (Slis,
1970). Pauses alone are not sufficient to determine all word boundaries, nor are they
completely reliable. Nevertheless, when pauses occur (for example at the utterance
boundaries) they can be utilized for lexical segmentation (Christiansen and Allen,
1997). Further evidence suggests that they often occur between phrase boundaries
(Wightman et al., 1992), which appears to be a characteristic of long child-directed
utterances (Fernald et al., 1989).

Since the utterance or phrase boundaries are also word boundaries, pauses can be
useful for segmentation in two ways: First, by restricting possible segmentations, i.e.,
eliminating candidate words that span over pauses. Second, by serving as indications of
sound patterns that occur at the beginning and end of the words, hence, complementing
phonotactics.

4.2.5 Words that occur in isolation and short utterances
A possible step towards building a lexicon is attending to the words that occur

in isolation. The naive strategy of extracting words that are uttered in isolation is
generally dismissed on the logical grounds that there is no reliable way to distinguish
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single-word utterances from multi-word utterances (Christophe et al., 1994). Further, it
was found that words in isolation are not used consistently when mothers are asked to
teach a new word to their children. Even though caregivers used other strategies (such
as placing the new word at the utterance final position) to help the learners, they rarely
used it in isolation (Aslin et al., 1996). Despite these criticisms, Brent and Siskind
(2001) demonstrated that exposure to isolated words facilitates lexical development.
Short utterances can be useful for segmentation in a number of ways. Because of the
increased number of utterance boundaries, they contribute to form a better knowledge
of phonotactics of the language. The number of alternative segmentations is also
smaller for short utterances, which increases the chances of successful segmentation of
utterances that contain unknown words.

4.2.6 Other cues for segmentation

Allophonic cues refer to the fact that some phonemes are realized differently (by
different allophones) depending on lexical context. For example, in English stop
consonants tend to be aspirated when they are word initial (Church, 1987). The
phoneme /t/ in toy is likely to be uttered in an aspirated fashion, unlike the /t/ in bottle,
or cat. Like the phonotactic cues, this acoustic variation depends on lexical context,
and can be useful for segmentation. Indeed, infants around 10.5-months of age are
able to use allophonic differences to extract words from speech (Jusczyk et al., 1999a).
Jusczyk et al. (1999a) habituated infants to bi-syllable sequences like nitrates and night
rates. During the testing phase, 10.5-month-olds showed a preference towards listening
to the passages that contain the habituated words, but 9-month-olds did not show any
preference.

Vowel harmony is another cue found to be used by speakers of languages where
words follow some form of vowel harmony. Vowel harmony places restrictions on
the vowel classes that can be found in a word. In such a language, a class mismatch
between two consecutive syllables provides a cue for a word boundary between these
syllables. Finnish adults (Suomi et al., 1997) and Turkish infants (van Kampen et al.,
2008) have been shown to be sensitive to the vowel harmony of their language, and use
it as an additional cue for segmentation.

Coarticulation refers to the phenomenon that consecutive phonemes overlap during
articulation, and they are realized acoustically differently depending on their phonetic
context. Since this is a source of variation that hearers need to cope with in order to
identify the phonemes, it is normally a phenomenon that complicates the task of the
speech recognition. However, coarticulation turns out to be useful for segmentation
as the overlap between the consecutive phoneme pairs at the word boundaries is less
than the overlap at the word internal consecutive phonemes (Fougeron and Keating,
1997). It is also observed that infants as young as 8-month-olds are sensitive to
coarticulation (Johnson and Jusczyk, 2001) and it overweights other cues particularly
in noisy listening conditions (Mattys, 2004).
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The list of cues to speech segmentation reviewed here is by no means complete.
Other cues varying from syntactic knowledge (Mattys et al., 2007), to visual environ-
ment (Hollich et al., 2005) seem to be playing roles in segmentation of speech signal
by humans. The review in this section provides a background for the type of cues that
are commonly used in computational modeling, including the model of segmentation
presented later in this chapter.

4.3 Segmentation cues: combination and comparison
The experimental studies so far have established firmly that adults and children

are sensitive to a number of cues, so that it is clear that combining information from
multiples sources is advantageous.

• Using information from multiple sources provides redundancy, increasing the
reliability in case some of the sources are noisy.

• By integrating information from multiple sources, it may be possible to derive
conclusions that are not possible to derive from a single source. For example,
using two eyes one can get reliable depth information through stereo vision.

• Using multiple sources of information also facilitates learning (Christiansen
et al., 2005).

Cue combination and integration has been studied more in other areas of cognitive
science such as depth perception and sensory-motor control (e.g., Ghahramani et al.,
1997; Kording et al., 2007; Landy et al., 1995). However, most experimental studies in
the segmentation literature are concerned with establishing an early or more prominent
place for the cue of choice—particularly between statistics and prosody . Studies inves-
tigating the combination of these cues and mechanisms underlying the combination is
relatively few (Mattys et al., 2005; Sanders and Neville, 2000; Shukla et al., 2007).

In the debate between prosody and statistics, the interest is whether one of the
cues dominates the other in case of conflict (e.g., Johnson and Seidl, 2009; Thiessen
and Saffran, 2003), or whether initial bootstrapping is provided by a certain cue
(e.g., Thiessen and Saffran, 2007). Some of these studies seem to be fueled by the
nature–nurture debate: Prosody is taken as the representative of innate, domain-specific
knowledge, and statistics as an example of general purpose learning procedures (e.g.,
Gervain and Mehler, 2010). As with other instances of this debate, many conclusions
on the subject are rather stretched. Indeed, various sorts of statistical learning seem
to be domain general, e.g., statistics similar to the ones discussed in Section 4.2 used
by humans in segmenting tone sequences (Saffran et al., 1999) and visual patterns
(Fiser and Aslin, 2002; Kirkham et al., 2002). Statistical learning is also found to be
not specific to humans. Other mammals are also sensitive to the statistical regularities
in sound sequences (Hauser et al., 2001; Pons, 2006). Infants show sensitivity to the
prosodic structure of the ambient language very early in life. However, the use of
prosodic cues in segmentation requires learning. For example, the most studied cue,
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lexical stress, needs to be learned since it is language specific. Furthermore, it is likely
that some statistics is involved in learning these patterns, since they are not inviolable
rules, but (statistical) tendencies. For example, with the most favorable count, the
dominant trochaic stress pattern of English is valid for at most 90% of the words.

Whether innate or learned, an important finding is that infants use a number of cues
in combination for segmentation. It is yet to be established how these cues integrate
and interact.



5 Computational Models of Segmentation

Science is knowledge which we understand
so well that we can teach it to a computer;
and if we don’t fully understand something,
it is an art to deal with it.

Donald E. Knuth

Segmenting a continuous stream into linguistically useful units is a computational
problem. Figure 4.1 on page 45 presented an example that approximates the linguistic
input we segment in everyday life. Faced with an input stream like the one given in
Figure 4.1, at first sight it is surprising that children can extract anything from it at
all. The studies reviewed in Chapter 4 suggests that there are certain features of the
linguistic input, or cues, that children are sensitive to. Furthermore, some of these cues
have been shown to be used by adults and children in the segmentation task.

Computational modeling and simulations provide a relatively easy way to in-
vestigate some of the questions regarding segmentation problems, particularly the
availability of these cues in the input, and whether and how these cues may contribute
to the solution of the segmentation problem. Not surprisingly, learning segmentation
has been one of the most studied aspects of language acquisition from the computa-
tional perspective. Initial ideas go back to Harris (1955), and there have been explicit
computational implementations as early as Olivier (1968). The fact that three out of
six computational models presented in a recent special issue of the Journal of Child
Language on computational models of language acquisition (MacWhinney, 2010) are
models of learning segmentation (Blanchard et al., 2010; Monaghan and Christiansen,
2010; Rytting et al., 2010) is an indication that the solutions to the segmentation
problem are far from being settled yet.

A review of the psychologically motivated computational models of segmentation
up to 1999 can be found in Brent (1999b). Besides psychologically motivated models,
there are also a number of segmentation tasks in natural language processing applica-
tions that we can also learn from. One of these tasks is segmenting written text for
the languages that are written without white spaces or any other separators between
the words, e.g., Chinese and Japanese. Another application arises in the problem of
segmenting the words into morphemes for various levels of morphological analysis.

59
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This chapter introduces the computational problem of learning segmentation with
a review of the state of the art in computational modeling of segmentation, focusing
more on psychologically motivated models. The criteria listed below for comparing
computational models of segmentation will be considered during discussions of indi-
vidual models of segmentation. These criteria below are similar to and partially overlap
with the criteria suggested earlier in the literature (Batchelder, 2002; Brent, 1999b;
Monaghan and Christiansen, 2010).

• The input : The way input is presented to a model is an important part of its
specification. Particularly interesting aspects of the input include the basic units
of the representation, whether it is naturally occurring speech or artificially
generated input, and the aspects of the input that the model is sensitive to.

• Processing strategy. Two broad strategies of segmentation are found in the
literature. Models that use the prediction strategy try to predict the boundaries
directly, without extracting the lexical units explicitly. Models that use the
recognition strategy try to extract frequently occurring substrings as lexical units
from the input.

• Processing characteristics. In particular, whether the model needs a large number
of utterances at once (batch ), or if it, alternatively, processes each utterance
in turn (incrementally). Brent (1999b) also distinguishes between incremental
models and on-line models. He defines on-line models as models that do not wait
until the utterance boundary to start extracting words. Further, he suggests that a
predictive-online model is a better candidate for modeling human performance,
as humans tend to guess the lexical units even before they completely hear them.

• Search strategy. A brute-force search through all possible segmentations is
intractable and implausible (see Section 5.3 for a discussion) for realistic input.
The search strategies vary in many ways. One aspect of interest is whether they
start from the building blocks (e.g., phonemes) and combine them to lexical
units (synthetic), or take the whole utterance and segment it into lexical units
(analytic). Another aspect we are interested in is the way the search space is
explored.

• Performance. We do not exactly know what the lexical units in our mental
lexicons are and what the end product of the human segmentation process is.
However, everything being equal, we would like our models to perform similarly
to a hypothesized gold standard.

• Computational complexity. Since the human cognitive system has limited com-
putational resources (such as memory and processing power), a computational
model of human performance is expected to use plausibly limited resources.

• External constraints. Most models utilize some hard constraints that help the
segmentation algorithm some way. A common example of such constraints is
requiring all lexical items to have a vowel. Even though some of these constraints
are indeed useful for segmenting the input, assuming the constraints still begs the
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explanation of how these constraints are learned. Assuming these constraints are
innate is a possible path, but, for such hard constraints to be innately specified
they would have to be valid for all natural languages. Similarly some free
parameters (the parameters that set by the model designer and not learned by the
model) of the models also form constraints that require explanation.

• Whether the model builds a lexicon or not . Even though all segmentation models
can be argued to have some sense of lexical units, the models that build an
explicit lexicon are more attractive if we assume that the learner’s interest is to
assign meanings to the discovered lexical items.

5.1 The input
All the segmentation models we describe in this section are unsupervised models

in the sense that they are not given the correct boundary locations in the input. The
representation of the input varies among the models, but the aspect of the input common
to all of these models is that their input is a set of unsegmented strings with possible
noise. The models are not given negative examples labeled as such, nor are they
provided by corrections if they make mistakes.1

For segmentation models that try to answer questions about language acquisition,
it is natural to use the input that children receive during the acquisition of language.
This makes child-directed speech and representations that are close to the real speech
signal more attractive. However, some models developed on written text, or artificially
generated text, may also demonstrate certain concepts better, or offer insights that
can be transferred into more relevant models. Except for a few (e.g., Elman, 1990;
Goldsmith, 2001; Perruchet and Vinter, 1998), most models discussed in this section
use some encoding of child directed speech (CDS) for simulations.

The main body of work in infants segmentation in psycholinguistics considers
the syllable as the base unit (e.g., Saffran et al., 1996a). However, a few exceptions
aside (Perruchet and Vinter, 1998; Swingley, 2005), most computational models in the
literature are developed and tested using phonemes as the basic unit of the input stream.
At first, this may seem to be conflicting with the findings that the syllable is a salient
unit of perception in early infancy (Bijeljac-Babic et al., 1993; Jusczyk et al., 1995).
However, this does not necessarily pose a problem for the computational models that
use phonemes. The syllable’s role as a salient perceptual unit does not rule out the
phoneme as another unit that infants are sensitive to. Even though the experimental
evidence supporting the phoneme’s role as (another) perceptual unit is not as abundant,
there are studies which indicate that infants are sensitive to sub-syllabic differences
as well. For example, Jusczyk and Thompson (1978) demonstrated that 2-month-old
infants are sensitive to differences in place of articulation, and capable of distinguishing

1Note that the second assumption is not always true. Children may be correcting an initially wrong
segmentation when they build the overall interpretation of the utterance, which is likely to be aided by their
interaction with the environment.
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sound sequences bada–gada, as well as the differences in non-initial phonemes like
daba–daga.

Another point in defense of using phonemes (or any other basic unit) is the fact
that the choice of phonemes does not necessarily change the nature of the computation.
For most algorithms the principles are equally applicable to any basic unit of choice.

One last point to elaborate here is that assuming syllables as indivisible basic units
has its problems in lexical segmentation as well. First, unless the input is syllabified
in an unnatural way, word boundaries in natural speech do not always correspond to
syllable boundaries. For example, the natural syllabification of the utterance what’s
a kitty? will likely have the first two syllables /w2t/ and /z@/. Depending only on
syllable sized units, a speaker who hears /w2t/ and /z@/, and represent these words in
the lexicon as /w2tz/ (what’s) and /@/ (a) will fail to recognize it. Similarly, without a
method to segment the stream into sub-syllabic units, the productive morphemes that
do not have a vowel cannot be extracted as possible lexical items.

The input representations vary according to how they are represented. Phonemes
are most commonly represented as individual symbols. However there are also a few
(connectionist) models that represent each phoneme as a set of phonetic features (Aslin
et al., 1996; Cairns et al., 1994; Christiansen et al., 1998). The phonetic feature-based
representation becomes particularly useful for the models that guess word phonotactics
from utterance boundaries. The feature representation allows models to exploit the
information regarding similarities of individual phonemes. For example, a feature-
based representation that includes information about vowel and consonant features for
each phoneme can learn that consonant-vowel-consonant (CVC) sequences are more
likely than CCC sequences. A symbolic representation that assigns arbitrary symbols
to each phoneme would require more data to arrive at similar generalizations.

Another issue regarding the input is the representation of variability in the speech
signal. Most work in computational modeling use transcribed child-directed speech
which virtually contains no variability. In most cases, all words are transcribed using
canonical phonetic or phonological forms. A number of models attempted to introduce
variability. However, all such attempts create the variability in a artificial way. Cairns
et al. (1994) introduced variability by flipping an unspecified number of random bits
in their phonetic feature vector representation. In a more recent study, Monaghan and
Christiansen (2010) processed orthographic transcriptions of child-directed speech
with a speech synthesizer, which produced phonemic transcriptions of words that
vary depending on the context. In another recent model, Rytting et al. (2010) run an
automatic speech recognizer (ASR) on raw audio input. The ASR produced a vector
of probabilities for each phoneme. If speech input is clear, the output would indicate
a single phoneme with very high probability, and the rest of the phonemes would
be assigned near-zero probabilities. However, if ASR is not able to decide the exact
identity of the phoneme, it is likely that more than one phoneme would be assigned
non-zero, possibly approximately equal, probabilities.
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5.2 Processing strategy
As mentioned before, the computational models of learning segmentation can be

divided into two broad groups according to the strategy they use for segmentation. Some
of the models search for boundaries, where lexical units are identified as a side effect
of discovering boundaries. I will call this strategy prediction (or boundary-guessing)
strategy. Brent (1999b) distinguishes two sub-groups, one using predictability as the
source of prediction, and the other using utterance boundaries. These two sources of
information are frequently combined in models that guess boundaries. Regardless of
the source of information they use, all models that guess boundaries will be classified
under this group. The second group tries to recognize lexical units. This strategy will
be called recognition strategy. A large subset of the models that belong to this second
group will be called language-modeling strategy for the reasons that will be explained
shortly.

5.2.1 Guessing boundaries
In its simplest form, e.g., as used by Harris (1955), this strategy is strongly related

to strategies suggested by experimental studies like Saffran et al. (1996a). In natural
language processing, similar methods have been used for morphological segmentation,
i.e., segmenting words into their morphemes, (e.g., Al-Shalabi et al., 2005; Bordag,
2005; Hafer and Weiss, 1974; Stein and Potthast, 2008) and segmentation of words
from texts that do not include white spaces (e.g., Ando and Lee, 2003). However, the
use of this strategy in computational models of human segmentation is rather scarce.
Except a number of connectionist systems that implicitly implement it, the only use of
predictability based strategy that I am aware of is by Brent (1999a), where a simple
mutual information based segmentation model has been presented as a baseline. If we
include the models that guess boundaries using other means (Fleck, 2008; Monaghan
and Christiansen, 2010), the count goes slightly up. However, the use of prediction
strategy in explicit statistical models is relatively unexplored.

Starting from Elman’s 1990 seminal work that introduced simple recurrent networks
(SRN), the major representatives of the prediction strategy have been connectionist
systems (Aslin et al., 1996; Cairns et al., 1994; Christiansen et al., 1998; Elman, 1990).
Elman (1990) used a simple segmentation task as a demonstration of capabilities of
SRNs. SRNs are standard feed-forward artificial neural networks except for a simple
augmentation. The additional so-called context units keep a copy of the hidden layer
in the previous step, which is fed back to the hidden layer as well as the current input.
This allows SRNs to generalize from past as well as from current input. Typically,
the task of an SRN is to predict the next input in the sequence. Elman used a 5-bit
representation for the input. Each letter of the English alphabet was mapped to an
arbitrary 5-bit binary string. The SRN was trained and tested on artificially generated
English-like sentences. After training, the error rate (root mean square error calculated
on output units) was lower when the SRN had to guess the next letter within the same



64 Computational Models of Segmentation

word, but higher when it had to guess the first letter of the next word. Cairns et al.
(1994) trained another type of recurrent network using a similar prediction task, but
using CDS as input. In the Cairns et al. (1994) study input was represented as phonetic
features of government phonology (Harris and Lindsey, 1995).

An advantage of boundary-guessing strategy is that it can include more sources
of information in a natural way. This was demonstrated by another SRN model by
Christiansen et al. (1998). In this model the network was trained using a prediction-
based strategy. However, the input was marked for lexical stress, and an explicit
utterance boundary unit was included in the input and the output. The task for the
system was to predict the input, including the existence of an utterance boundary,
which was turned on at the input layer only for the last phoneme of the utterance. The
study showed that the network’s prediction of an utterance boundary was higher on
word boundaries compared to non-boundary locations.

Aslin et al. (1996) present a non-SRN connectionist model. In this study a standard
feed-forward neural network which took a three-phoneme input window (each phoneme
was coded as 18 binary phonetic features) at each time step. An additional input unit
indicated the existence of an utterance boundary after the given three phonemes. There
was only a single output unit that indicated an utterance boundary. The network was
trained to find utterance boundaries. During testing, the output unit showed higher
activation levels at word boundaries than at word-internal phonemes.

A recent model that uses explicit statistics for guessing boundaries was presented
by Fleck (2008). This model learns the patterns that occur at the beginnings and ends of
utterances to guess possible beginnings and ends of words, hence the word boundaries.
In a sense, the model learns a form of phonotactics to guess word boundaries. However,
the simulations presented in this study used large prefix and suffix lengths, probably
allowing model to learn complete words and phrases. I will discuss this study further
in Chapter 7.

The last study that is worth noting here is the study by Monaghan and Christiansen
(2010). Unlike the models reviewed in this section so far, the model presented in this
study uses previously learned words as the main source of information. However, unlike
the models reviewed in the next section, it searches for boundaries in an incremental
fashion. Further discussion of this model will be provided in Chapter 8.

In principle, the models using the boundary guessing strategy allow on-line pro-
cessing of the input. That is, these models do not have to wait until the utterance
boundary to posit a word boundary. In practice, this is somewhat more complicated.
The actual threshold for deciding on a boundary tends to be decided globally (such
as over the mean activation level of the connectionist models described here). These
models typically require a relatively large amount of training data before they can
achieve the levels of success reported in these studies. A truly unsupervised strategy is
segmenting at the locations where there is a peak in unpredictability: an increase in
unpredictability followed by a decrease. In principle, one may use peaks as boundary
criterion in order to remedy the need for the threshold values. Use of peak-based
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boundary decision will be investigated in detail in Chapter 6.
It is also interesting that the only cue combination approach tried in the literature

uses connectionist models. Although the recognition-based models discussed below
can be argued to incorporate information from different sources, the possibilities
of integration of new cues are limited barring fundamental changes to the model
architecture. On the other hand, the models of the sort reviewed in this section provide
a natural way of combining multiple cues.

An apparent weakness of most of the models discussed in this section is that they
do not build an explicit lexicon, which means that they cannot use the information from
the already extracted lexical units. In augmenting the boundary-guessing models with
a lexicon, the models with explicit representations, in comparison to the connectionist
models, seem to be at an advantage. Even though modifications to connectionist models
to include information from a lexicon or other higher level information sources are
possible, in practice these models seem to work best with lower level perceptual cues.

5.2.2 Recognition strategy

Except for a few models discussed above, the majority of the computational models
of segmentation in the literature use a recognition strategy. These models try to
identify re-occurring strings in the input as candidate words. Even though theoretical
motivations are different, common to all these approaches is to define an objective
function that indicates what a ‘good word’ is. Then, the best segmentation is defined
as one that favors the use of words with higher likelihood.

A common approach is defining a representation scheme in line with the minimum
description length principle (MDL, Rissanen, 1978). Then, the aim is to find the best
representation that minimizes the ‘code length’ of both the lexicon and the input corpus.
The method has been applied to segmentation of transcribed child directed speech
(Brent and Cartwright, 1996), as well as many examples in natural language processing
(e.g., Goldsmith, 2001, 2006, in morphological segmentation and analysis). The MDL
based models are appealing as they are considered to be a formulation of well known
Occam’s razor in that they prefer simpler solutions. They also have strong ties to data
compression, since finding the minimum representation scheme will compress the data.
In practice, MDL based approaches work best with batch systems, and in many ways
they are similar to the probabilistic approaches I will describe in detail below.

Another related approach in recent models of segmentation is to define a probabilis-
tic generative model that is hypothesized to have generated the data. Then, finding the
most probable segmentation under this model tends to give rise to a good segmentation
of the linguistic data. In principle, the model can be arbitrarily detailed, capturing all
relevant aspects of the system being modeled. Once the generative model is defined,
one can assign the probabilities to the segmentations of a given sequence.

As in Bayesian models by Brent (1999a) and Goldwater et al. (2009), some models
define the generative model explicitly and find the (approximate) highest probability
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segmentation of the complete corpus. In doing so, one simply assigns probabilities
to segmentations (sequences of words) under the generative probabilistic model. A
number of models, on the other hand, assign probabilities to segmentations in a
similar way, but without defining an explicit generative probabilistic model (e.g.,
Batchelder, 2002; Venkataraman, 2001). Below, I will go through a formulation of
a simple segmentation model that assigns probabilities to segmentations of a given
string. The models in the literature vary in the way they model different aspects of
the task. However, the use of so called language models (Jurafsky and Martin, 2008,
chapter 4) for sequences of words and phonemes forms the skeleton of many successful
segmentation models that follow a recognition strategy.

The model defined by the Equation 5.1 and Equation 5.2 below demonstrates
this modeling practice. Assuming a segmentation s is composed of the lexical units
w1 . . . wn, the probability of the segmentation is calculated as,

P(s) =

n∏
i=1

P(wi) (5.1)

The probabilities of individual lexical units are calculated using

P(w) =

{
(1− α)f(w) if w is known
α
∏m
i=1 P(ai) if w is unknown

(5.2)

where f(w) is the empirical probability, or relative frequency of w, the sequence
a1 . . . am is the sequence of phonemes that form an unknown lexical unit and P(ai) is
typically estimated using relative frequency of the phoneme ai.

This formulation suggests that if the proposed lexical unit is already known, the
probability of each possible lexical unit P(wi) is estimated using maximum likelihood
estimation. More elaborate models tend to estimate this probability using higher level
n-grams, taking the effects of sentential context into consideration. Higher level n-
grams change the way the individual word probabilities are calculated, but they are
still conceptually the same as the basic model defined above. In case the proposed
lexical unit is unknown, the model falls back to the phonemes that form the lexical
unit. Except for elaborate methods of phonotactics which typically employ phoneme
n-grams, the formulation here is identical to a large number of models in the literature.
The coefficient α in Equation 5.2 determines the probability of seeing a new lexical
unit. Most models choose a way to decrease α as the model commits to more lexical
units, slowing down the model’s preference towards new units as more lexical units are
seen.

The main body of this formulation gives rise to two tendencies, simply because
multiplying more probabilities (real numbers in range [0, 1]) will result in smaller
numbers. First, Equation 5.1 sets a preference towards segmentations composed of
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smaller number of lexical units. If left uncontested, this probability assignment would
prefer whole utterances as lexical items, causing extreme undersegmentation. On the
other hand, Equation 5.2 prefers shorter lexical items. Everything else being equal,
this formula prefers segmentations where each word is a single phoneme, causing
extreme oversegmentation. These two preferences, in effect, work similarly to MDL-
based approaches. The undersegmentation tendency imposed by Equation 5.1 has
the same effect as the preference towards the shortest encoding of the corpus, while
the oversegmentation tendency imposed by Equation 5.2 has the same effect as the
preference towards shortest encoding of the lexicon.

In general, this type of modeling makes use of two n-gram language models. One
of the language models is used to model the sequences of words that form an utterance,
and the other is used to model the phonemes that form a word. For this reason, I
will refer to this type of segmentation strategy as language-modeling strategy (LM).
Despite the fact that language models have been useful in many natural language
applications, there are a number of shortcomings of these models. In this work, we
are particularly concerned with the problems of the n-gram models that one cannot
incorporate arbitrary features of the input, and the search strategy typically used in these
models is implausible for modeling human performance. A reference implementation
of a LM-based segmentation model will be presented in Section 5.5.

5.3 The search space
Given a sequence (e.g., of phonemes), finding the best segmentation can be char-

acterized as finding the best segmentation among all possible segmentations. The
brute-force solution to this problem is to enumerate all possible segmentations of the
string, compare them according to a criterion, and pick the best scoring segmentation.
However, this brute-force approach faces a serious problem: the number of possible
segmentations for a given sequence composed of n units is 2n−1.

Searching through all 2n−1 possible segmentations is not feasible except for short
strings. To give an idea of what a brute-force hypothesis generation method is dealing
with, Table 5.1 lists number of possible segmentations for utterance lengths of 1,
10, 20, 30, 40, 50, and 100,000 (approximate number of phonemes in the reference
corpus used in this study). A brute-force approach needs to consider over 5.6× 1014
segmentations for a 50-phoneme long utterance. Assuming that we can process (e.g.,
calculate a score and compare to the best so far) a million segmentations per second,
processing a 50-phoneme utterance would take over 17 years. Furthermore, adding a
single phoneme doubles this time. Since batch segmentation algorithms search through
all possible segmentations of a complete corpus instead of a single utterance at a time,
they have a more difficult problem. Clearly, a brute-force comparison of all possible
segmentations of a given utterance, or corpus, is both computationally infeasible and
cognitively unappealing.

Since the brute-force search through all segmentations is computationally intrac-
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length (n) substrings (n(n+1)
2

) segmentations (2n−1)

1 1 1
10 55 512
20 210 524,288
30 465 536,870,912
40 820 549,755,813,888
50 1275 562,949,953,421,312

100,000 5,000,050,000 ≈5.0×1030102

Table 5.1: Number of substrings and possible segmentations of an utterance of length n.

table, either algorithms that reduce the time complexity with some additional memory
usage, or approximate search algorithms that do not guarantee the globally optimal
solution are commonly used in the field.

5.3.1 Exact search using dynamic programming
Even though all possible segmentations are exponential in the size of the string, all

possible continuous substrings found in a string of size n amount to n(n+1)
2

: For a
string of size n, there is only one possible substring with length n, the string itself. For
example, for the string akitty, only possible substring of length n is akitty. There are
two substrings of size n− 1, {akitt, kitty}, three substrings of size n− 2, {akit, kitt,
itty}, four possible substrings of size n− 3, {aki, kit, itt, tty}, and so on. In general, for
a string of size n there are

∑n
i=1 i =

n(n+1)
2

possible substrings. This number grows
much more slowly than the number of segmentations, and gives some indication that
dynamic programming algorithms (algorithms that avoid re-calculating the same values
at the expense of some additional memory use) can be useful. This search strategy
has been used in a number of incremental models in the literature (e.g., Brent, 1999a;
Venkataraman, 2001). We will briefly describe the first one.

Brent’s algorithm finds the best segmentation of the utterance length n in time
proportional to n2, by using a memory proportional to 2n. The algorithm assigns
a probability to all initial substrings of the utterance given past input and the model
assumptions. As in Equation 5.1, the probability of a string is the product of the
probabilities of the lexical units that form it. The dynamic programming algorithm first
calculates these probabilities for each possible substring starting from the beginning
of the utterance. The algorithm stores the best probability value and starting point of
the last word for best segmentation of each substring. Using the information stored
in the previous step, the algorithm finds the best last word, accepts it as part of the
segmentation, and moves to the phoneme before the start of this word and repeats the
same exercise until the beginning of the utterance is reached. For example, upon seeing
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the string akitty, Brent’s algorithm assigns probability values to all initial substrings: a,
ak, aki, akit, akitt, akitty. For each substring, the best segmentation is found
by considering all possible binary splits. The probability of a substring is the product
of the best segmentation probability of the initial part and the lexical probability of the
final part.

The algorithm demonstrates the use of dynamic programming to find exact solutions
without exponential time complexity. However, this comes with a number of additional
limitations. First, the particular algorithm described here is possible because of the
assumption that the words in an utterance are independent. It is possible to lift or
weaken the independence assumption by introducing additional complexity. However,
the attempts so far (e.g., bigram and trigram models by Venkataraman, 2001) did not
show substantial improvements. This type of algorithms are also limited to finding
the single best segmentation. Similarly, the algorithm can be modified to find n-best
segmentation by introducing additional time and memory complexity.

Another complication arises due to the learning setting. The algorithm finds the best
segmentation according to the prior knowledge of the learner. Since prior knowledge of
the learner is incomplete, details of the search procedure affects the performance of the
learner. For example, Brent’s search procedure performs best when words at the end of
the utterance are known (assuming known words on average get higher probabilities
than unknown words). This is probably an arbitrary choice, but incidentally it conflicts
with the findings of Aslin (1993) that caregivers tend to place the words that they want
to teach their children at the end of the utterances.

The use of dynamic programming to reduce the exponential time complexity of
the search problem to polynomial time complexity is attractive for the computational
process. However, one expects humans to reduce the search space, rather than com-
paring all possible segmentations in a more efficient way. For example, comparing all
splits of the utterance and its substrings is likely to be a more laborious task than the
task humans take during speech segmentation. The hypothesis space is likely to be
restricted by the prior knowledge of the learner, and most segmentation hypotheses are
likely to be not considered at all.

5.3.2 Approximate search procedures

The batch models benefit from the fact that they have more data at once to decide
for a segmentation that is consistent with the complete input. However, the size of the
hypothesis space is even larger for the batch algorithms that try to find a single best
segmentation of the whole corpus. For incremental segmentation models, dynamic
programming allows exact search in a reasonable computational complexity with the
expense of additional memory. However, for batch segmentation models, time and
memory complexity becomes intractable for the dynamic programming algorithms
as well. The last line of Table 5.1 gives an impression of the both time and space
complexity of a batch algorithm on a relatively small corpus. Hence, particularly the
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batch algorithms need to resort to approximate search procedures.
One way to do this is to use heuristics to explore a more relevant part of the

complete search space (e.g., Brent and Cartwright, 1996). Generic search methods
such as sampling techniques used in machine learning are another way of finding good
segmentation solutions without exploring the complete search space (e.g., Goldwater,
2006; Goldwater et al., 2009).

The insights offered by the batch algorithms are particularly suitable for answering
what questions, giving relatively little insight into how questions, i.e., what information
is in principle available, but not how a learner exploits it. This limitation is due to the
fact that the batch models do not fit the observation that human language processing
and acquisition is incremental. Humans do not even wait until the end of the current
utterance to guess a word, or word boundary. Assuming that a large amount of corpus
is necessary before taking any segmentation decisions is certainly not in accordance
with what we know about human segmentation performance. Furthermore, neither the
heuristics, nor the general methods of finding approximate solutions based on sampling
provide further insights into what sort of hypothesis space humans might be exploring.

Having stated the shortcomings of batch models as psychologically plausible
models of human performance, it is interesting to see that they can search through
a space of linguistically relevant segmentation hypotheses using search procedures
that have no notion of linguistics. The solution is possible because of explicitly stated
assumptions about the generative model that produces the utterances and the structure
of the input.

Searching through only a restricted part of the search space is common to batch
segmentation models. However, it is also used frequently by some of the incremental
models to restrict the search space using certain heuristics (or constraints).

The models that build up from primitives using synthetic algorithms limit the
hypothesis space by considering sequences that have occurred in the input before (e.g.
Batchelder, 2002; de Marcken, 1996; Olivier, 1968; Perruchet and Vinter, 1998). At
the beginning, these algorithms initialize the lexicon to contain only the primitive units,
e.g., phonemes. The algorithms, then, consider only those (sub)strings that can be
obtained by binary combination of the current lexical items. This way, the lexicon, and
in effect the previous input, constrains the hypothesis space to be explored.

The lexically driven hypothesis space exploration in synthetic models seems plausi-
ble, yet, the arbitrary and completely mechanical binary combination of lexical units as
possible new lexical units again produces a large number of hypothesis to consider, and
its psychological plausibility is questionable. Furthermore, the method conflicts with
the evidence that adults and children tend to start with larger blocks (such as complete
utterances) as lexical items and break them into smaller units when further evidence
supports it (Bannard and Matthews, 2008; Dahan and Brent, 1999; MacWhinney, 1982;
Tomasello, 2000).
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5.3.3 Search for boundaries
The search strategies discussed in previous subsections consider the models that

try to find the best segmentation given an unsegmented utterance. However, some
models, particularly ones that follow the prediction strategy (e.g., Christiansen et al.,
1998; Elman, 1990; Monaghan and Christiansen, 2010) do not directly search for the
best segmentation of the given utterance. In essence, these models find an approxima-
tion to the best segmentation of the input utterance. However, they do not view the
segmentation problem as finding the best segmentation of an utterance. Instead, they
search for boundaries in an on-line fashion, without considering multiple alternative
segmentations of the input utterance.

The obvious benefit of these models is their computational simplicity. They try to
identify the boundaries without explicitly identifying lexical units. Since most of these
models do not build and make use of a lexicon, these models tend to perform worse
than the other models (see Table 5.2 for performance comparison). In this thesis, I will
present a model that follows a similar search strategy, while performing close to the
state of the art models using search strategies described before.

5.4 Performance and evaluation
As with other models of the acquisition of natural languages, we know rather little

about our target, the human lexicon. However, everything else being equal, we would
prefer the models that perform well against a theoretical gold standard .

Even though some of the recent studies in the field made a number of advances that
allow easier comparison, comparing performances of segmentation models still faces a
number of difficulties.

The first difficulty is the lack of a standardized gold-standard corpus. A large
number of different corpora have been used by different studies. The candidate
standard corpus seems to be a version of the corpus collected by Bernstein Ratner
(1987), and phonologically transcribed and processed by Brent and Cartwright (1996)
(see Appendix A for additional information on this corpus). This corpus will be used
for the evaluation of the models developed in this study.

The second difficulty arises because of the lack of a common measure of perfor-
mance, particularly in earlier studies. As in natural language processing and machine
learning, reporting a set of performance scores traditionally used in the information
retrieval research, precision (P) and recall (R), is becoming the norm in computational
models of cognition as well. These performance scores are based on four counts
indicating success or failure of the outcome of the model compared to a gold standard.

• True positives (TP) is the number of items of interest correctly identified. For
example, if the model is guessing word boundaries, the number of correct
boundaries the model found is the TP. This quantity is also called hits .

• False negatives (FN) is the number of items that the model failed to identify. For
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example, the word boundaries that the model could not find. This is also called
misses .

• False positives (FP) is the number of items that the model incorrectly suggested.
For the cases of boundaries, the number of times the model suggested a boundary
in incorrect locations. It is also called false alarms .

• True negatives (TN) is the number of cases where the model was correct in
not identifying a relevant item, e.g., a boundary. This quantity is not used in
calculation of precision and recall, however, it will be relevant for our later
discussion.

The precision and recall scores are calculated using the formulas:

precision =
TP

TP + FP

recall =
TP

TP + FN

Precision can be seen as a measure of exactness, and it is sometimes called accuracy
in the cognitive science literature.2 Recall is a measure of completeness , and sometimes
called so in cognitive science literature. In informal terms, high precision means that
the model has found only correct items, but many relevant items might have been
missed. High recall, on the other hand, means that the model has not missed anything,
but it may have suggested many irrelevant items. To have a balanced indication, a
derived measure, f1-score , is used, which is the harmonic mean of precision and recall.

f1-score = 2× precision× recall
precision + recall

The subscript ‘1’ indicates that the measure gives equal weights for precision and
recall. In its more generic original formulation, fα-score gives higher weight to recall
for higher values of α, and lower values give higher weight to precision (van Rijsbergen,
1979).3 Since we do not have a reason to prefer precision or recall over the other, all
f-scores presented in this thesis are f1-scores, the subscript is dropped in the remainder
of the thesis, and abbreviation ‘F’ is used for denoting f1-score.

As in recent studies of computational segmentation, in this thesis three different
types of precision and recall values are distinguished.

2Unfortunately, accuracy is ambiguous in cognitive science literature. The more common definition of
accuracy in many branches of science is different than precision. The widely used definition of accuracy for
our case is, TP+TN

TP+FP+TN+FN
.

3With regard to f-score, an unfortunate typo is in common use in the computational segmentation
literature. A number of papers use the term f0-score, or F0, instead of f1-score. Although it is unlikely to
cause any confusion, according to the original definition f0-score exists, and it is equivalent to precision.
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• Boundary precision (BP) and boundary recall (BR) calculations consider the
boundaries that match the gold standard segmentation as a true positive , where
the mistakenly proposed boundaries that do not exist in gold standard are consid-
ered false positives and the boundaries that are in gold standard, but not spotted
by the model, are considered false negatives. Since utterance boundaries are
clearly marked, not to give credit to the segmentation models for stating the
obvious, the utterance boundaries are not included in calculation of the boundary
scores.4 The f-score calculated using BP and BR will be denoted BF.

• Token, or word, precision (WP) and token recall (WR) scores require both
boundaries of a word to be found to count positively in TP. Likewise, the words
that are suggested by the model, but not in the gold standard, are FPs. The
words that the model could not segment correctly are FNs. The token scores are
naturally lower than the boundary scores. Similarly the f-score calculated from
WP and WR will be denoted WF.

• Type, or lexicon, precision (LP), type recall (LR) and type f-score (LF) are
similar to token scores, however, the comparisons are done over the word types
the model proposed and word types in the gold standard. These scores are
typically less than the token scores. If a model does a good job only at segmenting
high-frequency words (e.g., function words), type scores will be much lower
than the token scores, but if the model is good at segmenting low frequency
words as well, lexical scores will be closer to the token scores. In case the model
is particularly bad at segmenting high-frequency words, but good at segmenting
low-frequency words, the type scores can be higher than the token scores.

All segmentation models we are interested use unsupervised learning methods in
the sense that the algorithms do not have access to information regarding real boundary
locations. As a result, it is common practice to present the results on a single data set
without training–test data separation. However, in some cases the same practice has
been followed mistakenly. Even if the model is unsupervised, it collects information
from the corpus during the learning process. Hence, if the algorithm makes use of
multiple passes over the data, the information collected in previous passes affects, and
likely improves, the scores obtained. The simulations used in this study do not make
use of multiple passes over the data, or use any other source of information without
explicit notice.

To give a rough idea of how good the models in the literature perform, Table 5.2
presents a few models and associated measures that are found in the studies presenting
them. In case there were multiple models reported in a study, the model with the
highest lexicon f-score is presented in Table 5.2. Four of the models (Blanchard et al.,
2010; Brent, 1999a; Goldwater et al., 2009; Venkataraman, 2001) in the table were
chosen since they are easily comparable because of their use of the same corpus. These
models also use relatively similar strategies and input representations. Two additional

4This is not always clear in the results reported in the literature.
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boundary word lexicon

model corpus P R F P R F P R F

Christiansen et al. (1998) Korman 70.2 73.7 71.9 42.7 44.9 43.8 – – –

Brent (1999a) BR 80.3 84.3 82.3 67.0 69.4 68.2 53.6 51.3 52.4
Venkataraman (2001) BR 81.7 82.5 82.1 68.1 68.6 68.3 54.5 57.0 55.7
Goldwater et al. (2009) BR 90.3 80.8 85.2 75.2 69.6 72.3 63.5 55.2 59.1
Blanchard et al. (2010) BR 81.4 82.5 81.9 65.8 66.4 66.1 57.2 55.4 56.3

Rytting et al. (2010) B&S 54.1 64.8 59.0 21.1 25.3 23.0 13.7 34.3 19.6

Table 5.2: Comparison of performances of some computational models. ‘BR’ in the corpus
column is the Bernstein Ratner (1987) corpus processed by Brent and Cartwright (1996),
the Korman corpus (Korman, 1984) is another relatively popular corpus in computational
segmentation literature. B&S is the corpus collected by Brent and Siskind (2001). If there were
multiple models reported in a study, the model with the highest lexicon f-score is presented.

models (Christiansen et al., 1998; Rytting et al., 2010) that use a different strategy and
different input representation are also presented. Christiansen et al. (1998) exemplifies
a connectionist (multiple cue combination) model that uses phonetic feature vectors as
input. The models presented in Rytting et al. (2010) are based on Christiansen et al.
(1998), but they introduce variation in the input by processing acoustic input using
an automatic speech recognizer. It should be noted, however, that the performance
numbers may not be directly comparable due to the use of a different corpus.

The use of different corpora is not the only reason for difficulty of comparison. For
example, results from Christiansen et al. (1998) and Rytting et al. (2010) presented in
Table 5.2 are obtained after a certain amount of training. The rest of the studies report
the scores calculated without an initial training period. There is another, more hidden,
difficulty in comparison of incremental and batch models. The batch models process
the complete corpus, typically many times, before they produce any output. Hence, all
output from a batch model reflects the final state of the model. However, the incremental
models, start with little or no knowledge and learn during the course of segmentation.
During the initial phases, the models are expected to make mistakes. As they learn,
the performance improves. Hence, even if the final state of an incremental model
performs better than a batch model, a simple comparison of the values in Table 5.2 will
not indicate this. Some studies present the progression of the incremental models as
more input is provided. However, the progression of performance improvement, or the
performance at the final phases of the learning process, is not consistently reported in
the literature. For this reason it was not included in Table 5.2. Performance reports of
the models described in this thesis will include indications of the progression of the
model performance throughout the learning process.

Precision, recall and f-score are the standard measures that are well understood and
have proven to be useful in the literature. However, it is often more insightful to study
where the system fails. For this reasons, I will describe two error measures relevant to
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segmentation, and report these measures along with the precision, recall and f-score
values for the models developed in this study.

A segmentation error can be due to one of two reasons. First, the model may
fail to detect a boundary, causing undersegmentation. Second, the model may insert
a boundary where there is none, causing oversegmentation. The simple counts of
oversegmentation and undersegmentation errors change depending on the size of the
corpus. Hence, they are not comparable across the simulations that run on different
corpora. Furthermore, in a typical corpora, there are more word-internal positions than
boundaries. As a result, there are more chances to make an oversegmentation error
compared to an undersegmentation error. To overcome these difficulties we will use the
following error measures for oversegmentation and undersegmentation respectively:

Eo =
FP

FP + TN

Eu =
FN

FN + TP

where TP, FP, TN and FN are true positives, false positives, true negatives, and false
negatives respectively. If a single measure is desirable, similar to the definition of
f-score, one could also define a combined error measure, e.g., harmonic mean of Eo
and Eu. In case where there is no particular reason to prefer reducing a certain type of
error, such a measure may be used for model selection. However, since reporting both
measures is more informative, and the combined measures can be calculated from the
two measures trivially, the combined measure will not be reported in this thesis.

In plain words, Eo is the ratio of the false boundaries inserted by the model divided
by the total number of word internal positions in the corpus. Similarly, Eu is the ratio
of boundaries missed to the total number of boundaries.

The two error measures described above are related to precision and recall, but the
quantities cannot be derived from each other directly. Undersegmentation will reduce
true positives which, in turn, reduce both precision and recall. Oversegmentation,
on the other hand, will cause false positives to increase, which will affect precision
adversely, but will not have an effect on recall. As a result, good recall and bad
precision are a typical sign of oversegmentation, and bad precision and bad recall are
likely to be due to undersegmentation. So, the error measures are reflected to some
extent in precision and recall, but it will be useful to examine them directly as well.

A last note about all the performance scores discussed in this section is that they
take values between zero and one. However, as in table Table 5.2, it is common
to present values in percentages. This way, the space available can be used more
efficiently for significant digits. In this thesis, all values in the tables are percentages,
and the values in the graphs are absolute scores (between zero and one).
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5.5 Two reference models
Ideally, the performance of a model of the human cognitive capacity should be

evaluated based on its match with the human performance. From this perspective we
should prefer models that segment as children do—including the incorrect segmenta-
tions of children. However, we currently lack the theoretical understanding, the data,
and the tools to do this in a realistic way. In any case, everything else being equal,
we prefer models that perform better at the task in question. This is reasonable, since
language learners eventually segment quite well. To be able to evaluate our models,
we need references that we can compare our model’s performance to. A trivial way to
show that a model does something relevant to the task at hand is to compare it with the
model that makes random choices. A second method is to compare the model with a
state of the art alternative. In this section, I will define two such models that will serve
as a reference for the models that are developed in this study.

5.5.1 A random segmentation model
A trivial random model can be defined as one which makes a random boundary

decision for each possible boundary location. For a boundary guessing algorithm,
performing consistently better than this model would already indicate that the algorithm
is finding something relevant for the solution of the segmentation problem. However,
it is customary (since Brent and Cartwright, 1996) in speech segmentation literature
to set the bar a little bit higher. The typical random baseline used in computational
segmentation literature inserts boundaries with the probability of boundaries in the
actual corpus. In other words, it inserts as many boundaries as in the gold-standard
segmentation, however, at random locations. Throughout this thesis, performance
scores obtained by this particular random model (RM) will be presented as a baseline
reference. Note that the RM knows an important fact about the language that no other
unsupervised models of segmentation know: the average length of words (estimated
from the corpus studied). Although expected error rates Eo and Eu and boundary
scores are easy to calculate for the RM, the direct calculation of the word and lexicon
scores is not trivial. Table 5.3 presents all performance scores discussed in Section 5.4
for both random procedures.

Since the RM model inserts boundaries at random, its performance is varied. This
variation is expected to be small for a large enough corpus. However, for additional
reassurance, the results reported for RM baseline are obtained by averaging of 50 runs
over the relevant corpus.

5.5.2 A reference model using language-modeling strategy
Section 5.2.2 outlined a commonly used model of segmentation. Differing theo-

retical and practical motivations aside, most successful computational models assign
probabilities to possible segmentations in a way closely resembling the Equations 5.1
and 5.2 (repeated here as Equations 5.3 and 5.4 respectively for convenience).
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boundary word lexicon error

model P R F P R F P R F Eo Eu

random 27.4 50.0 35.4 8.6 13.6 10.5 7.4 38.1 12.4 50.0 50.0
RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0

Table 5.3: Performance scores of two random segmentation strategies. The scores in the first
row are obtained by a random algorithm that decides for boundaries with probability 0.5. The
RM algorithm, as described, inserts boundaries with the probability of observing boundaries in
the reference BR corpus. The scores presented are average of 50 runs, standard deviations for all
scores were less than 0.01.

P(s) =

n∏
i=1

P(wi) (5.3)

P(w) =

{
(1− α)f(w) if w is known
α
∏m
i=1 P(ai) if w is unknown

(5.4)

where wi is the ith word in the sequence (utterance or corpus), ai is the ith sound in
the word, and α is the only parameter of the model (will further be discussed below).

For the incremental model defined here, a word is ‘known’, if it was used in a
previous segmentation, otherwise it is unknown (for a batch model these definitions
depend on the definition of the generative model). The model accepts the whole
utterances as a word if the utterance do not contain any known words. The reason
for this can be seen easily by an example. Assume that the input is a two phoneme
utterance /ab/, where probabilities of the phonemes are Pa and Pb respectively. The
probability of the two-word utterance /a b/ is αPaαPb, and the probability of single-
word utterance /ab/ is αPaPb. Since α is a value between zero and one, the second
probability will be higher, and the model will take the complete utterance /ab/ as a
word. This result can easily be extended to longer sequences of phonemes. In general,
this model will never segment an unknown sequence of phonemes.

The major alternations to the models include use of larger word context, e.g.,
bigrams and trigrams, to calculate the known probabilities (e.g. Goldwater et al., 2009)
or using more elaborate models of phonotactics (Blanchard et al., 2010). However,
as can be seen in Table 5.2, the overall performances of the models are similar. The
performance differences, when observed, are also likely to be due to processing and
search strategies as well as the way the scores are calculated.

In this modeling setup, α can be interpreted as the probability of seeing a novel
word. If α is large, the novel words get higher probability. If α is small, known words
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boundary word lexicon error

model P R F P R F P R F Eo Eu

Brent (1999a) 80.3 84.3 82.3 67.0 69.4 68.2 53.6 51.3 52.4 – –
Venkataraman (2001) 81.7 82.5 82.1 68.1 68.6 68.3 54.5 57.0 55.7 – –
Goldwater et al. (2009) 90.3 80.8 85.2 75.2 69.6 72.3 63.5 55.2 59.1 – –
Blanchard et al. (2010) 81.4 82.5 81.9 65.8 66.4 66.1 57.2 55.4 56.3 – –

LM0.1 87.2 66.4 75.4 66.2 55.0 60.1 34.5 66.9 45.6 3.7 33.6
LM0.3 85.1 79.8 82.3 71.8 68.6 70.2 45.8 63.4 53.2 5.3 20.2
LM0.5 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3
LM0.7 82.1 84.7 83.3 70.1 71.6 70.8 52.6 57.3 54.9 7.0 15.3
LM0.9 78.2 85.9 81.9 64.9 69.4 67.1 48.2 47.6 47.9 9.0 14.1

Table 5.4: Performance scores of the baseline model with varying α in comparison to the other
models using the similar strategy. All scores are obtained on the BR corpus.

are more preferable. This probability can be estimated from type/token ratio (i.e., ratio
of the number of novel words seen so far to the number all words seen so far). Some
models in the literature (e.g., Venkataraman, 2001) use this intuition to remove the
free parameter α. Even though a parameter-free model is indeed more desirable, as
will be presented shortly, the relationship between the value of α and segmentation
performance is not trivial.

The model defined by Equations 5.3 and 5.4 is used as a reference model for
comparison with the other models developed in this study. The generic model with free
parameter α (Equation 5.4) will be called the LMα.

The corpus used for testing the models in this thesis is the corpus used by many
recent studies. This corpus was collected by Bernstein Ratner (1987) and processed by
Brent and Cartwright (1996). Following the convention in the literature the corpus will
be called the BR corpus . Some details about the corpus are presented in Appendix A.
Table 5.4 presents the performance of the LMα model on the BR corpus for changing
α values in comparison with the other studies that used the same corpus (the results of
other models are repetitions of the results presented in Table 5.2).

For most values of α, the performance of the LMα model is competitive with
the recent models in the literature, performing better at some scores.5 Surprisingly,
for a wide range of alpha values the differences in performance are rather small. To
illustrate the effect of α on the performance, the performance scores and the error
rates of the model on the BR corpus for α values in the range [0, 1] are presented in
Figure 5.1. The performance graphs also confirm that for a wide range of α values, the
change in α values affect the performance rather slightly. The error graphs provide a
better interpretation. The increasing α values decrease the oversegmentation errors
and increase the undersegmentation errors with a slower rate. This particular trend is
because of the fact that with higher values of α the model gives more weight to novel

5Note that the variants of other models are selected based on their LF.
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Figure 5.1: Precision (P) recall (R) and f-score (F) values (for boundaries, word tokens and word
types) values and oversegmentation (Eo) and undersegmentation (Eu) errors of the LMα on the
BR corpus plotted against changing values of α.

words, and Equation 5.4 assigns higher weights to shorter words. By increasing α,
model is encouraged to segment more, and this is clearly visible in the decrease of
undersegmentation errors. On the other hand, since Equation 5.3 prefers fewer words,
the model still does not make a large number of oversegmentation errors.

For the rest of this thesis, the LMα model with α = 0.5 will be used for comparing
various results obtained (subscript will be dropped, and the model is simply denoted
‘LM’). The LM shares the basic structure of state-of-the-art segmentation models, and it
achieves competitive results with other segmentation models on the known benchmark
corpus. As a result, it serves as a good reference model.

As an added benefit of reimplementing the reference model, Table 5.4 also reports
the error scores described in Section 5.4. Furthermore, it also enables us to investigate
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an incremental model’s performance over time. Notice that the best performing model
in Table 5.2 is the batch Bayesian model presented by Goldwater et al. (2009). Besides
the modeling practice used, there are two more reasons why this model can perform
better than an incremental model. First, since it has access to complete data, in
principle, it can arrive at generalizations that are consistent with the complete corpus.
Second, the performance of the incremental models in the same table includes the initial
output of the learning process where errors are expected. A batch model, on the other
hand, outputs its results after the learning process is completed. To demonstrate the
performance of the LM with the increasing input, Figure 5.2 presents the performance
scores plotted for each 500-utterance block during the learning process. The first value
of each score in this graph is calculated using first 500 utterances, the second value
is calculated on 501th utterance to 1000th, and each successive score is calculated
on the next 500-utterance block. Since the corpus contains 9790 utterances, the last
scores in this graphs are calculated using the last 290 utterances. As expected, the
performance scores increase and errors drop as the learning progresses. It also seems
that the learning is fast, since, after the third or fourth block, the scores stabilize. At
the end of the last phase of the learning from this corpus, the performance scores of the
LM are substantially better than the performance scores calculated on the output of
the model during the complete learning process (BF=89.0%, WF=80.6%, LF=74.0%,
Eo=4.4%, Eu=11.1%). And in fact, these performance scores are also higher than the
performance scores reported in Goldwater et al. (2009).

A possible objection to reporting the performance scores for last 290 utterances
is that the scores can be a result of idiosyncrasies of this particular small sample.
Figure 5.2 shows that despite slight fluctuations, the scores obtained for earlier blocks
of 500 utterances are also similar, and Section 9.4 will provide further assurances that
the results are not due to idiosyncrasies caused by chance effects.

The LM and the related models set a high standard of performance to achieve.
Instead of proposing a different system, improving the LM, as in few other studies,
could be another strategy to follow. However, there are a few shortcomings of this
modeling strategy, as a model of human performance.

First, as the review of the relevant psycholinguistic literature suggests, there is a
relatively large number of cues used by humans for the segmentation tasks. On the other
hand, the LM-like modeling practice evaluates the segmentations of an utterance based
only on probabilities of the lexical units used in the segmentation. The probability
of the words are in turn estimated from their frequency of occurrence in the input,
if the word is known. If the word is novel, the probability estimation makes use of
the frequency of the phonemes. In other words, for these models the probability of
a segmentation is based on (relative) frequency. The improvements of the standard
model by introducing word context, e.g., using bigram counts instead of word counts,
changes only the units whose frequency is calculated. Similarly, better modeling of
phonotactics is generally done by using letter bi- or trigrams. In summary: the LM
and its variations use frequency of lexical units or phonemes as the sole quantity to
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Figure 5.2: (a) Boundary, word token and word type f-scores and (b) oversegmentation and
undersegmentation rates of the LM on the BR corpus for successive blocks of 500 utterances
each.

estimate the probability of a segmentation. Even though some cues discussed in the
literature can be fitted in the phonotactics part of the standard model (Equation 5.4), it
is difficult to integrate most of the cues into this type of model.

A second problem arises because of the way probabilities are calculated by Equa-
tion 5.3 and Equation 5.4. These equations prefer very short utterances and very
short words. Assigning lower probabilities to longer sequences seems to have some
merit. Indeed, lexical units formed by longer sequences of phonemes, and utterances
formed by longer sequences of lexical units become more and more improbable as the
length of the sequence in the relevant units increases. However, the prediction of these
models at the other end of the scale is wrong. These equations assign considerably
higher frequencies to one-unit sequences than two-unit sequences. In other words,
the equations assign high probabilities to single-word utterances, and single-phoneme
words.

Table 5.5 lists a few examples of probabilities of utterances (assuming all words
used in the utterances are known) and words (assuming that they are novel). The
calculation was carried out on the gold standard segmentation of the BR corpus. As
can be seen in Table 5.5, the length of the utterance or word is the main determining
factor for the LM. A relatively rare utterance /yu/ ‘you’ gets a very high probability by
virtue of being a high frequency single word. For the same reason, the word /In/ ‘in’,
which never occurs as an utterance in the corpus, fares better than many highly frequent
utterances, such as /WAts D&t/ ‘what’s that’ and /WAt du yu want/ ‘what do
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utterance probabilities word probabilities

utterance freq rank p word freq rank pc p`
yu 4 165 0.05 t 0 NA 0.09 0.07
In 0 NA 0.01 6 895 3 0.04 0.02
WAts D&t 208 2 0.0004 yu 1704 1 0.001 0.0002
bItwin 0 NA .00003 Z 0 NA .00002 0.0001
WAt du yu want 33 21 0.0000001 WAts 569 9 0.000002 0.0000003

Table 5.5: Example probabilities assigned to utterances by Equation 5.3 and to words by
Equation 5.4. For word probabilities, pc is calculated using relative frequencies of the phonemes
in the complete corpus, and p` is calculated using relative frequencies of the phonemes in the
unique words, i.e., lexicon.

you want’. Similarly, the word /bItwin/ ‘between’, which occurs only once in this
corpus, is assigned a probability higher than 21st most frequent utterance. Similar
observations can be made for high frequency non-word /t/ (as in /6bQt/ ‘about’),
and low frequency non-word /Z/ (as in /yuZw6li/ ‘usually’) and words with varying
frequency /6/ ‘a’, /yu/ ‘you’ and /WAts/ ‘what’s’. The shorter sequences of phonemes,
even when they are not words, get higher scores than the real words formed by longer
sequences of phonemes. In both cases this formulation results in a strong bias towards
short sequences.

As well as providing a more cognitively plausible method of modeling learning
segmentation, explicit cue combination model that will be described next aims to
improve the segmentation performance by solving these problems.

5.6 Summary and discussion
This chapter provided a general overview of the state of the art in computational

segmentation. First, along with common modeling practices in computational models
of segmentation, a review of the previous models in the literature was presented.
Second, the issue of evaluation is discussed. In this discussion, common problems in
interpreting performances of the segmentation models are pointed out, and two new
error measures are suggested. Finally, Section 5.5 introduced a model that follows the
state of the art strategy in the literature, as well as a random baseline. These models
will be used as references in evaluation of the performance of the models described
in the rest of this thesis. Although the reference model described here performs quite
well, the aim of this study is developing a model that combines multiple cues using an
incremental segmentation algorithm.

It has been well established that children, as well as adults, are sensitive to multiple,
overlapping and noisy cues in the speech input. Furthermore, they use these cues in
discovering lexical units in continuous speech. As in experimental studies, compu-
tational mechanisms of combinations of multiple cues for speech segmentation are
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under-studied. Most computational models of segmentation focus on one particular
cue.

One of the reasons for this lack of interest in multiple cue combination is practical.
The computational models in the literature almost exclusively focus on information that
can be extracted from transcribed speech, e.g., distributional regularities or utterance
boundaries. This is mostly due to the fact that we do not have corpora rich enough
to include reliable acoustic cues, or good standardized representation schemes for
acoustic input. Even if researchers attempt to use acoustic cues, they resort to methods
of synthesizing them using canonical forms in dictionaries (Christiansen et al., 1998),
or using automatic speech recognition systems (Rytting et al., 2010). The synthesized
cues used in these studies may not exactly match the real-world speech input. However,
the models that combine multiple cues still provide insights into how these cues can be
combined, and their predictions can be tested experimentally.

Another reason for not integrating multiple cues is related to the strategy used
in most segmentation models in the literature. The typical modeling practice based
on n-gram language modeling presented in Section 5.5 cannot be extended easily to
incorporate multiple cues. Even though one can argue that these models combine
phonotactics and distributional regularities, the mechanism of combination is highly
restricted, and phonotactics come into play only for unknown words, as part of a back-
off mechanism. The same problem has been observed in natural language processing,
where a similar modeling practice for probabilistic context free grammars (PCFGs) has
been found to be difficult to modify to incorporate arbitrary aspects, or features, of the
input.

In the computational modeling of multiple cues, the only computational models
that emphasize cue combination are incarnations of the same connectionist system
developed by Christiansen et al. and his colleagues (Allen and Christiansen, 1996;
Christiansen et al., 1998, 2005; Rytting et al., 2010). Although these models clearly
demonstrate that the combination of cues is useful, more explicit models of cue
combination would provide better insights into the phenomenon. For example, even
though these systems integrate the cues, it is difficult to assess the effects of the cue
conflicts, or relative importance of certain cues directly. Starting with the next chapter,
a computational model of segmentation that attempts to combine arbitrary cues using
explicit statistics will be presented in a number of incremental steps.





6 Segmentation using Predictability Statistics

Two quite opposite qualities equally bias
our minds—habits and novelty.

Jean de la Bruyere

Predicting things to come is a natural activity of the human brain. We have
predictions, or expectations about things such as what the weather is going to be like
tomorrow, what will happen in the next episode of our favorite TV show, who else
would come to the birthday party we plan to go, how safe is it to walk at night in our
favorite city, how many more cups of coffee may be enough to work thorough the night,
or how long it will take to finish a dissertation chapter. The predictions are not only
there for high-level cognitive functions exemplified here either. Many sensorimotor
functions depend on predicting the state of the world at next time step. For example,
our success in sports depends on our predictions, as well as what we perceive. For
most of these matters, if we are not asked, we would not even know we are making
prediction about them. Of course the predictions are not always accurate, and the
mechanisms behind human predictions are interesting for psychology in general. The
point for the discussion here is that it is a fundamental part of our cognitive processes.
During the time that we are conscious, the ‘internal prediction machine’ never stops,
predicting the next state of the environment at many levels. An interesting aspect of the
human cognition is not only how we set expectations about the next step on a task, but
how we react when expectations fail and we are surprised. We remember and we learn
most from surprising events. It seems that prediction is an important aspect of how
human cognition works, and when it fails, it has further consequences on the cognitive
system.

Returning from these informal common-sense statements about prediction and
surprisal to more concrete facts related to research in this study, we know from the
research reviewed in Chapter 4 that predictability has an important function for speech
segmentation as well. Section 4.2.1 introduced a general observation about the speech
stream that aids lexical segmentation: ‘predictability within the lexical units is high,
predictability between the lexical units is low’. This strategy has been found to be
useful for computational models of segmentation (e.g., Christiansen et al., 1998; Cohen
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et al., 2007; Elman, 1990; Hafer and Weiss, 1974; Harris, 1955). Moreover, it is known
that a similar strategy is used by infants for segmenting continuous speech (Saffran
et al., 1996a). In the upcoming sections in this chapter, I will lay out a computational
model of segmentation that builds on this strategy. The next section investigates various
formal measures of predictability and compares their effectiveness using statistical
analysis of child-directed speech. Section 6.2 will introduce an unsupervised strategy
that combines multiple measures to segment a continuous stream and the simulations
carried out using this strategy.

6.1 Measures of predictability for segmentation
It is clear from the psycholinguistics literature that predictability is used by humans

for the task of segmentation. Particularly, it seems when consecutive units do not
predict each other, even 8-month-olds tend to assume that there is a word boundary
(Saffran et al., 1996a). To formally express the notion of predictability, Section 4.2.1
introduced two measures, transitional probability and successor variety . Besides these
two measures, this section will formally introduce two other measures, pointwise
mutual information and boundary entropy, and present an analysis of child-directed
speech that investigates usefulness of these measures as indications of word boundaries.

Before analyzing the measures listed above, I will first review a relevant study by
Hockema (2006), which presents an indication of word boundaries. This indication
is not suitable for unsupervised learning, but nevertheless the study uncovers an
interesting property of speech sequences relevant to this research.

6.1.1 Boundary probability
Hockema (2006) analyzed a large corpus of child-directed speech according to a

measure he called conditional boundary probability , which is defined as the probability
of observing a word boundary given a phoneme pair lr:

Pwb(l, r) = P(boundary|lr)

He transcribed all child-directed utterances in the American English section of
the CHILDES that were available at the time using the Carnegie Mellon Pronouncing
Dictionary (Carnegie Mellon University, 1998). For each possible phoneme pair lr, he
estimated Pwb(l, r), and plotted the histogram of these probability values. The result
showed that the distribution is strongly bimodal. Phoneme pairs show a high tendency
to occur either word-internally or at word boundaries.

Figure 6.1 presents graphs produced by the same procedure on the BR corpus. The
differences between data used for producing these graphs and Figure 2 in Hockema
(2006) are in the size of the corpus and the number of phonemes used for transcribing
the corpus. Hockema’s data consisted of 8,078,540 phoneme pairs transcribed using a
39-phoneme alphabet. In contrast, the analysis used here is based on 86,019 phoneme
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Figure 6.1: (a) Histogram of Pwb(l, r) values. (b–c) Histograms of Pwb for all pairs that occur
at word boundaries (b), and word-internal positions (c). (d) Precision, recall and f-score values
for against changing threshold.

pairs that are transcribed with a 50-phoneme alphabet. Despite the differences, the
same trends hold: the distribution of phoneme pairs is strongly bimodal.

The presentation of the data is also different. All histograms presented in this
section are like Hockema’s normalized histograms: they count the relevant values
as many times as the corresponding phoneme pair occurs in the corpus. As a result,
compared to a histogram that is based on phoneme-pair types, these histograms are
better representations of the distributions that a child would hear.

Figure 6.1a presents the histogram of Pwb(l, r) for all phoneme pairs that were
observed in the corpus. Large portions of the probability mass are lumped together
either at the very first bin where the probability of a word boundary is zero or close
to zero, or on the opposite end of the scale, where the probability of a word boundary
is one or close to one. This clearly shows that there is a tendency for some phoneme
pairs to appear only word internally, and some others to appear on word boundaries.
Figure 6.1b–c presents the two separate histograms of the same quantity. In Figure 6.1b
only the probabilities of phoneme pairs that straddle word boundaries are shown, while
in Figure 6.1c only word-internal phoneme pairs are considered. These histograms
clearly show that bimodality of the measure is indeed due to the differences between
the phoneme pairs that occur at the word boundaries and the word internal positions.
Figure 6.1d presents the segmentation performance of a simple segmentation algorithm
that segments between phoneme pairs for which Pwb(l, r) is greater than a threshold
value. The graph presents precision, recall and f-score for varying threshold values.
The results indicate that a very high level performance is attainable for a large range of
threshold values. For example, for a threshold of 0.5, we get 91.2% precision, 87.3%
recall which amounts to an f-score of 89.2%. These figures seem to be somewhat lower
(86.5% precision, 76.0% recall) for Hockema’s larger CDS data set.
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Considering that this segmentation performance can be achieved only using statis-
tics over phoneme pairs, it is an impressive result. However, there are two major
problems with this analysis. First, the learner has no access to the information needed
(the knowledge of word boundaries) to build this distribution. As a result, even though
it uncovers a nice regularity about the data, it is of little direct use for an unsupervised
segmentation algorithm. Second, since the method is based only on phoneme pairs,
there is no way of distinguishing occurrences of a phoneme pair that occurs both
word-internally, and at word boundaries. This becomes particularly problematic for
some of the frequent phoneme pairs. For example, /sI/,1 occurs 153 times on a word
boundary, such as in what’s it, and 163 times word internally, such as in sit, in the BR
corpus. The method suggests that either all occurrences of the word sit and the words
including the phoneme pair /sI/ will be oversegmented, or phrases like what’s it will
be undersegmented.

The analysis provided above indicates that given a correctly segmented corpus,
one can come up with relatively accurate segmentation based on the likelihood that a
phoneme pair occurs at word boundaries. Even though this is not immediately useful
to a learner without access to an already segmented corpus, similar results may be
obtained based on various measures of predictability that do not require a segmented
corpus. The rest of this section provides similar analyses for such measures.

6.1.2 Transitional probability
As a measure of predictability, most studies in the psycholinguistic literature use

conditional probability—or transitional probability (TP), as it is known in this field
(e.g., Saffran et al., 1996a). The conditional probability of syllable r given we already
observed syllable l is defined in Equation 4.1. It is repeated here for convenience:

TP(l, r) = P(r|l) =
P(lr)

P(l)
≈ frequency(lr)
frequency(l)

(6.1)

Instead of syllables, throughout this chapter, l and r will refer to phonemes (and
later, sequences of phonemes).

Intuitively, if the phoneme pair lr is highly probable, it is likely that they are part
of a word for two reasons. First, words repeat, and that makes parts of the words repeat
as well. Second, since words are not formed randomly, certain sequences are more
likely to be within words. These observations indicate that the joint probability , P(lr),
is a useful measure. However, if l is very frequent, the reason that lr is also frequent
may often be just by chance. For example, since the phoneme /i/ is rather frequent
in English, the sequence /iI/ occurs frequently even though it rarely occurs within

1The symbols used for phonemes in these examples and for the rest of these thesis follow the conventions
used by Brent and Cartwright (1996) in transcribing the BR corpus. The transcription system is described in
Appendix A.



6.1. Measures of predictability for segmentation 89

(a)

TP

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

(b)

TP
D

en
si

ty
0.0 0.2 0.4 0.6 0.8 1.0

0
4

8
(c)

TP

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 (d)

threshold

precision
recall
f-score
random

Figure 6.2: (a) Distribution of transitional probabilities. (b–c) Distribution of TP for boundaries
and word-internal positions, respectively. (d) Performance of algorithms that segment at locations
where P(r|l) is lower than a threshold value. The solid gray line in (d) represents precision,
recall and f-score of a pseudo-random segmentation method which inserts as many boundaries
as in the gold-standard segmentation.

words. On the other hand even though the phoneme sequence /WI/ occurs exclusively
within words in the BR corpus, probability estimate of P(/iI/) is 3.67 times P(/WI/).
As Equation 6.1 suggests, conditional probability is high if joint probability is high.
The division by P(l) in the definition of TP, reduces this ‘chance effect’ to some extent.
For the same example, even though it is still higher, TP(/i/, /I/) is only 1.71 times
TP(/W/, /I/).

Figure 6.2a presents distribution of conditional probability values. Unfortunately,
there is no clear indication of a bimodal distribution. If we plot histograms of the
conditional probabilities at boundaries and word-internal positions separately (Fig-
ure 6.2b–c), we can see that the distributions are somewhat different. As expected, the
probability mass for boundaries is found more towards the lower end of the distribution.
However, even though the distribution of word-internal conditional probabilities is
more spread towards the higher values, there is still a large number of word-internal
positions with low conditional probabilities. Figure 6.2d presents the performance
scores for a strategy that segments at the locations where conditional probability is
lower than a threshold. The gray line in this graph presents the performance of a
segmentation strategy where boundaries are inserted randomly with the constraint that
the number of boundaries inserted is the same as the number of boundaries in the
gold-standard segmentation. The random segmentation model (the RM) is explained in
Section 5.5. Since precision and recall scores of the random segmentation are the same,
the f-score is also the same. As a result they appear as a single line in Figure 6.2d. It
should be noted that even though the boundaries are chosen at random, this particular
segmentation strategy is a rather informed baseline: it knows the number of boundaries.
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This analysis indicates that even though it is not as impressive as the measure
suggested by Hockema (2006), a naive segmentation strategy based on TP consistently
performs better than random. Furthermore, this measure is more suitable for unsu-
pervised methods, since calculation of conditional probabilities does not require the
knowledge of word boundaries.

Using threshold values for unsupervised segmentation is problematic because
it requires a non-trivial way to set a threshold value without knowing which value
is a good option. This problem and possible solutions will be discussed further in
Section 6.2 where explicit unsupervised algorithms for segmentation will be described.
The analysis provided in Figure 6.2d serves as an indication that this measure is useful,
and allows us to compare it with the others.

Using the conditional probability measure as presented here has two other weak-
nesses. First, like the Pwb measure discussed above, TP calculated on only two
consecutive phonemes cannot handle effects of larger sequences of phonemes or non-
adjacent phonemes. This is not an intrinsic property of the measure, and use of larger
phoneme context will be discussed in Section 6.1.6. Second, as it is also discussed
in Brent (1999a), the conditional probability is asymmetric, P(l|r) is not the same as
P(r|l), and P(l|r) can also provide useful information for segmentation. The utility of
the backward version of the measure will be discussed in Section 6.1.7.

6.1.3 Pointwise mutual information
Pointwise (or specific) mutual information is an information theoretic measure

of association between two random variables. It is used in many natural language
processing tasks, and its use in segmentation, albeit rare, is not exceptional (e.g., Brent,
1999a; Swingley, 2005). Pointwise mutual information (MI) is defined as,2

MI(l, r) = log2
P(l, r)

P(l)P(r)

Neglecting the logarithm for now, in this definition, the joint probability is divided
by P(l)× P(r). As a result, the high association one would get by chance for highly
frequent phonemes is reduced just as in the case of TP. Unlike TP, the MI score
is affected by frequencies of both phonemes, and it is symmetrical. The logarithm
defines the unit of the measure. The binary logarithm (base two) is commonly used in
information theory, and the resulting unit is called bit .

There has been some work on computational modeling of segmentation which
used MI (Brent, 1999a; Swingley, 2005). However, it is virtually unmentioned in the
psycholinguistic literature.

2Mutual information is a related but different information theoretic measure. However, in this thesis,
following the related work in computational models of segmentation, the term mutual information and the
abbreviation MI always refers to pointwise mutual information between two consecutive sequences.
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Figure 6.3: (a) Distribution of MI. (b–c) Distribution of MI for boundaries and word-internal
positions, respectively. (d) Performance of algorithms that segment at locations where MI is
lower than a threshold value. The solid gray line in (d) represents precision, recall and f-score of
a pseudo-random segmentation method that inserts as many boundaries as in the gold-standard
segmentation.

Figure 6.3 presents the same analysis for MI that Figure 6.2 presents for the TP. The
first difference to note is that the shape of the graph is different from TP. This is because
of the fact that the probability values are estimated from frequencies of phonemes
and phoneme bigrams. Like many other frequency distributions in linguistic units,
distribution of probability values, such as TP, follows an exponential trend. On the other
hand, MI is the logarithm of a combination of probability values,3 and the logarithm
function transforms the exponential-like distribution into a roughly normal distribution.
In addition, the difference between the distributions of MI values for boundary and
non-boundary phoneme pairs seems to be slightly better separated. This is also evident
from the differences of performance graphs in Figure 6.2d and Figure 6.3d. F-score
for TP barely exceeds 50%, while f-score for MI is well over 60% for some threshold
values. Before providing a more detailed comparison, two more measures will be
introduced.

6.1.4 Successor variety

Among the measures we consider in this chapter, the successor variety (SV) (Harris,
1955) is probably the earliest measure suggested for lexical segmentation. Section 4.2.1
has already introduced the SV measure informally. More formally, SV can be defined
as

3It should be noted that the quantity P(l,r)
P(l)P(r)

is not a probability. For positively correlated phonemes
this value is greater than one, and MI score is positive.
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phoneme h i z k w I k R
SVBR 16 13 22 2 0 0 0 0

Figure 6.4: Successor variety values calculated from BR corpus for the same utterance presented
in Figure 4.4. Note that the phonemic transcriptions are different.

SV(l) =
∑
r∈A

c(l, r)

where,

c(l, r) =

{
1 if substring lr occurs in the corpus
0 otherwise

and A is the list of phonemes (the alphabet).
Unlike the measures discussed previously, SV is only a function of the initial

sequence, l. In Harris (1955), this sequence is the sequence from the beginning of
the utterance to the position to be evaluated. Figure 6.4 presents the successor values
for the utterance /hizkwIkR/ ‘he is quicker’. The SV values for the same utterance
determined by Harris (1955) were given in Figure 4.4. The SV value after the word he’s
is the highest, and a reasonable algorithm based on SV would segment this utterance
correctly. However, Figure 4.4 also points to a problem. As the initial sequence gets
longer, the likelihood that it has never occurred before in the input increases. As a
result, even for child-directed speech, which is characteristically repetitive, the SV
values drop to 0 and become useless after a short initial sequence. A segmentation
algorithm based on the SV values calculated as in Figure 4.4 is likely to fail to find
boundaries after a few initial boundaries. There are ways to solve this problem, but
even in its simple form, SV has been popular in morphological segmentation literature
(e.g., Al-Shalabi et al., 2005; Bordag, 2005, 2007; Déjean, 1998; Demberg, 2007;
Goldsmith, 2006; Hafer and Weiss, 1974; Stein and Potthast, 2008). Morphological
segmentation is the task of segmenting words into morphemes, it is useful in many
natural language processing tasks ranging from stemming to machine translation of
agglutinative languages. Since words are more repetitive than utterances, the measure
works better for morphological segmentation. However, the measure may benefit from
some improvements in this task as well (Çöltekin, 2010).

To adapt the SV measure to the segmentation of utterances into lexical units, the
discussion here is based on calculations made using a varying size phoneme context.
It is not very useful to use SV as a segmentation measure calculated using a single-
phoneme context. For example, in BR corpus, SV after the phoneme /W/ is 7 and SV
after the phoneme /t/ is 46. A threshold value between these numbers will always
segment after the phoneme /t/ and will never segment after /W/. However, to provide
a comparison with the other measures, Figure 6.5 presents an analysis of SV values
where boundaries are classified using the SV value of a single preceding phoneme.
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Figure 6.5: (a) Distribution of SV. (b–c) Distribution of SV for boundaries and word-internal
positions, respectively. (d) Performance of algorithms that segment at locations where SV is
higher than a threshold value. The solid gray line in (d) represents precision, recall and f-score of
a pseudo-random segmentation method that inserts as many boundaries as in the gold-standard
segmentation.

Nevertheless, Figure 6.5 indicates that, even in this form, the measure performs as well
as others.

Some improvements to make SV-like measures more effective will be discussed
in Section 6.1.6 and 6.1.7. The next section finalizes the discussion of individual
predictability measures with a similar but theoretically more attractive and better
studied measure.

6.1.5 Boundary entropy
Entropy (also called Shannon entropy when there is a need to distinguish from en-

tropy in thermodynamics) is the information-theoretic measure of average uncertainty.4

Entropy is also known as average surprisal , where surprisal (−logP(l)) is another
information theoretic measure suggested by Shannon (1948). As a result, it is one
of the natural choices for measuring (un)predictability. However, in psychologically
motivated models of segmentation the entropy is rarely mentioned. Use of the entropy
is common in segmentation of written text, particularly for languages like Chinese and
Japanese which are the typical examples of languages that use writing systems without
a word boundary marker (e.g., Huang and Powers, 2003; Kempe, 1999; Zhikov et al.,
2010). As far as I can determine, Cohen et al. (2007) is the only study of entropy-based
segmentation motivated by human (or human-like) performance.

4The inventor of the measure, Claude Shannon initially named the quantity ‘uncertainty’, but based on
suggestion of John von Neumann, another pioneer of the field, he named it entropy (Tribus and McIrvine,
1971).
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The measure that will be used in this chapter, boundary entropy (H) defined as,5

H(l) = −
∑
r∈A

P(r|l) log2 (P (r|l)) (6.2)

where the sum ranges over all phonemes in the alphabet, A. Given the sequence l,
this formula gives a measure of how much uncertainty still exist. As in MI, the binary
(base 2) logarithm makes the unit of the measure the bit . In more intuitive terms, this
quantity measures how many yes/no questions are necessary on average to predict the
next phoneme.

Even though it may not be clear at first sight, the entropy measure has strong
similarities with the SV. Both measure promiscuity of l. That is, if l combines with
many different phonemes, than both SV and entropy are high. The difference is that
entropy is sensitive to the token frequencies of the sequences, while SV only considers
types. The difference may be easier to grasp with an example: Assume we have a
corpus consisting of three words xa, xb and xc, and we are interested in unpredictability
after x. Obviously SV is three, and calculating entropy using Equation 6.2 we find that
entropy is 1.56 bits. If we had a corpus where xa occurred twice while the other two
words in our previous corpus occurred once, that would not make any difference for the
SV, it is still three. However, since the knowledge that a is a more probable phoneme
after x reduces uncertainty, the new value for entropy (1.5 bits) reflects this.

Like SV, calculating entropy values conditioned on a single phoneme is not a good
strategy. However, for the sake of completeness, Figure 6.6 presents the analysis
presented for other measures for boundary entropy.

6.1.6 Effects of phoneme context
It is plausible to assume that humans do use a predictability strategy based on

a larger phoneme context. Many studies in psycholinguistics showed that humans
are sensitive to transitions of the syllable, which is typically a multi-phoneme unit.
Furthermore, at least at some level, adults seem to be sensitive to expectations about
longer and even discontinuous sequences of syllables (Dilley and McAuley, 2008). On
the other hand, almost all computational models of segmentation use predictability
measures calculated only on consecutive phonemes. For example, although Brent
(1999a) notes that calculating TP and MI values on single-phoneme context does not
reflect their full utility, he nevertheless calculates these values on the basis of single-
phoneme context. Here, I will extend the analysis carried in the previous subsections
and discuss the effect of calculating predictability measures on larger sequences of
initial phonemes.

5Boundary entropy defined here is similar to but different from a well known entropy measure, condi-
tional entropy, which is defined as −

∑
r∈A P(r, l) log2 (P (r|l)). In preliminary experiments conducted,

the results obtained for both measures in segmentation task were similar. The boundary entropy is adopted
here since it was used in previous research for segmentation (e.g., Hafer and Weiss, 1974).
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Figure 6.6: (a) Distribution of entropy. (b–c) Distribution of entropy for boundaries and word-
internal positions, respectively. (d) Performance of algorithms that segment at locations where
entropy is higher than a threshold value. The solid gray line in (d) represents precision, recall
and f-score of a pseudo-random segmentation method that insert as many boundaries as in the
gold-standard segmentation.

Figure 6.7 presents a set of graphs that visualize the effect of increasing the
length of preceding phoneme context, l to two and three. The figure also provides a
direct comparison of the predictability measures discussed so far. In this figure, the
first three columns display the distribution of the measures with changing phoneme
context size between one and three. The last column compares the performance of
segmentation algorithms using a single measure with varying phoneme context size.
Performance comparison is presented using precision/recall graphs. The horizontal
axes of these graphs are precision values, and vertical axes are recall values. The perfect
segmentation corresponds to upper right corner where both precision and recall are one.
Otherwise, the closer the curve to the upper left corner, the better the performance is. In
other words, a large area under curve is indication of a measure that performs well over
a range of threshold values. First four rows, separated by dotted lines, correspond to
the measures: TP, MI, SV, H respectively. Each row contains two rows of histograms,
top ones depicting the distribution of the measure at boundary locations and bottom
one depicting the distribution of the measure at word-internal positions. The fifth row
presents precision/recall graphs comparing measures that use the same context length.

Figure 6.7 demonstrates that increasing the context size increases the separation
between the distributions of boundary and non-boundary locations. This is particularly
visible for context size two, and measures TP, SV and H. The separation is not that
clear for MI, and for context size of three. Additionally, the increase of phoneme
context from two to three does not seem to have a dramatic effect on the performance.
However, there is a general trend of increase with the context size. This trend is clearly
visible from the area under the precision/recall curves. Especially the precision/recall
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Figure 6.7: The effect of context on predictability measures. First three columns in the first
four rows (rows are separated by dotted line) present distributions of measure values for varying
context size. Last column presents the precision/recall graphs for each context size. The last row
presents the precision/recall values for each context for all measures.
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curves at the bottom row of Figure 6.7 demonstrate this clearly. The area under the
curves increases in these graphs from left to right (by increasing phoneme context).

Figure 6.7 shows that increasing the phoneme context for all predictability measures
affects how well they predict the word boundaries, making the measure more useful.
However, an interesting question to ask is whether they give the same information or
not. For example, does calculating TP conditioned on previous two phonemes give
us all the information we get from calculating it by conditioning on a single previous
phoneme? The question is important, because if different context sizes provide different
information, than instead of using the higher context size, one can use both to achieve a
better performance compared to the performance achieved by using the better of them.
Using multiple context sizes is appealing, also because the unpredictability of word
boundaries is due to their being dependent on different linguistic units, such as words,
syllables and phonemes. Changing the phoneme context size may capture regularities
that exist because of different linguistic units. The relation between the phoneme
context size and the linguistic units, of course, is not clear-cut. However, for example,
it is likely that a context size of two or three captures more about relationships between
syllables, while context size of one mostly captures the relationships between single
pairs of phonemes. If we expect regularities at both levels, then we expect combination
of different context sizes to be helpful.

Section 6.2 will investigate the effect of varying context size on an unsupervised
segmentation algorithm. Here, I will provide some evidence that different context sizes
provide different information. The evidence comes from the fact that if two sources of
information contribute independently in favor of a certain conclusion, their correlation
is expected to be lower when we know the conclusion is correct. They correlate in the
first place, because they measure the same quantity. However, given the conclusion, they
should not be correlated if they make errors independently. If they are not completely
independent, but still provide some independent information, we expect the correlation
to be lower when the conclusion is known. Returning to the segmentation problem,
if two context sizes, say one and two, for the same measure provide independent
information regarding word boundaries, we expect their correlation after we know there
is a boundary to be lower than their correlation independent of the word boundaries.

Table 6.1 presents correlation coefficients for context sizes between one and three
for all measures, for all possible boundary positions, and only for word boundaries.
With some variability of the magnitude of the change depending on the measure, the
correlations at word boundaries are lower than the correlations for the overall corpus.
The results indeed indicate that the measures calculated using each phoneme-context
size provide some information about the word boundaries that the other context-length
options do not provide. This result (based on cases of genuine boundaries) gives
some indication that the use of statistics between phoneme sequences with varying
lengths may be useful for the segmentation task. The use of information from multiple
measures calculated using varying length will be investigated empirically in Section 6.2.
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1 2 3

1 1.00 0.58 0.40
2 1.00 0.74
3 1.00

(a) TP all

1 2 3

1 1.00 0.67 0.52
2 1.00 0.80
3 1.00

(b) MI all

1 2 3

1 1.00 0.63 0.44
2 1.00 0.74
3 1.00

(c) SV all

1 2 3

1 1.00 0.61 0.43
2 1.00 0.74
3 1.00

(d) H all

1 2 3

1 1.00 0.55 0.33
2 1.00 0.64
3 1.00

(e) TP boundaries

1 2 3

1 1.00 0.64 0.46
2 1.00 0.74
3 1.00

(f) MI Boundaries

1 2 3

1 1.00 0.35 0.27
2 1.00 0.58
3 1.00

(g) SV boundaries

1 2 3

1 1.00 0.38 0.20
2 1.00 0.56
3 1.00

(h) H boundaries

Table 6.1: Correlation coefficients for different phoneme context sizes for each measures. The
top row gives the correlation coefficients over all boundary locations. The bottom row presents
the correlation coefficients calculated only at boundary positions. The correlation coefficients are
calculated after a log-transforming TP, SV and H, since log-transform makes these distributions
roughly normal.

6.1.7 Predicting the past

Except MI, all three predictability measures discussed in this section are asymmet-
ric. They take an initial sequence of phonemes, and measure the predictability of the
next phoneme. Moreover, the SV and entropy measures do that without actually seeing
the next phoneme. It is clear that the reverse quantities that measure the predictability
of the previous phoneme given the current phoneme or phoneme sequence provide
some additional information. Taking TP as an example, we know that P(l|r) 6= P(r|l).
If they are both useful for segmentation, using both measures is, in principle, better
than using only one of them.

This section will show empirically that the reverse versions of the measures dis-
cussed so far are also good measures for segmentation. However, for a truly online-
predictive system, predicting past events based on current may seem odd. The jus-
tification of using reverse predictability measures for segmentation comes from two
sources. First, intuitively, it seems that what we hear at a particular moment changes
our interpretation of past input, especially if the previous interpretation is uncertain
in some way. It is not unusual that when reading some text or listening to someone,
things we read or heard start making sense only after we hear or read more. The
second, more concrete evidence is from developmental psycholinguistics. Pelucchi
et al. (2009) showed that 8-month-old infants (the same age as the infants in Saffran
et al. (1996a) study) were able to track statistical regularities that are only possible
to detect if they were sensitive to some reverse predictability measure between the
successive syllables. Pelucchi et al. (2009) carefully selected words from a natural but
unfamiliar language with sequences of syllables that differed only in their ‘backward’
transitional probabilities. Results were similar to Saffran et al. (1996a), confirming that
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infants do use backward predictability.
Since the direction does not make sense for MI,6 only the reverse versions of TP,

SV and H will be analyzed in this section. Reverse measures will be indicated by
a subscript ‘r’ here. The reverse of TP and SV are sometimes abbreviated as BTP
(backwards TP) and PV (for predecessor variety) in the literature. It is easy to deduce
the definitions of reverse measures from the forward counterparts. The definitions are
provided here for the sake of completeness.

TPr(l, r) = P(l|r) =
P(lr)

P(r)
≈ frequency(lr)
frequency(r)

(6.3)

SVr(r) =
∑
l∈A

c(l, r) (6.4)

where,

c(l, r) =

{
1 if substring lr occurs in the corpus
0 otherwise

and A is the set of phonemes (the alphabet).

Hr(r) = −
∑
l∈A

P(l|r) log2P(l|r) (6.5)

As can be seen in Figure 6.8, the reverse measures seem to achieve similar segmenta-
tion performances as their forward counterparts. From their mathematical formulation,
it is clear that the forward and reverse versions of the measures are not equal to each
other. P(l|r) 6= P(r|l), and SVr and Hr calculations do not even share the strings that
they are calculated on with their forward counterparts. Like the analysis for varying
phoneme-context length in Section 6.1.6, we can also check if correlation between
forward and reverse version of these measures provide independent information. Since
both are useful for detecting boundaries, they will naturally be correlated. However, if
they provide some independent information, we would expect the correlation of the
measures for the boundary locations to be lower than the correlation for the complete
corpus. Indeed, the correlation coefficients for TP, SV and H and corresponding reverse
measures on the BR corpus are 0.62, 0.15 and 0.21 respectively. And when calculated
only on boundary locations, the same measures are 0.52, -0.01 and -0.06. The question
as how to combine the forward and backward information efficiently still remains, to
which we will return in Section 6.2.

6This is not strictly true if phoneme sequences of unequal length are used for l and r. However, for ease
of comparison this section only considers measures calculated on single phonemes.
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Figure 6.8: The precision/recall curves comparing the forward and reverse predictability mea-
sures: (a) TP and TPr, (b) SV and SVr, (c) H and Hr.

6.1.8 Predictability measures: summary and discussion
So far, this chapter discussed four predictability measures: transitional probability,

mutual information, successor variety and entropy. The reason all these measures
work is that in an unsegmented speech stream, predictability inside the lexical units
is high and predictability at the lexical unit boundaries is low. Our analysis is based
on two consecutive sequences of phonemes l and r. In informal terms, TP measures
how likely it is to observe r after l is observed. If TP is high, we expect to be within
a unit, if TP is low it indicates a possible boundary. MI measures whether l and r
are highly associated or not. Again if MI is high, we expect lr to be a word-internal
sequence, otherwise at a boundary. The other two measures, SV and H, are measures of
unpredictability (surprise). Hence, high values of SV and H indicate word boundaries.
Another difference of these measures is that they are functions of only l. Informally,
they try to answer the question ‘how much do I (not) know about r after observing l?’.
The difference between these two measures is in their sensitivity to the distribution of
the sequences that follow l. Entropy is affected by the frequency of these sequences,
while SV is oblivious to it.

All measures discussed in this section so far have some overlap in what they
measure, but they are not the same. Most psycholinguistic studies consider TP as the
measure of predictability, but the results from these experimental studies are compatible
with all four. For example, given a sequence similar to the stimuli presented to the
infants in Saffran et al. (1996b) and subsequent studies, Table 6.2 presents the values of
all measures discussed so far for two syllable pairs. One of the syllable pairs /bi-da/
is part of one of the artificial words /bidaku/ that form this sequence, while the other
/ku-pa/ is not. Table 6.2 shows that, as expected, all measures indicate a higher
chance for a word boundary between /bi-da/ compared to /ku-pa/. It would be
interesting to see experimental results that would be compatible with only one of the
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TP MI SV H TPr SVr Hr
/bi-da/ 1.0 3.4 1.0 0.0 1.0 1.0 0.0
/ku-pa/ 0.5 2.4 2.0 1.0 0.5 2.0 1.0

Table 6.2: The predictability scores for syllable sequences /bi-da/ and /ku-pa/, given the
sequence /bidakupadotigolabubidakugolabupadoti/ is observed. Note that for the
TP and the MI lower values, and for the SV and the H higher values indicate word boundaries.

TP MI SV H

TP 1.00 0.77 -0.45 -0.40
MI 1.00 -0.51 -0.43
SV 1.00 0.76
H 1.00

(a) All phoneme pairs.

TP MI SV H

TP 1.00 0.77 -0.10 -0.13
MI 1.00 -0.13 -0.09
SV 1.00 0.82
H 1.00

(b) Boundaries.

Table 6.3: Correlation coefficients of predictability measures for all phonemes in BR corpus (a)
and for the phoneme pairs that straddle a word boundary. The coefficients are calculated after
log-transforming the TP, SV and H values.

measures but not the others. However, it is a difficult task to design such an experiment.
The analysis in this section showed that all the measures discussed here do some-

thing relevant to segmentation, all scoring consistently over a random (but non-trivial)
baseline. The performance analysis done by plotting precision/recall curves or by
plotting precision, recall and f-scores gives an indication of the potential of a particular
measure. The way they are used in an actual learning algorithm in combination with
other information may result in different performance. Here, I will provide another way
to look at the similarities and differences of these measures before switching to explicit
models of segmentation with concrete algorithms. Table 6.3 presents the correlation
coefficients for all (forward) measures calculated on the BR corpus.

Table 6.3a confirms that all four measures are correlated. However, TP and MI are
more strongly correlated with each other compared to their correlations with SV and
H. Similarly SV and H are more strongly correlated with each other. Hence, the four
measures fall into two groups: TP and MI in one, and SV and H in another. The correla-
tions between former and the latter group of measures is negative, since the former two
measure predictability and the latter two measure unpredictability. Table 6.3b gives the
correlation coefficients of the measures where a boundary is observed. This also reveals
an interesting relationship between these groups of measures. Given boundaries, the
correlations between the groups drop substantially, while correlations within the groups
do not change much. This is an indication that the measures within the same group are
highly dependent, while being relatively (conditionally) independent of the measures
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in the other group. Similar to the analysis provided for varying phoneme context size
in Section 6.1.6, this is an indication that a learning algorithm that combines measures
from different groups will gain additional information, while an algorithm that uses
measures of the same sort will not.

This section provided an analysis of four measures of (un)predictability for their
use in lexical segmentation. All of them measure something relevant to segmentation
as they all perform better than a random segmentation baseline. The analysis also
showed that the use of additional context improves their performance, and it is useful
to consider the reverse of the asymmetric measures. Further analysis showed the simi-
larities and differences between these measures. Next section will layout unsupervised
computational models of learning segmentation that build on these measures.

6.2 A predictability based segmentation model
Existing predictability-based computational models of segmentation typically use

a single measure of predictability calculated on single phoneme (and rarely syllable)
contexts. However, the analysis of child-directed utterances in Section 6.1 indicates that
the four measures discussed (transitional probability, mutual information, successor
value and boundary entropy) are useful indicators of word boundaries. This analysis
has also shown that even though these measures are similar in many ways, they measure
different aspects of the input. As a result, the combination of these measures should
help finding boundaries more than each measure alone. Another aspect discussed
during this analysis is the effect of the phoneme context, which is also shown to affect
the performance of the measures. According to the analysis, increasing the number of
phonemes that the measures are calculated on, and combining measures calculated on
varying context size is expected to increase the performance. Section 6.1 presented the
effectiveness of each measure using a simple threshold based algorithm, leaving the
development of an unsupervised algorithm that combines information from multiple
sources for later. This section aims to fulfill this promise by developing an unsupervised
algorithm for learning lexical units from continuous speech in a number of incremental
steps.

6.2.1 Peaks in unpredictability
Besides the non-trivial problem of choosing a threshold, the segmentation algo-

rithms based on thresholds do not exploit the relation between predictability and
lexical units fully. Deciding for a boundary when an unpredictability measure exceeds
a threshold (or equivalently a predictability measure is less than a threshold) is in
line with the idea that predictability is low between the lexical units. However, the
thresholds do not directly utilize the fact that predictability is high within the units.
In the following pages a completely unsupervised strategy that explicitly attends to
high predictability within the units and low predictability between the units will be
discussed. That is, this strategy posits a boundary if an unpredictability measure at
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I z D & t 6 k I t i
TP 0.05 0.17 0.15 0.29 0.39 0.03 0.06 0.08 0.25 0.03 0.26
MI 0.19 2.80 2.20 3.26 2.59 0.16 0.81 0.90 1.94 -0.15 1.71
SV 38 19 43 10 30 46 36 43 19 46 42
H 4.39 3.16 4.06 2.50 2.90 4.31 3.96 4.07 3.16 4.31 4.03
TPr 0.09 0.29 0.11 0.31 0.18 0.07 0.05 0.06 0.16 0.06 0.09
SVr 42 34 38 40 41 40 40 42 41 33 39
Hr 4.47 3.57 3.80 3.37 3.87 3.50 4.06 4.47 3.87 4.12 4.41

(a) Example predictability scores

I z D & t 6 k I t i

4.0

2.0

0.0

(b) Graphical representation of MI and H values.

Figure 6.9: Predictability measures for example utterance /IzD&t6kIti/ ‘is that a kitty’. (a)
presents all predictability measures discussed in this chapter calculated on the BR corpus using
single-phoneme context. The values where unpredictability peaks are marked with boldface. (b)
represents a graphical representation of the MI (solid line) and the H (dashed line) values for the
example utterance. Dotted vertical lines mark expected boundary locations, and the triangles
mark the positions where the measures indicate a boundary according to peak criterion. Note
that ‘valleys’ rather than peaks are indications boundaries for MI.

the position is greater than the measure before and after the position. Following the
previous research (e.g., Hafer and Weiss, 1974; Harris, 1955), I will call the strategy
peak-based predictability strategy. However, it should be stressed that the term peak is
valid for only unpredictability measures, such as SV and H. For predictability measures
such as TP and MI, we look for ‘valleys’ rather than peaks. As well as reflecting the
intuition ‘high predictability within the words, low predictability between words’, the
peak based segmentation strategy is also completely unsupervised: we do not need to
tune any parameters, or use any labeled data where word boundaries are segmented.

Figure 6.9a presents values for all the measures discussed in this Chapter for each
possible boundary position in the utterance /IzD&t6kIti/ ‘is that a kitty’. The
measures calculated for the beginning and the end of the utterance are useful for
discovering peaks at neighboring positions, but, for a segmentation algorithm, there is
no point in trying to discover boundaries at these locations. The values where the peak
strategy suggests a boundary for each measure are indicated with boldface. Figure 6.9b
represents the values for MI and H graphically.

The measures presented in Figure 6.9 are calculated using single phoneme contexts.
That is, the sequence l and when required the sequence r are taken to be single
phonemes. As a result, performance of a peak based segmentation algorithm is bound
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to be adversely affected by the short context length. Since SV, SVr, H, and Hr are
functions of only l or only r, their performance is particularly low, for the example
in Figure 6.9. However, unlike the threshold strategy which gives the same decision
before or after a certain phoneme, the peak strategy considers the surrounding values
as well. As a result, even with short context used for calculating the measure, the
segmentation decision is affected by a larger surrounding context.

Even though the benefits of peak strategy for discovering boundaries are clear, there
are a few weaknesses to note here. First, the peak-based boundary decision is rather
conservative. It requires both sides of the boundary candidate to have the right kind of
slope. Even a very sharp increase on one side will be discarded unless it is followed
by a fall. Considering that most of the measures we discussed here are asymmetric,
and their indications are stronger in one direction than the other, the problem certainly
deserves some attention. This problem becomes more serious for single-phoneme
words. Since peak based algorithm never makes two boundary decisions on a row, it
never detects single-phoneme words. This problem will be revisited in Section 6.2.4.
A second problem that I will leave relatively unexplored in this study is the fact that
peaks do not take into account how steep the slopes are. Intuitively, the sharper the
slope the higher the expected boundary indication. However, the peak-based boundary
decisions used here ignore this fact.

The peak-based segmentation method that is demonstrated informally in Figure 6.9
can easily be implemented as an unsupervised segmentation algorithm for each mea-
sure alone. A possible realization of the peak-based segmentation is described in
Algorithm 6.1. For all measures, the algorithm essentially follows the same steps. The
predictability measures for each phoneme position in the utterance are calculated using
the definitions given in Section 6.1. Unlike the values presented in Figure 6.9, the
calculation of measures is not done using the complete corpus. The frequencies of
phonemes and phoneme pairs are updated in an incremental fashion, using only the
corpus seen so far. The beginnings and ends of the utterances are treated as special
phonemes for the calculation of the measures, otherwise the utterance boundaries are
not used as separate cues.

Table 6.4 presents the results obtained on the BR corpus for each predictability
measure by Algorithm 6.1 in comparison to the random baseline (RM) and the reference
recognition algorithm (LM) described in Section 5.5. As described in Section 5.5 the
random baseline is not completely random. It knows about an important fact about the
language: probability of word boundaries, which is not available to any of the models
presented in this thesis.

Results in Table 6.4 indicate clearly that the performance of the peak-based predic-
tion strategy as used here is far behind the LM. However, the results also show that for
all of measures, the algorithm performs consistently better than random. As it will be
discussed next, this is all we need to know about these measures for now.

Using peaks in unpredictability, Algorithm 6.1 exemplifies a completely unsuper-
vised method of segmentation. However, two other problems raised in Section 6.1,
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Algorithm 6.1: A peak-based segmentation algorithm.
Input: A sequence of utterances without word boundaries
Output: The sequence of utterances with boundaries
foreach utterance u in the input do1

foreach phoneme position i in u do2

Update frequencies of phonemei, phonemei+1 and phoneme-pairi,i+1;3

Pi ← predictability value between i and i+ 1;4

if Pi−2 > Pi−1 and Pi−1 < Pi then5

insert a boundary between phonemei−1 and phonemei;6

end7

end8

output the segmented utterance ;9

end10

boundary word lexicon error

measure P R F P R F P R F Eo Eu

TP 57.6 68.9 62.7 42.8 48.7 45.6 15.0 37.2 21.3 19.2 31.1
MI 66.3 74.1 70.0 52.2 56.6 54.3 18.5 42.5 25.8 14.3 25.9
SV 49.3 53.4 51.3 34.3 36.3 35.3 12.3 38.1 18.5 20.7 46.6
H 51.3 56.5 53.8 38.1 40.8 39.4 13.8 38.8 20.4 20.3 43.5
TPr 53.3 67.5 59.6 36.3 43.1 39.4 14.4 35.5 20.5 22.4 32.5
SVr 36.7 40.0 38.3 22.7 24.1 23.4 8.4 32.3 13.3 26.0 60.0
Hr 43.5 49.6 46.3 28.9 31.7 30.2 10.1 33.7 15.6 24.4 50.4

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 6.4: Boundary/word/lexicon Precision/recall/f-score values and oversegmentation and
undersegmentation error for the peak-based segmentation algorithm on the BR corpus. RM
represents a pseudo-random segmentation that inserts a word boundary with the probability of
word boundaries in the gold-standard segmentation. The LM is the recognition-based reference
model. Both models are described in Section 5.5. The performance and error scores are described
in Section 5.4.
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combination of measures and making use of larger phoneme context, are still left
unanswered. The next subsection will offer solutions to these problems, starting with
the former.

6.2.2 Combining multiple measures and varying phoneme context

The discussion so far supports the expectation that using multiple measures and
varying context size may be beneficial for segmentation performance. Using multiple
measures is expected to be better than a single one, since, even though they have a lot
in common, each measure seems to be measuring some aspects of the input that the
others do not. It was also shown in Section 6.1 that the phoneme context size makes a
difference in the performance of all measures. Furthermore, combining the measures
calculated on varying phoneme context size was also conjectured to be useful. Here,
Algorithm 6.1 will be extended to handle multiple sources of information coming from
multiple measures calculated on varying phoneme-context length.

In its essence, the peak-based segmentation method presented in Algorithm 6.1
is a binary classifier. It classifies each possible boundary position in an utterance as
boundary or non-boundary. Using different measures results in multiple classifiers
that do the same task. Viewing the problem as combining a number of classifiers
for achieving a better performance than each individual classifier is a relatively well
studied problem in the machine learning literature, where the sets of classifiers are
known as ensembles or committees (e.g., Bishop, 2006, chapter 14). For an effective
combination, the classifiers should be accurate and diverse (Hansen and Salamon,
1990). Accuracy refers to the requirement that the individual classifiers perform better
than random. Diversity is taken as the requirement that, to some extent, the classifiers
are independent. Most combination methods in machine learning, such as bagging and
boosting, are typically suitable for supervised classifiers. However, the field offers
a set of practical and theoretical tools for the problem at hand. Here a simple and
well-known method, majority voting , will be used for combining the multiple measures
for segmentation.

As well as machine learning applications, majority voting is also a common (and
arguably effective) method in everyday social and political life. As a result it has
been well studied, and known to work well especially if the accuracy and the diversity
requirements are met. A theoretical justification of majority voting is given by well-
known ‘Condorcet’s jury theorem’ which dates back to late 18th century (Boland,
1989). Provided that each member’s decision is better than random, and the votes are
cast independently, the Condorcet’s jury theorem states that the probability that a jury
arrives at the correct decision by majority vote monotonically approaches to one as
the number of members is increased. Informally, this states that in the long run the
decision of a large number of less competent individuals is better than the decision of
a single individual with the greatest competence. In practice, even though the votes
are almost never independent (especially in the social scene) majority voting is still an
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effective way of combining outcomes of multiple classifiers (see Narasimhamurthy,
2005, for a recent review and the discussion of effectiveness of the method).

Algorithm 6.2: The majority voting algorithm for multiple measures and multiple
context size. The functionm() at line 9 calculates the predictability score (hence,
unpredictability measures are multiplied by −1) according to measure m on
given sequences of phonemes. If required n-gram is not available, the algorithm
backs off to the n-gram with the highest available rank.

Input: A sequence of utterances without word boundaries and the maximum
context sizeM

Output: The sequence of utterances with boundaries
foreach utterance u in the input do1

for n = 1 . . .M+ 1 do2

update n-gram frequencies for the n-grams in u;3

end4

foreach phoneme position i in u do5

votecount← 0;6

foreach measurem do7

foreach context size n = 1 . . .M do8

Pi ← m(n-gram ending at i-1, phonemei) ;9

if Pi−2 > Pi−1 and Pi−1 < Pi then10

votecount← votecount+ 1 ;11

else12

votecount← votecount− 1 ;13

end14

end15

end16

if votecount > 0 then17

insert a boundary between phonemei−1 and phonemei;18

end19

end20

output the segmented utterance ;21

end22

The majority voting provides a simple way to incorporate the information from
multiple and (somewhat) independent measures and the information provided by
calculating these measures on varying context size. Instead of calculating a single
value for a measure and for a given context size, we can calculate multiple values for
multiple measures with multiple context sizes. Each measure–context size pair forms
a voter. If there is a peak in unpredictability according to this pair, we get a boundary
vote. If the majority of the voters vote for a boundary for a possible segmentation
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boundary word lexicon error

max. context P R F P R F P R F Eo Eu

1 73.6 68.2 70.8 57.3 54.3 55.8 16.7 49.5 24.9 9.2 31.8
2 86.6 72.9 79.2 70.7 62.8 66.6 22.0 58.6 32.0 4.3 27.1
3 89.7 77.5 83.1 75.6 68.3 71.8 27.7 63.3 38.6 3.4 22.5
4 93.4 73.6 82.3 76.4 65.0 70.2 26.1 63.1 36.9 2.0 26.4
5 94.1 72.2 81.7 76.3 63.7 69.4 26.2 64.0 37.2 1.7 27.8
6 94.9 66.1 77.9 73.4 57.7 64.6 22.8 61.7 33.3 1.4 33.9
7 95.1 63.5 76.2 72.4 55.5 62.8 21.4 60.1 31.5 1.2 36.5
8 95.4 58.7 72.7 70.3 51.2 59.2 19.6 58.3 29.3 1.1 41.3

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 6.5: Performance error scores for peak-based majority voting algorithm with varying
context. Two reference models, the RM and LM are defined in Section 5.5.

position, we insert a boundary at that position. Algorithm 6.2 describes this version
of the segmentation method using majority voting. For the forward measures, context
size defines the length of the sequence l, while for the reverse measures context size
defines the sequence r. For all boundary positions, the number of votes Algorithm 6.2
considers is equal to ‘the maximum context size’ times ‘the number of measures’. For
example, assuming that we run the algorithm only for H and Hr with the maximum
context size of two, and the algorithm is about to decide if there is a boundary after ki
in akitty, it checks each condition

1. H(i) > H(k) and H(i) > H(t)

2. Hr(i) > Hr(k) and Hr(i) > Hr(t)

3. H(ki) > H(ak) and H(ki) > H(it)

4. Hr(ki) > Hr(ak) and Hr(ki) > Hr(it)
Then, the algorithm increases the vote count by one for each condition met. If the vote
count is greater than half of the votes (two in this case) it inserts a boundary.

The results of combining all measures with varying context size using majority
voting on the BR corpus are presented in Table 6.5. Each line in the table lists the
common segmentation scores we use in this chapter for context size between one and
eight. Maximum context size one means that the measures are calculated with single
phoneme context. As a result, the scores in the first line of Table 6.5 are obtained by
the majority decision of seven voters (TP, MI, SV, H, TPr, SVr and Hr, all calculated
on single phoneme context), while the scores in line two are obtained by the majority
decision of 14 voters, each representing context sizes one or two for all seven measures.

The results certainly improve compared to single-measure segmentation results
presented in Table 6.4. Some of the scores also exceed the performance of the LM, the
recognition-based reference model. The performance of the majority voting algorithm
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is good at spotting boundaries and words. The boundary and word precision scores are
consistently better than the corresponding recall scores. When increasing maximum
context parameter, both precision and recall increase at first. This is expected since we
incorporate information from higher level n-gram frequencies that are good predictors
of the boundaries. After context length three, the recall starts to go down, while preci-
sion still gets better with the increased parameter value. Since the increased number
of voters requires a higher consensus, it is natural that the precision is high. However,
the higher number of voters also means that the disagreement on real boundaries will
also increase. As a result recall drops. With the decreased boundary recall, the word
and lexicon precision start going down as well. One of the reasons for this may be
because higher level n-grams suffer from data sparseness, the voters that use higher
level n-grams start to become less competent. As a result, increasing the number of
voters that calculate the results on higher level n-grams violates the requirement of the
successful combination that the individual voters need to perform better than random.

Despite being precise at spotting boundaries (and as a result words) the majority
voting algorithm is still bad at lexical precision. The low lexical scores mostly stem
from two causes. The first reason has to with the fact that this algorithm does not
build and use an explicit lexicon. As a result it does not get any reward for reusing
the previously discovered lexical items. Second, the algorithm starts with no prior
knowledge at all, and it takes time to build useful n-gram statistics. Until a reasonable
amount of statistics is collected, many wrong word-types are inserted into the lexicon,
and this affects the lexical precision adversely. The use of an explicit lexicon will be
investigated in Chapter 8. The effects of the lack of information at the beginning of the
segmentation process will be discussed in Chapter 9. Before concluding, the rest of
this chapter will present some improvements to Algorithm 6.2.

6.2.3 Weighing the competence of the voters

The majority voting algorithm presented in Section 6.2.2 treats all the voters equally.
Even though this may be a virtue in the social and political context, it is a shortcoming
for a learner. A better learner is expected to identify the value of the information
provided by each source, and increase the weight of the sources that perform well
consistently. Weighted majority voting is an extension of the majority voting algorithm
which weighs the vote of each source according to their competence (Littlestone and
Warmuth, 1994).

For the particular instantiation of the weighted majority voting algorithm used
here, we will first assign a weight, wi, in range [0, 1] to each voter. Second, instead
of increasing or decreasing vote count by one, we will increase or decrease the vote
count by wi. To do that we replace line 11 in Algorithm 6.2 with ‘votecount ←
votecount+wi’ and replace line 13 with ‘votecount← votecount−wi’. The
rest of the segmentation algorithm is essentially the same. Note that if all weights are
set to one, the algorithms are equivalent.
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boundary word lexicon error

max. context P R F P R F P R F Eo Eu

1 72.1 71.7 71.9 57.0 56.8 56.9 17.4 48.3 25.6 10.5 28.3
2 83.7 77.6 80.5 70.3 66.6 68.4 25.1 59.4 35.3 5.7 22.4
3 89.3 78.2 83.4 75.6 68.9 72.1 28.0 62.8 38.8 3.5 21.8
4 92.7 76.0 83.5 77.2 67.4 72.0 28.4 65.1 39.6 2.3 24.0
5 94.1 71.4 81.2 75.8 62.8 68.7 26.3 64.8 37.4 1.7 28.6
6 94.7 66.8 78.3 73.9 58.5 65.3 23.5 63.2 34.3 1.4 33.2
7 95.1 62.1 75.2 71.9 54.3 61.8 21.1 60.6 31.3 1.2 37.9
8 95.1 58.5 72.4 70.2 51.1 59.1 19.6 58.5 29.4 1.1 41.5

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 6.6: Performance error scores for peak-based weighted majority voting algorithm with
varying context. Two reference models, the RM and LM are defined in Section 5.5.

So far we have described how to adjust the majority voting algorithm to be able to
weigh its sources of information. However, we also need a way of setting the weights,
so that they reflect the usefulness of the particular voter’s decision. As with many
examples in the literature, we will set all the weights to one at the beginning. After each
decision, we will update the weights. In supervised models, where exact error is known,
one can adjust weights in a way to reduce the error. Here we do not know boundary
locations, and we cannot be certain about which decisions are correct. However, we
will take the (weighted) majority decision as the correct decision. That is, if the voter
agrees with the majority decision, we count this as a correct decision, and if it disagrees
we will assume that it made an error. To finalize our adjustments to Algorithm 6.2, we
keep count of errors made by each voter i, ei, which is incremented when the voter
does not agree with the majority decision. After the every boundary decision, first the
error counts are updated for each voter. Then, the weights wi, of all voters are updated
using,

wi ← 2
(
0.5−

ei

N

)
where N is the number of boundary decisions so far, including the current one.

This update rule sets the weight of a voter that is half the time wrong (a voter that
votes at random) to zero, eliminating the incompetent voters. If the votes of a voter are
in accordance with the rest of the voters almost all the time, the weight stays close to
one.

The performance scores of the weighted majority algorithm for the maximum
phoneme context parameter between one to eight on the BR corpus are presented
in Table 6.6. In general weighted majority voting algorithm performs slightly better
than majority voting algorithm. The performance of the algorithm can be improved
by further extensions, for example, by using a better method for setting weights, or
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boundary word lexicon error

max. context P R F P R F P R F Eo Eu

1 52.5 89.2 66.1 34.2 51.2 41.0 24.9 30.3 27.3 30.5 10.8
2 63.7 92.5 75.4 49.6 65.4 56.4 34.3 39.7 36.8 19.9 7.5
3 72.4 92.7 81.3 60.5 72.5 66.0 36.8 50.8 42.7 13.3 7.3
4 79.8 90.3 84.7 68.5 74.9 71.5 38.1 60.6 46.8 8.7 9.7
5 84.0 85.6 84.8 71.8 72.8 72.3 34.8 65.9 45.5 6.2 14.4
6 86.2 80.2 83.1 72.5 69.0 70.7 30.2 66.0 41.4 4.8 19.8
7 87.5 75.1 80.9 72.2 64.9 68.4 26.2 63.6 37.1 4.0 24.9
8 88.1 70.8 78.5 71.2 61.3 65.9 23.8 61.7 34.3 3.6 29.2

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 6.7: Performance and error scores for peak-based weighted majority voting algorithm that
incorporates the information from local changes at the both sides of the boundary candidate.
Two reference models, the RM and LM are defined in Section 5.5. The performance and error
scores are defined in Section 5.4.

using modified versions of peak-based boundary detection. However, the purpose of
the current work is not to find the best performing segmentation algorithm, but rather
proposing an explicit model of segmentation that combines information from multiple
sources. The weighted version of the algorithm is more attractive in this regard. First, it
makes it easy to include possibly irrelevant sources of information. If they are irrelevant
they will be left out by the weight update procedure reducing their weights to zero.
Second, it may explain certain shifts during learning. For example, a weak cue that
is not very useful before enough input is seen may become stronger in time, as its
predictions become more effective with the additional information. In other words, a
weak source of information may be bootstrapped by other sources if the information it
collects is relevant.

6.2.4 Two sides of a peak
While describing the peak-based segmentation decision, Section 6.2.1 also pointed

out a particular weakness of the peak criterion defined here. It is too conservative,
and in some cases this is a serious problem. For example, since there cannot be two
peaks in a row, it can never find single-phoneme words. This is also evident in the
performance scores presented so far, all combinations presented have high precision
(and low oversegmentation error), but low recall (and high undersegmentation error).

The solution to this problem has been delayed up to this point since the combination
methods described in previous sections provide a natural approach. We can interpret
the increase or decrease of uncertainty on either side of a boundary differently. The
majority voting algorithm can easily incorporate these additional voters’ decisions. The
weighted majority voting provides an additional reassurance by eliminating useless
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boundary word lexicon error

max. context P R F P R F P R F Eo Eu

1 51.6 87.0 64.8 32.6 48.4 39.0 23.7 31.6 27.1 30.8 13.0
2 63.1 92.0 74.8 48.9 64.8 55.7 33.3 40.2 36.4 20.4 8.0
3 (PM ) 69.6 92.5 79.5 56.9 70.2 62.9 36.7 49.8 42.3 15.3 7.5
4 76.6 90.9 83.2 65.0 73.5 69.0 38.3 60.3 46.8 10.5 9.1
5 81.5 87.2 84.3 69.6 73.0 71.3 34.9 64.7 45.3 7.5 12.8
6 84.3 82.7 83.5 71.5 70.6 71.0 32.5 67.5 43.8 5.8 17.3
7 85.3 77.6 81.3 70.6 66.1 68.3 28.3 65.9 39.6 5.0 22.4
8 86.1 73.2 79.1 69.9 62.5 66.0 25.1 63.5 36.0 4.5 26.8

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 6.8: Performance and error scores of the weighted majority algorithm considering the local
changes on both sides of the boundary candidate using measures MI, H, and Hr with varying
context. Two reference models, the RM and LM are defined in Section 5.5.

votes. Furthermore, since most of the measures discussed here are asymmetric, their
indication in one direction is stronger. For example, one expects TP to give better
indications while processing the stream left-to-right, so on the left side of a boundary
candidate. On the contrary, TPr should provide a better indication on the right side.
Weighted combination will automatically discover the value of these decisions.

As a result, the last improvement to the boundary discovery algorithm discussed
here is to incorporate the local changes on the two different sides of a boundary
candidate as separate voters in the weighted majority voting algorithm. Table 6.7
presents these results for varying maximum context size. Except for lexical scores, in
comparison to previously presented results the benefit of this may not be immediately
clear. It seems the approach trades the precision for increased recall. However, as well
as in the increased lexical performance in Table 6.7, the benefit of this more eager
segmentation approach will be clearer as other, more varied cues are added.

6.2.5 Reducing redundancy
In Section 6.1 we concluded that even though all the measures we discussed so far

measure something relevant to word boundaries, they are different. Further analysis
showed, however, that not all of them are different from one another. In particular, they
seem to form two groups, TP and MI in one, SV and H in the other. The analysis also
indicated that if we pick one of the measures from each group, we do not miss much
information. Since this option also simplifies the computational system, it is attractive
to pick a subset of the measures instead of all of them.

Table 6.8 presents the result obtained only using MI, H, and Hr. Compared to
results in Table 6.7, most scores go down slightly. It seems the SV and TP have minor
contributions to the performance even in the presence of MI and H. However, for the
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sake of simplicity, I will take these measures as representative of predictability for the
rest of this thesis.

6.3 Summary and discussion
It is time for the rather long discussion of a set of measures of predictability

and predictability-based segmentations strategy in this chapter to be wrapped up and
concluded. However, a last simplification will be provided, and the model developed
so far will be evaluated further before concluding.

The previous sections presented a set of performance measures according to varying
context size that the measures are calculated with. Even though the effect of increasing
the maximum context size may be insightful, it is not one of main interests in this
thesis. It is clear from the results presented so far that increasing maximum context size
increases the precision, and reduces the oversegmentation errors, but it also decreases
the recall, and increases the undersegmentation errors. If we were to pick a ‘maximum
context size’ based on the results in Table 6.8, the maximum context size in the range
three to six look like well-performing options. However, we should also note that using
higher context sizes is likely to cause memorization of the complete words or phrases.
If we want more generalization, smaller context sizes are more appropriate. As a result,
to simplify the discussion for the rest of this thesis, I will pick the maximum context
size of three, and use results obtained using this setting (Table 6.8 row three) as the
representative results of the predictability-based segmentation strategy. In the rest of
this thesis, the model using three predictability measures, MI, H and Hr with context
sizes between one and three will be called predictability-based segmentation model
(PM). The PM will be used for all further simulations combining results from multiple
cues and strategies that will be presented in the next two chapters. The decision for
number three is still somewhat arbitrary, and fine tuning this parameter may lead to
better performance values. However, for the sake of simplicity, I will stick to this
setting for the other models presented in the later chapters as well. The choice of the
maximum context size parameter is further discussed in Chapter 9.

Now that we picked a representative model, without space concerns for presenting
too many graphs, we can present one more aspect of the model’s performance: the
change of performance with the increasing input. Following the evaluation strategy
described in Section 5.4, Figure 6.10 presents change of f-score and error values for
the PM for each 500 utterance block of the BR corpus. For the last 290 utterances, the
performance scores are significantly better than the scores calculated for the complete
corpus (BF=83.8%, WF=69.8%, LF=60.2%, Eo=13.7%, Eu=3.4%. Cf. scores in
Table 6.8 row three).

This chapter described a set of well-known measures of predictability or uncertainty.
After a careful analysis of these measures and their combination, I have described a
completely unsupervised method to combine multiple measures calculated on varying
phoneme-context size. Arguably, we could do with a single measure of predictability.
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Figure 6.10: (a) Boundary, word token and word type f-scores and (b) oversegmentation and
undersegmentation rates of the PM on the BR corpus for successive blocks of 500 utterances
each.

The reason for the effort spent for combination of these measures here is twofold. First,
it seems none of the measures alone performs as well as the combination of multiple
measures. With the interest of getting the most out of predictability cues, it makes sense
to combine them. Second, the methods developed here for combination of multiple
cues will be used for combining other cues in next two chapters. For the simulations of
multiple cue combinations, the algorithms presented in this chapter will set an example.

The strategy defined in this chapter works, and certainly performs well in the
segmentation task. This is very clear when we compare the performance of the final
model with the baseline model RM. When compared to the performance of the state of
the art LM strategy, on the other hand, the performance of the PM is not that impressive.
However, it is not too far behind either. The main question of interest in this study is
not to achieve best performance, but investigate how multiple cues may be contributing
to the performance of a cognitively relevant cue combination model. In this respect,
this chapter is only the first step, and coming chapters will continue taking steps in this
direction, and increasing the performance of the model along the way.
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You don’t understand anything until you
learn it more than one way.

Marvin Minsky

One of the attractive aspects of predictability-based segmentation is that it does
not require any lexical knowledge in advance. Most of the other cues discussed in
Section 4.2 need at least some lexical knowledge to be useful for discovering lexical unit
boundaries. However, certain aspects of lexical unit boundaries, such as the regularities
found at the beginning and end of words, can be induced from the boundaries already
marked in the input without the need for a lexicon. There are a number of acoustic cues,
such as pauses, that are highly correlated with lexical unit boundaries. However, these
are generally considered to be unreliable (see the discussion in Section 4.2.4), and they
are rarely marked in available corpora. Utterance boundaries, however, are typically
marked well during a conversation, and they are marked clearly in all available corpora.
Even though the segmentation method that will be presented in that section can be used
with boundaries marked by any cues, the results reported here are obtained using only
the information collected at the utterance boundaries.

Section 4.2.4 suggested two possible uses for pauses in general which naturally
apply to utterance boundaries. First, one can use pauses to restrict the possible seg-
mentations by disregarding possible words that straddle pauses. This use of utterance
boundaries for segmentation has been utilized (implicitly) by almost all computational
models of segmentation.1 The predictability-based segmentation model discussed in
the previous chapter is no exception. Here, I will investigate the second use: since
utterance boundaries are also word boundaries, therefore, by paying attention to the
beginnings and ends of the utterances, one can gain some insight into the way words
are built—i.e., learn some aspects of the phonotactics of the input language.

1A notable exception is presented by Perruchet and Vinter (1998) which simulates the experimental
setup of Saffran et al. (1996a) where the stimuli do not have any utterance boundaries.
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7.1 Related work
The use of utterance boundaries for lexical segmentation is typical in connectionist

models (e.g., Aslin et al., 1996; Christiansen et al., 1998; Stoianov and Nerbonne,
2000). These models try to predict whether there is an utterance boundary after a
given input sequence or not. If the model indicates a high likelihood of an utterance
boundary where there is none, it is taken as an indication of a word boundary. The non-
connectionist models, even the ones that take phonotactics seriously (e.g., Blanchard
et al., 2010), do not typically pay attention to utterance boundaries. Two exceptions to
this are the models described by Fleck (2008) and Monaghan and Christiansen (2010).
Both models make use of pauses and utterance boundaries to learn phonotactics and
use them for lexical segmentation.

In segmentation models that use some form of language modeling (such as, Brent,
1999a; Goldwater et al., 2009; Venkataraman, 2001), including the reference model
LM, described in Section 5.5, a simple model of phonotactics is used for estimating
probabilities of unknown words (Equation 5.4). More elaborate models use a similar
phonotactics component but calculate it over higher-level phoneme n-grams (e.g.,
Blanchard et al., 2010). The probabilities of the phoneme n-grams are estimated from
the word tokens (Venkataraman, 2001) or from word types (Blanchard et al., 2010;
Brent, 1999a). However, none of these models use utterance boundaries explicitly to
infer phonotactics.

As far as I could determine, the only two non-connectionist models that make use
of utterance boundaries explicitly are presented by Monaghan and Christiansen (2010)
and Fleck (2008). The model presented by Monaghan and Christiansen (2010) learns
phonotactics from the lexicon learned in an on-line fashion using a heuristic algorithm.
Thus, it is a different source of information than the utterance boundaries, and it is more
similar to the word-based segmentation model that will be described in Section 8.2.
The model presented by Fleck (2008) is probably the most similar to the segmentation
model that will be outlined in this chapter, and it will be described here briefly.

Fleck (2008) presents a batch model that guesses boundaries based on their left and
right (phoneme) context. For any boundary position, the model considers its left (l) and
right (r) phoneme contexts. The boundary decision is given if P(b|l, r) ≥ 0.5, where
b denotes boundary. That is, the model decides for a boundary if, given l and r, the
probability of observing a boundary is higher than 0.5. Using the Bayesian inversion
and assuming independence between l and r,

P(b|l, r) =
P(b)P(l, r|b)

P(l, r)
=
P(b)P(l|b)P(r|b)

P(l)P(r)
. (7.1)

As a result, learning in this model can be considered as estimating five probability
values P(b), P(l|b), P(r|b), P(l) and P(r). Notice that the measure P(b|l, r) estimated
here is the measure presented by Hockema (2006) discussed in Section 6.1. As
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demonstrated in this section, the measure is rather accurate, and if the estimate is
successful, it is expected to lead to high performance.

For each candidate boundary position, Fleck (2008) uses variable length left and
right n-grams up to five phonemes so that the selected n-gram is the longest sequence
that occurs at least 10 times in the corpus. The segmentation algorithm works in three
steps, and requires multiple passes over the corpus. First, the model estimates P(l|b)
and P(r|b) from the utterance boundaries. At the first step, the segmentation decision is
given if these probabilities are over a threshold value. At the second phase, a heuristic
morphological analyzer fixes certain boundaries decided during the first phase. At the
last step, the model estimates the P(b), and re-estimates P(l|b) and P(r|b) from the
output of the second step, and also estimating P(l) and P(r) from the corpus, it uses
Equation 7.1 to calculate the estimate of P(b|r, l). A segmentation decision is given if
this value is greater than 0.5. Fleck (2008) reports relatively good results (BF = 82.9%,
WF=70.7%, LF=36.6% on the BR corpus, see Table 7.3 for details).

7.2 Do utterance boundaries provide cues for word boundaries?
From previous studies (e.g., Christiansen et al., 1998; Fleck, 2008), it is clear that

utterance boundary information is useful for finding word boundaries. In particular,
utterance beginnings and endings can be used for guessing what word beginnings and
endings look like. In other words, utterance boundaries help in learning phonotactics.
This subsection provides an analysis of the BR corpus to demonstrate the usefulness of
the utterance boundaries in finding word boundaries, and introduces a measure that
will be used by the unsupervised segmentation model that will be described next.

In Fleck’s formulation (Equation 7.1) of the problem, one thing to note is that
we can actually estimate P(b|r, l) directly from a corpus with pauses. This would
probably assume a large number of pauses, but the required number of pauses is not
necessarily unrealistic in comparison to the input children receive during language
acquisition. Estimating P(b|r, l) from the utterance boundaries alone is problematic,
since utterance boundaries provide information about P(b|r) and P(b|l) separately.
Nevertheless, estimating the relation of boundaries with left and right context separately
is not a bad idea. In essence, what we are interested in is whether r is a good candidate
for a word ending, and whether l is a good candidate for a word beginning. An accurate
estimation of the joint indication of l and r together may help, but a word ending is
relatively independent of the beginning of the next word, and separate indications of
l and r as possible word endings and as possible word beginnings, respectively, are
useful criteria in identifying boundaries.

To determine whether the utterance beginnings and endings are good estimators
of the word beginnings and endings, Figure 7.1 presents results of an analysis that
takes a look into the BR corpus. The first two columns in Figure 7.1 present familiar
histograms for P(ub|r) and P(ub|l), respectively, where ub represents the presence
of an utterance boundary. Figure 7.1a presents the distribution of P(ub|r) for all
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Figure 7.1: For phoneme pairs l and r, distribution of (a) P(ub|r) over word-initial phoneme
pairs, (b) P(ub|r) over non-word-initial phoneme pairs, (c) P(ub|l) over word-final phoneme
pairs, (d) P(ub|l) over non-word-final phoneme pairs. The precision/recall curves in (e) present
the performance of two simple algorithms that decide on a boundary if P(ub|l) or P(ub|r) is
higher than a threshold.

word-initial phoneme bigrams that are not utterance-initial, while Figure 7.1b presents
the distribution of the same measure plotted for phoneme bigrams that are found
in non-word-initial positions. Similarly, Figure 7.1c–d present the distribution of
P(ub|l) for the word-final phoneme bigrams that are not utterance final, and non-word-
final phoneme bigrams, respectively. The utterance boundaries are excluded while
calculating all distributions presented in Figure 7.1.

The histograms in Figure 7.1a–c clearly show that the phoneme pairs that occur at
utterance beginnings and utterance ends are more likely to occur at word beginnings
and word ends, respectively. Particularly, most of the non-word-initial phoneme
bigrams never occur at the beginning of utterances, and most of the non-word-final
phoneme bigrams never occur at the end of utterances. As a result, a large portion of
the probability mass on the lower histograms is grouped together at the very low end
of the scale. In general, the distributions are fairly different for target locations (i.e.,
word beginnings and ends) and non-target locations.

Figure 7.1e presents boundary precision/recall curves for two simple threshold
based segmentation algorithms, one segmenting before a phoneme bigram r, such
that P(ub|r) is higher than a threshold, and the other segmenting after a phoneme
bigram l such that P(ub|l) is higher than a threshold. When used in this manner, the
information from utterance beginnings seems to be slightly more useful compared to
utterance endings (this will be discussed further in Section 7.3). In general, the overall
performance is rather good, and the best f-scores for both are above 70%. However,
as discussed before, an unsupervised learner faces the problem of determining a good
threshold, or using another method for an operational definition of how to decide for
or against a boundary. The next subsection will address the problem of how to use



7.3. An unsupervised learner using utterance boundaries 119

the information collected at utterance boundaries in an unsupervised learning method.
Before that two additional notes are in order.

First, we use conditional probabilities P(ub|r) and P(ub|l) as measures of asso-
ciation between the utterance boundaries, and the phoneme sequences following or
preceding them. An arguably better measure would be pointwise mutual information
(MI, see Section 6.1.3). Indeed, preliminary experiments using MI (not reported here)
resulted in slightly better performance. However, the only major addition MI brings
in this particular task is correcting the probability value for frequency of boundaries.
Since the frequencies of boundaries are relatively stable compared to other phoneme
n-grams, conditional probability performs similarly. The choice of conditional proba-
bility here is mainly motivated by the fact that it is a simpler measure. Hence, it makes
the exposition here more transparent and easier to follow.

Second, the statistical analysis presented in Figure 7.1 is based on phoneme pairs
(or bigrams). Phoneme n-grams of varying length may provide different information.
As the length of the n-gram increases, it is more likely to capture whole words, while
shorter n-grams are likely to capture regularities shared by many words. The varying
size of phoneme n-grams will be one of the points that will be investigated with the
unsupervised model that is described next.

7.3 An unsupervised learner using utterance boundaries
The analysis in Section 7.2 showed that P(ub|r) and P(ub|l) are useful measures

for deciding for a boundary before r, or after l. In other words, if sequence r occurs
consistently at the utterance beginnings, it is likely that it follows word boundaries.
Similarly if l occurs consistently at the end of utterances, it is likely that it precedes
word boundaries as well. For the rest of this section, we will refer to P(ub|r) as ‘UBb’
and P(ub|l) as ‘UBe’, signifying that these quantities are utterance boundary cues
learned from utterance beginnings and utterance ends respectively. Additionally, where
necessary, a superscript indicating the length of relevant phoneme n-gram (l or r) will
be used. For example, UB3b is equal to P(ub|r) where r is a phoneme n-gram of length
three, i.e., given r, the probability of observing an utterance boundary before r.

Following the conventions suggested in Section 6.2, this section reports results of
an unsupervised learner that uses a peak strategy. That is, the learner posits a boundary
if the measure (UBe or UBb) calculated at the current position is higher than it is in
the surrounding candidate boundary positions.

Figure 7.2 plots UB2b and UB2e values for each possible boundary position in the
utterance /IzD&t6kIti/ ‘is that a kitty’. Like predictability values, the relevant score
is calculated both at the beginning and at the end of the utterance. We do not look
for boundaries in these positions, however, the values are used for detecting peaks. It
should be noted that UBe is not defined at the beginning of the utterance. Similarly
UBb is not defined at the end of the utterance. As a result, UBe can measure only
right side of the ‘peak’ after the first phoneme, and UBb can measure only the left side
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Figure 7.2: UB2b (solid line) and UB2e (dashed line) values for example utterance /Iz D&t 6
kIti/ ‘ is that a kitty’. The dotted vertical lines mark expected boundary locations. The values
are calculated on the BR corpus using bigrams, falling back to unigrams at the edges of the
utterance where bigrams are not available.

boundary word lexicon error

measure P R F P R F P R F Eo Eu

UB1b 61.0 67.9 64.2 46.5 50.2 48.3 15.6 40.8 22.6 16.4 32.1
UB2b 79.5 72.9 76.1 65.1 61.3 63.1 21.0 53.3 30.1 7.1 27.1
UB3b 89.2 63.1 73.9 67.7 53.7 59.9 16.3 49.1 24.5 2.9 36.9

UB1e 58.0 60.5 59.2 44.5 45.9 45.2 16.5 43.4 23.9 16.5 39.5
UB2e 73.9 71.1 72.5 60.1 58.5 59.3 21.6 53.3 30.8 9.5 28.9
UB3e 81.3 61.1 69.7 61.4 50.6 55.5 18.7 55.8 28.0 5.3 38.9

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 7.1: Performance scores for segmentation using utterance beginnings and utterance endings
on the BR corpus. ‘UBb’ stands for segmentation using utterance beginnings, and ‘UBe’ stands
for segmentation utterance endings. The subscripts indicate the size of the phoneme n-gram
which is used to calculate relevant statistics. Two reference models, the RM and LM are defined
in Section 5.5.

of the ‘peak’ before the last phoneme. This limits each individual measure’s utility.
However, as the performance scores in Table 7.1 indicate, the measures are still quite
useful as indications of word boundaries. Furthermore, the final aim of this study is
using these measures in combination with each other and in combination with other
measures, which will hopefully complement these measures and compensate for their
shortcomings. Similar to the predictability scores, there is a tendency to observe peaks
in real boundary positions. For example, in Figure 7.2, the UB2e measure catches two
of the boundaries correctly, misses one and gives no false positives. UB2b, on the other
hand, finds one of the boundaries correctly, misses two and gives one false positive.

Table 7.1 presents the performance scores of the peak-based segmentation algo-
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1 2 3 4 5 6 7 8

UBb
novel 8.1 5.7 3.7 3.4 3.3 3.5 3.6 3.7

novel>n 100.0 99.0 62.2 24.2 7.7 5.2 4.0 3.8

UBe
novel 11.7 7.8 3.4 2.6 1.9 1.9 1.9 1.9

novel>n 100.0 99.8 59.4 17.9 6.1 3.6 2.4 2.0

Table 7.2: Percentage of novel words discovered by the peak-based algorithm using UBb and
UBe with changing phoneme n-gram lengths. The rows labeled ‘novel’ present the percentage
of correctly discovered words that were not detected at the utterance boundaries before. The
rows labeled ‘novel>n’ consider a word also novel if the n-gram is not novel, but the word is
longer than the n-gram length.

rithm, using only information from utterance beginnings and utterance endings. The
algorithm is the same as Algorithm 6.1 (on page 105), except instead of predictability
scores, the UBb and UBe scores are used. The segmentation performance is not impres-
sive. However, all performance scores are consistently better than random, and some
performance scores are competitive with the language modeling baseline. Intuitively,
the different n-gram lengths capture different aspects of utterance boundaries, and
combination of n-grams of varying lengths is expected to result in better performance
compared to the performance obtained by using each n-gram length alone. The effect
of combining varying n-gram length UBb and UBe scores will be presented shortly.
However, there is another interesting question that is easier to investigate in this simple
form: is the method learning words, or phonotactics? In other words, can the method
discover previously unseen words by using regularities that make up word beginnings
and word endings?

Calculating UBb and UBe scores using a shorter n-gram length is more likely
to capture the regularities stemming from phonotactics. On the other hand, higher
level n-grams would cause the method to learn frequent lexical items. Of course,
both cases are useful for segmentation, but learning phonotactics would allow the
method to extract more novel words rather than learning individual words. Table 7.2
presents percentages of correctly identified novel words, for two different definitions
of ‘novelty’. For the first definition, we count the correctly identified words that were
not seen at the utterance boundaries before. For the second definition, we count the
correctly identified words that are either not observed at utterance boundaries, or are
longer than the phoneme n-gram size in use. The first definition gives an indication of
the algorithm’s success in discovering completely new words. The second definition is
also interesting, because it shows another effect of generalization. Even though most
of the words counted according to the second definition are seen before, since they are
larger than the n-gram length, there is no way for the model to completely memorize
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boundary word lexicon error

model P R F P R F P R F Eo Eu

UBb 71.9 77.3 74.5 57.1 60.0 58.5 23.9 50.6 32.4 11.4 22.7
UBe 73.3 78.6 75.8 57.5 60.4 58.9 22.0 51.1 30.8 10.8 21.4
UM 82.9 84.8 83.8 70.5 71.7 71.1 33.8 66.9 44.9 6.6 15.2

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3
Fleck (2008) 94.6 73.7 82.9 – – 70.7 – – 36.6 – –

Table 7.3: Performance scores for the combination of utterance boundary measures on the BR
corpus. The first two rows present performance scores for UBb and UBe measures, respectively,
with n-grams of length one to three combined using the weighted majority voting. The third
line, labeled UM, combines both UBb and UBe using the same method and parameters. Two
reference models, the RM and LM are defined in Section 5.5, and the last row reports the
performance scores for the related model presented by Fleck (2008).

them. As a result, both definitions indicate whether the algorithm is segmenting words
by generalizing how words are built, or by memorizing the frequent words or phrases.
The results presented in Table 7.2 demonstrate the expected contrast between short and
long phoneme n-grams used in calculation of UBb and UBe. If the algorithm is used
with short n-gram lengths, it learns more general aspects of phonotactics. On the other
hand, if longer phoneme n-grams are used, the method starts memorizing the frequent
words or phrases.

Besides the expected change in generalization by varying phoneme n-gram length,
another interesting observation in Table 7.2 is that the UBe measure generalizes better,
especially for shorter n-gram lengths. This is mostly due to the fact that English is pri-
marily a suffixing language, and the morphemes at the end of the words provide a better
opportunity for identifying the novel words which share the previously encountered
morphemes. However, this finding is not reflected well by the performance of UBe-
based models presented earlier. For all results presented in Figure 7.1c and Table 7.1,
UBe-based models are outranked by the UBb-based models. This conflicts with the
expectation that if the ends of words allow better opportunities for generalizations,
UBe-based segmentation should be more accurate. The reason for UBe-based models
performing worse than UBb-based models stems from another fact, at least valid for
the BR corpus: utterance ends are more varied compared to utterance beginnings. In
the BR corpus, only 579 of 1324 word types appear at the beginning of utterances,
while 903 word types appear at the end of utterances.

7.4 Combining measures and cues
The overall aim of the segmentation measures and methods developed here is

to be able to combine information from multiple sources. The first question for a
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segmentation strategy that makes use of utterance boundaries is whether the information
from utterance beginnings and ends, as well as the information from varying phoneme
n-gram length can be combined for better performance. The second question is
whether information from utterance boundaries can be combined with the information
obtained using predictability measures presented in Section 6.2. Both questions can be
tested using a combination method similar to the one used for predictability measures
presented in Section 6.2.2 and 6.2.3.

Table 7.3 presents the performance scores for three models that combine UBb,
UBe and both, respectively. For all three, the simulations are run using the weighted
majority voting algorithm (described in Section 6.2.3) by combining the phoneme n-
gram lengths between one and three. For simplicity, UBb and UBe without superscripts
denote this combination, i.e., the combination of the respective measure with varying
the phoneme n-gram length between one and three. Combination of both UBb and
UBe will be called UM, and it will be used as a representative model for the strategy
developed in this chapter.

Table 7.3 also presents the usual reference results, as well as the performance
scores for the model presented by Fleck (2008) are also reported in the same table
for comparison. Compared to some of the scores presented earlier in Table 7.1, the
performance gain by the combination of varying phoneme n-gram length is questionable
for individual measures (UBb and UBe) for some performance scores. Since the
individual measures perform better than random segmentation, the low performance of
the combined result is likely to be due to the fact that the voters in these cases are not
independent enough. On the other hand, the combination of the UBb and UBe yields
a clear performance gain. The performance results for UBb and UBe combination
certainly show an improvement over the individual measures, and the word and lexical
scores are better than the results reported by Fleck (2008), only showing slightly worse
performance in boundary scores. It should also be noted that, unlike the segmentation
model presented in Fleck (2008), these results are obtained using only a single pass
through the corpus, with no ad hoc corrections and/or parameters. The only parameter
used in this segmentation method is the maximum phoneme n-gram size (set to three
in all instances).

To answer the second question, whether the utterance boundary cue is useful in
combination with predictability cue or not, Table 7.4 presents results of combining
the reference models for each cue, the UM with the PM. The combined model, PUM,
combines all measures from both models for phoneme n-gram size one to three using
the weighted majority voting algorithm (described in Section 6.2.3). The combination
is flat, that is, all measures are considered equal, and no attempt is made to group their
results. The usual baseline scores, and the performance scores of the predictability
and the utterance boundary-based segmentation algorithms with the same phoneme
context range are repeated for comparison. Combining the utterance boundary and
the predictability measures results in better performance scores than the combinations
utilizing each group of measures alone. Furthermore, the combined model performs
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boundary word lexicon error

model P R F P R F P R F Eo Eu

PM 69.6 92.5 79.5 56.9 70.2 62.9 36.7 49.8 42.3 15.3 7.5
UM 82.9 84.8 83.8 70.5 71.7 71.1 33.8 66.9 44.9 6.6 15.2

PUM 81.3 87.1 84.1 69.2 72.7 70.9 36.9 65.8 47.3 7.6 12.9

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3
Fleck (2008) 94.6 73.7 82.9 – – 70.7 – – 36.6 – –

Table 7.4: Performance and error scores for combination of the models UM and PM (PUM) on
the BR corpus. The first two rows display previously presented results for the models PM and
UM. Two reference models, the RM and LM, and the performance scores for the related model
by Fleck (2008) are also repeated here for ease of comparison.

better than Fleck (2008) and the reference model LM for most scores. This comparison
may not be fair because the PUM uses information from both predictability and
utterance boundaries. However, it is also not fair, because the model presented by
Fleck (2008) is a batch model which makes use of multiple passes over the data. The
relatively fair comparison would be comparing the final state of the UM with the results
reported by Fleck (2008). Figure 7.3 present the progression of performance of UB
and PUB during the learning as more input is processed.

Figure 7.3 demonstrates that both the UM and the PUM perform better at the later
stages of learning, and the combined model’s performance is clearly better than th
UM’s performance. Additionally, at the end of the BR corpus, the UM’s performance
is substantially better (BF=88.3%, WF=77.7%, LF=72.1%, Eo=7.3%, Eu=6.7%), in
comparison to the scores presented by Fleck (2008, BF=82.9%, WF=70.7%, and
LF=36.6%). Compared to the LM, on the other hand, the lexical scores are still rather
low, to which we will return in Chapter 8.

7.5 Summary

This section described another segmentation strategy that does not require knowl-
edge of lexical items, and as a result is suitable for bootstrapping the lexicon. The
strategy presented here makes use of utterance boundaries, i.e., learning common
beginnings and endings of utterances. Since utterance boundaries are also lexical unit
boundaries, this information is useful for lexical segmentation in two ways. First,
learning the beginnings and the ends of words that appear at utterance boundaries is
useful for spotting them later when they appear at utterance-internal positions. Second,
and more interestingly, words beginnings and ends show some regularities, and learning
these regularities from already existing boundaries helps in discovering novel words
that conform to these regularities even if they are encountered at utterance-internal
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Figure 7.3: Boundary (BF), word token (WF), and word type (LF) f-scores and oversegmentation
(Eo) and undersegmentation (Eu) error rates for the phonotactics model based on utterance
boundaries, the UM, and its combination with previous the predictability-based model (PUM).
The scores are calculated for each 500-utterance block in the BR corpus during the learning
process.
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positions.
This section first provided some evidence through a statistical analysis of the BR

corpus showing that utterance boundaries provide information useful for spotting
word boundaries. Second, an unsupervised segmentation algorithm that combines
the information gathered at the utterance beginnings and utterance ends has been
developed. The performance results obtained using utterance boundaries (Table 7.1
and Table 7.3) are encouraging, and competitive with the other models presented
in the literature. More importantly, the segmentation based on utterance boundaries
and the predictability-based segmentation strategy described in Section 6.2 seem to
complement each other. The combination of the two leads to better performance than
each individual cue alone.

The results presented in Table 7.2 showed that the unsupervised algorithm pre-
sented in this section not only memorizes words and/or word beginnings and endings,
but also gains some knowledge of phonotactics. As a result, it is also useful for dis-
covering words that have not been observed at the utterance boundaries before. This
generalization was possible even though the input representation treats phonemes as
unrelated symbols that have no relation to each other. It is natural to expect a better
generalization if a representation based on phonetic features were to be used (e.g., as in
Christiansen et al., 1998). For example, a richer input representation would be sensitive
to phonemic tendencies in the data. For example, a vowel–vowel sequence, e.g., /ae/,
is less likely in English than a consonant-vowel sequence, /ba/, even if the bigrams in
question have never been seen by the learner before. The investigation of effects of a
richer input representation is a possible direction for future research.

The method described in this chapter only learns phonotactics from utterance
boundaries. In principle, more can be learned from utterance boundaries. A relevant
cue that may be bootstrapped from utterance boundaries is lexical stress. At least
for the languages with word-initial of word-final lexical stress, it may be possible to
learn these patterns from utterance boundaries. However, preliminary experiments (not
reported here) with learning stress from utterance boundaries were not fruitful. This
will be discussed further in Section 8.3 in detail, where a model of segmentation using
lexical stress learned from previously discovered words will be presented.

The segmentation strategies based on predictability and utterance boundaries dis-
cussed so far have the advantage that they do not require prior lexical knowledge for
discovering words or phrases. This is useful since it provides a way to bootstrap the
process of learning lexical items. However, being ignorant about the lexicon is also a
disadvantage. This is clearly visible in the difference in their boundary- and lexical-
performance scores (e.g., in Table 7.4). Even though the models discussed so far are
good at spotting boundaries and words, they do not show the same proportional success
rates in lexical scores. The next chapter will be dealing with this issue, introducing
an explicit lexicon, and using the information in the lexicon for the advantage of an
incremental segmentation algorithm.
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Those who do not remember their past are
condemned to repeat their mistakes.

George Santayana

We learn best from our mistakes, provided that we are aware of the fact that we
made a mistake. The formal studies reviewed in Chapter 3 also confirm this common
sense statement. Strong learnability results in general settings are possible only with
negative evidence. In Chapter 3, I argued that for most real-world learning problems,
where the distribution of the input data is constrained, negative evidence is not strictly
necessary. That is, if we always observe positive examples of what we try to learn and
if we know that they are accurate (to some degree), learning is still possible.

The models of segmentation discussed in this thesis fit in neither of these schemes.
The learner does not know whether the segmentation he/she decided on is correct or
not. In the real world, mistakes in segmentation would eventually be translated to
communication failures or processing inefficiencies which may provide feedback to
the learner. However, the models discussed in this thesis do not have access to this type
of feedback. Instead, the models presented so far act upon general guiding principles
for detecting word boundaries. In Chapter 6 the principle was ‘predictability within
the lexical units is high, predictability between the lexical units is low’. The models
in Chapter 7 utilized the fact that the utterance boundaries are also word boundaries,
and words share common beginnings and endings. These models learn statistical
relationships between phoneme sequences, and they learn to weigh the individual
boundary indicators. However, these models do not learn from negative or positive
boundary labels in the input.

This chapter presents models that learn from positive examples. Since the input
does not contain any labels (the boundaries), we will take earlier boundary decisions
given as positive examples. The learners in this chapter will use the boundaries
decided in the past as a source of information, in order to contribute to the decisions
in the future. At first sight, this may look circular. However, this works because
the data is structured, and we have relatively accurate indications (predictability and
utterance boundaries). The type of learning investigated here is closely related to many
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I z D * E n i T I N E l s D & t y u w a n t t u b r I N A p I n t u D 6 h 9 c *
is there anything else that you want to bring up into the highchair
is there anything else that you want to bring up into the high chair
is there anything else that you want to bring up in to the highchair
is there anything else that you want to bring up in to the high chair
is there any thing else that you want to bring up into the highchair
is there any thing else that you want to bring up into the high chair
is there any thing else that you want to bring up in to the highchair
is there any thing else that you want to bring up in to the high chair
is there N E thing else that you want to bring up into the highchair
is there N E thing else that you want to bring up into the high chair
is there N E thing else that you want to bring up in to the highchair
is there N E thing else that you want to bring up in to the high chair

Figure 8.1: One of the most ambiguous utterances according to ‘gold standard segmentation’ of
the BR corpus. ‘N’ and ‘E’ are letters in the alphabet.

bootstrapping proposals in the language acquisition literature.
This chapter presents two strategies, or cues, that make use of previously discovered

word boundaries. The first model makes use of frequencies and forms of previously
discovered words. Section 8.1 informally discusses the use of already known words for
segmentation in detail. Section 8.2 describes and presents results of simulations carried
out by a segmentation model that uses information from previously discovered words.
The second model, described in Section 8.3, utilizes lexical stress for segmentation.
Section 8.4 provides a summary of findings presented in this chapter.

8.1 Using previously discovered words
In the ideal case where the listener knows all the words in the input, the preferred

segmentation of an utterance is the one that spans the complete utterance by a non-
overlapping sequence of words in the lexicon. For example, assuming that the lexicon
contains the words is, that, a, and kitty; and the utterance isthatakitty is heard, then is
that a kitty is such a segmentation. For a large number of utterances, the segmentation
using the words in the lexicon is not as clear-cut as in this example. The word forms
in the lexicon often suggest multiple segmentations, which makes the segmentation
problem non-trivial even in this ideal scenario.1 Figure 8.1 presents all 12 segmenta-
tions suggested for one of the most ambiguous utterances in the BR corpus, is there
anything else that you want to bring up into the high chair.

Most of the ambiguous segmentations stem from embedded words. For example the
word /&t/ ‘at’ is part of words /b&t/ ‘bat’ or /h&t/ ‘hat’. Furthermore, some words can
be segmented completely using other words. For example, the word /bIgIn/ ‘begin’
can be segmented as /bIg In/ ‘big in’, and /6go/ ‘ago’ can be segmented as /6 go/

1This is true despite the fact that use of a phonemically transcribed corpus reduces the difficulties that
stem from the variability in the speech signal. See Section 4.1 for a discussion of the broader problem, and
Section 5.1 for a discussion of the input representation.
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‘a go’. As well as the embedded words, there are other cases where utterances can
be segmented in multiple ways. Fore example, /Itsnoz/ can be segmented as /Its
noz/ ‘its nose’ or /It snoz/ ‘it snows’. Similarly, the utterance segment /&nd9v/
which can be segmented as /&nd 9v/ ‘and I’ve’ or /&n d9v/ ‘Anne dive’. Of 1320
word types in the BR corpus, 32% of the words are parts of other words, and 15% of
the words can completely be segmented by two or more other words.

Even though the lexicon is not enough to solve the segmentation problem com-
pletely, its apparent utility is clear. Constraining the boundaries to the locations that
allow complete non-overlapping sequences formed by the words in the lexicon allows
relatively good segmentation. If we take the word types in the gold standard segmenta-
tion of the BR corpus, this strategy assigns 84% of the utterances in the corpus a single
correct segmentation. If we pick a segmentation at random for the ambiguous 16%, we
can achieve f-scores of 99.0%, 98.4% and 98.8% for boundaries, words and lexical
units respectively. These scores are obtained using only the 1324 word types that are
used in the gold standard segmentation of the BR corpus. With increasing lexicon size
and the longer utterance lengths, the ambiguous segmentations are expected to increase,
and segmentation performance is likely to go down. Nevertheless, it is still possible to
achieve very good segmentation performance if a comprehensive lexicon is available.

While words in the lexicon are a great help for segmentation if one has a complete
and accurate lexicon, the story is different for a learner. The learner neither knows all
the words in the input nor can he/she be as confident about his/her knowledge of words
as a competent language user. However, this does not mean that a partial lexicon is
useless for segmentation. Even a small repository of words can be useful for learning
new words. This will be demonstrated through a simple strategy that uses previously
discovered lexical units to extract novel lexical units from the input utterance. This
strategy segments the utterance at locations that start and end at known lexical units.
The sequences of phonemes between the boundaries but not in the lexicon are identified
as new words and added to the lexicon. An informal demonstration of this strategy is
given in Figure 8.2. The example in Figure 8.2 starts with an empty lexicon. Since
there is no matching part in the current lexicon, the first utterance cannot be segmented,
and it is analyzed as a single word and inserted into the lexicon. This is consistent with
the findings that adults and children tend to take whole utterances as lexical units when
they cannot segment them (Bannard and Matthews, 2008; Dahan and Brent, 1999).
In the second step, the segment akitty matches an already known lexical unit. The
input is segmented as thats akitty, and the newly discovered segment, thats, is added
to the lexicon. Utterance in step three, kitty, cannot be segmented, and inserted into
the lexicon as it is. In step four, we use lexical item kitty to segment the utterance as
that-kitty. The new word that is inserted into the lexicon, and we increase the frequency
of the known word kitty. In the last step, using known words is, that, a and kitty, we
segment the input utterance as is that a kitty.

This segmentation strategy is admittedly naive, and it fails on real world input.
However, this strategy and its weaknesses provide insights into many successful
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step input output lexicon

0 {}
1 akitty akitty {akitty(1)}
2 thatsakitty thats akitty {akitty(2), thats(1)}
3 kitty kitty {akitty(2), thats(1), kitty(1)}
4 thatkitty that kitty {akitty(2), thats(1), kitty(2), that(1)}
5 isthatakitty is that a kitty {akitty(2), thats(1), kitty(3), that(2), a(1), is(1)}

Figure 8.2: An informal example of segmentation using already discovered lexical units. The
numbers in the parentheses are the number of times the lexical unit is used.

computational models of segmentation, and they deserve some more elaboration here.
The first problem we encounter is related to the reliability of the lexical units in the
lexicon. For example, in step five of the example presented in Figure 8.2, the decision of
segmenting the utterance as is that a kitty is arbitrary. The lexicon equally supports the
segmentation is that akitty. We can remedy this problem by preferring words formed
by shorter sequences of phonemes (e.g., a and kitty) instead of longer sequences (e.g.,
akitty). However, this leads us to the second problem. In this example, after discovering
the word a, the naive segmentation strategy has no reason for not segmenting that as th
a t.

On one hand, we want to favor eager segmentation, since otherwise the lexicon
would contain whole utterances or phrases like akitty in this example. On the other
hand, we do not want to oversegment, as in segmenting that as th a t. These two
apparently conflicting problems have a common solution: we need to define what
makes a sequence of phonemes a good lexical unit.

8.1.1 What makes a good word?
There are two properties of sequences of phonemes that make them good candidate

words. First, the usage of the sequence in the language, and in communicative context
is an important property of words. There are many clues that usage of a sequence can
indicate its ‘wordhood’. For example, hearing a certain sequence consistently in the
presence of an object is a clue that this sequence may be the name of the object. In
this section, we will consider only one usage-related property of a word that is directly
observable from a transcribed corpus: its frequency. Returning to the example above,
the decision to segment the utterance akitty as a kitty can be based on the observation
that in comparison with akitty, both a and kitty are more frequent in the input.

The second property of a sequence that is helpful for identifying a sequence of
phonemes as a word is their form. In natural languages, words are typically formed
according to certain regularities. Observing these regularities, phonotactics , on already
known words help identifying new words. For example, one can reject the segmentation
th a t in the above example by observing that words typically contain a vowel, and
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the sequences th and t are not good candidates because they do not contain one. As
already introduced in Chapter 7, the models in this thesis use a rather restricted model
of phonotactics that is based on regular phoneme sequences at the beginnings and ends
of the words. The phonotactics component in Chapter 7 used utterance boundaries
to extract information about word boundaries. Having an inventory of lexical items
makes these generalizations more direct.

8.1.2 Related work

Most of the state of the art computational models of segmentation use (relative)
frequency of a sequence of phonemes as the main indication that the sequence is a
good word candidate. The forms of the words are typically used only if the sequence in
question is not already in the lexicon. For example, the segmentation models that are
based on the language modeling strategy (e.g., Brent, 1999a; Goldwater et al., 2009;
Venkataraman, 2001) use a word’s relative frequency as its probability if the word
is already known. Hence, they favor frequently occurring sequences of phonemes
as words. In these models, the form of the candidate word is evaluated only if the
candidate word is not already in the lexicon. In most of these models, the word-form
component serves for preventing oversegmentation by assigning lower probabilities
to combinations of short words in comparison to using long sequences of phonemes
as a single word (see Section 5.5 for discussion of this type of modeling). As a result,
even though some improvements are possible by modeling phonotactics more carefully
(e.g., Blanchard et al., 2010), it is difficult to get much improvement in this setting.
For example, as Goldwater et al. (2009) demonstrate, even an idealized phonotactic
component that knows the words in the corpus does not improve the performance
compellingly compared to the assumption that all phonemes are uniformly distributed.

A segmentation model that primarily uses the frequency of previously discovered
words, but does not strictly fit into the language modeling framework, was presented by
Monaghan and Christiansen (2010). This model has many similarities to the model I
will describe in Section 8.2. The segmentation algorithm in this model follows a similar
strategy to the segmentation strategy informally described above (Figure 8.2). It starts
searching sequences of phonemes that are already in the lexicon from the beginning of
the utterance. The words in the lexicon are matched against the initial substring starting
from the current location based on their frequency. When there are multiple alternative
segmentations, this gives high frequency sequences an advantage. When a match is
found, the part of the utterance that did not match any lexical item is considered a new
word, only if the first and last two phonemes of the sequence have been observed at the
beginning or at the end of previously accepted words, respectively.

There are studies that model either the usage or the form of the words more
carefully. For example Goldwater et al. (2009) present a model that takes frequencies
of higher level word n-grams into account. Attempts at modeling phonotactics more
carefully include using higher level phoneme n-grams (Blanchard et al., 2010), or
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taking into account common beginnings and ends of the words explicitly (Monaghan
and Christiansen, 2010). However, in almost all of the current computational models
of segmentation frequency is the main measure of a word’s usage, and phonotactics is
mainly used as a way to prevent oversegmentation.

8.2 Using known words for segmentation: a computational model
It is clear that the words we already know do help in discovering new words.

However, the problem is not trivial, especially, in the absence of a complete and
reliable lexicon. The discussion so far in this chapter identified two properties of words
that are useful for deciding whether a string of phonemes is a good word or not. First,
a good word is used over and over again in different contexts. Second, word formation
follows certain regularities, and does not result in arbitrary sequences. Both properties
are exploited by the computational models in the literature to varying degree, and have
proven to be useful.

The segmentation strategies we discussed in Chapter 6 and Chapter 7 already make
use of these properties to some extent. The predictability strategy implicitly makes use
of the fact that words consist of frequent phoneme sequences by requiring word-internal
phoneme sequences to be highly associated with each other. The requirement that
phoneme sequences across boundaries are unpredictable, is equivalent to the idea that
a word needs to occur in many contexts. However, in both cases, we do not make use
of the boundaries, and hence the words, discovered so far.

Except the model by Monaghan and Christiansen (2010), the related models in
the literature reviewed above follow the language modeling strategy (discussed in
Section 5.5 in detail). In these models, the probability of a segmentation is the
product of the probabilities estimated from relative frequencies of the words used by
that segmentation. The problem then becomes searching for the best segmentation
in an efficient way. The segmentation models presented in this thesis follow an
eager ‘boundary guessing’ strategy, evaluating all boundary candidates locally without
reference to other boundaries. The model I will describe in this section will also follow
the same strategy. In brief, the model assigns higher boundary scores to the positions
that are preceded and followed by previously detected words.

8.2.1 The computational model
The computational model, which I will call word-based model (WM for short), uses

a segmentation algorithm similar to the informally described example in Figure 8.2. It
tries to segment given utterances using already known words, and when segmentation
is not possible, it inserts the complete utterance into the lexicon.

To decide whether an input utterance should be segmented at a certain position,
the model tries to maximize the use of strings that are word-like on both sides. As
discussed above, the properties we seek in word-like units are that they are frequent,
and they share some features with already known words. In our usual majority voting
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i s t h a t a k i t t y
WFe 0 0 0 0 0 1 0 0 0 0 0 2
WFb 0 0 1 0 0 0 2 2 0 0 0 0
WPe 0 1 0 0 0 1 0 0 0 1 0 2
WPb 0 0 2 0 1 0 1 1 0 2 2 1

Figure 8.3: Lexicon measures for example utterance is that a kitty. The measures are calculated
assuming that the lexicon contains the words {akitty(2), thats(1), kitty(2), that(1)} prior to the
input utterance. The numbers in the parentheses are the frequencies of the words.

framework, these form two measures. The first measure is word frequency (WF),
simply the frequencies of the already known words beginning or ending at the position
in question. I will call the second measure word phonotactics (WP). The WP is based
on the number of times the phoneme sequences surrounding the boundary found at
the beginnings or ends of the previously discovered words. It is essentially the same
measure as discussed in Chapter 7, except it is calculated using already known word
types instead of all utterance boundaries.

Similar to other asymmetric measures discussed previously, we have two flavors
for each measure. One indicating the existence of words to the right of the boundary
candidate (words beginning at the boundary), and the other indicating the existence
of words the left of the boundary candidate (word ending at the boundary). When we
need to distinguish them, the measures indicating words ending at the boundary will
be suffixed with an ‘e’ (e.g., WFe), and the measures indicating words beginning at the
boundary will be suffixed with a ‘b’ (e.g., WFb).

Figure 8.3 presents the measures calculated for the fifth step of the example in
Figure 8.2. For the sake of demonstration, this example uses the orthographic form
of the words. The experiments reported below are, as before, run on a phonemically
transcribed corpus of child directed speech. For a demonstration of the calculation of
the measures, consider the position after the segment isthata. There is no matching
word that ends at that position (a is not a known word), hence, WFe is zero. WFb, on
the other hand, is two since the frequency of the only word that begins at that position,
kitty, is two. The phonotactics scores are zero and one respectively, since there is no
word in the lexicon that ends with an ‘a’, and there is only one word, kitty, in the
lexicon that starts with a ‘k’. As this simple example demonstrates, there is a tendency
for higher values where we would expect a boundary. Before presenting results on real
child-directed speech, a more precise description of these measures is in order.

The WF measures are the frequencies of the words ending and beginning in the
position to be evaluated. When there are multiple words that begin or end at the position,
we take the sum of the frequencies of each word. There are other possible ways to
combine frequencies of multiple words. For example, as in the segmentation model
described in Monaghan and Christiansen (2010), one can use the frequency of the most
frequent word. Another possibility is to use the average frequency of the words. These
two alternatives perform similarly, but slightly worse than the summation method. The
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reason sum works better in this setting has to do with the undersegmentation caused
by inserting whole utterances or phrases into the lexicon. For example, with a lexicon
that contains lexical units a and akitty, summation method reflects the role of a in both
lexical units, while other methods discounts one completely or averages out the effect
of both. I will only report results obtained by using summation method.

The WP measure does not require much elaboration either, since it has already been
discussed in Chapter 7 at length. The WP is either P(l|wb) or P(r|wb) for phoneme
sequences l and r, where wb denotes ‘word boundary’. The major difference here is
that these conditional probabilities are calculated using the boundaries of word types ,
while in Chapter 7 it was calculated on partial word tokens that are observed at the
utterance boundaries. As before, we can vary the length of the phoneme n-gram that we
use for calculating this measure. For the results reported below, we use the combination
of n-gram sizes one to three.

8.2.2 Performance

Given the set of measures described above; the peak-based segmentation strategy
(described in Section 6.2.1) for detecting boundaries; and the weighted majority voting
algorithm (described in Section 6.2.3) to combine decisions, we are ready for presenting
the performance scores. Figure 8.1 presents the usual performance scores for individual
measure and the performance scores obtained by combining them using the peak
criterion and the weighted majority voting algorithm on the BR corpus. The row before
the baseline performance scores, marked as WM (for ‘word model ’) is the combination
of all, and will be used as the representative example of the strategy presented in this
section.

All models perform better than random, and combinations consistently give better
results. The reason for presenting the models that make use of only one side of the
boundary (the models with subscripts) in Table 8.1 is to give a sense of how a strictly
left-to-right model performs. Some models in the literature, especially the connectionist
models, use only the past information. At first sight, this may seem to be a better choice
for modeling human language segmentation. However, for the rest of this chapter, the
combined model will be used on the grounds that people make use of information from
both sides while processing the utterances (see Section 6.1.7, for a discussion).

I started this chapter by stating that the strategies presented in this chapter learn
from previously discovered words. However, the scores presented in Table 8.1 are only
based on the measures introduced here. It may not be obvious, at first sight, where
the words needed for using these measures come from. The answer is implicit in
the general strategy used throughout this thesis: when the learner cannot segment an
utterance, it takes it as a word. Hence, the models listed in Table 8.1 are bootstrapped
from utterance boundaries. However, having previously introduced strategies, we are
not limited only to utterance boundaries. If we combine the model with the models
introduced previously, we expect it to provide an improvement. And the performance
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boundary word lexicon error

model P R F P R F P R F Eo Eu

WFe 48.6 60.6 53.9 32.2 37.8 34.7 14.4 38.8 21.0 24.2 39.4
WFb 78.4 67.7 72.7 61.0 55.1 57.9 17.4 48.0 25.5 7.0 32.3
WF 77.5 71.3 74.3 60.6 57.2 58.9 18.3 47.7 26.4 7.8 28.7

WPe 65.3 67.6 66.4 49.5 50.8 50.1 18.7 47.7 26.8 13.6 32.4
WPb 76.2 70.3 73.1 60.3 57.0 58.6 18.9 51.2 27.6 8.3 29.7
WP 75.2 80.3 77.7 61.4 64.3 62.8 25.4 55.6 34.9 10.0 19.7

WMe 62.7 73.8 67.8 45.2 50.8 47.8 19.5 46.4 27.5 16.6 26.2
WMb 76.4 73.5 74.9 61.0 59.3 60.1 19.0 47.5 27.1 8.6 26.5
WM 77.4 86.0 81.5 65.1 70.2 67.6 30.6 57.6 40.0 9.5 14.0

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 8.1: Performance scores for models that use already known words. WF stands for word
frequency, WP stands for phonotactics. WM is the combination of both. The models with
subscript e only make use of words that end at the boundary, and the models with subscript b
make use of the words that begin at the boundary. Two reference models ‘RM’ and ‘LM’ are the
same as in Table 6.4.

scores presented in Table 8.2 confirm this expectation. The upper block in Table 8.2
repeats the results presented in Chapter 6 and Chapter 7. The middle row is the
combination of all strategies presented so far, followed by repeated baseline results for
comparison. The combination provides a consistent improvement on all performance
measures. The combined (PUWM) model performs better than the reference LM model
on all scores, except boundary precision and lexical precision, and makes slightly more
oversegmentation mistakes.

As before, the results in Table 8.1 and Table 8.2 are calculated for the complete
corpus. To demonstrate the development of the learner with increasing input, as well
as an indication of the final state of the learner, Figure 8.4a presents the performance
scores for word-based model (WM), and Figure 8.4b presents the performance of the
combined model (PUWM) for each successive 500 utterances. Towards the end of the
corpus, the f-score measures PF, WF and LF for word-based model are over 80%, 70%,
60%, respectively. The oversegmentation error is close to 10%, and undersegmentation
error is close to 8%. The combined model, on the other hand, achieves over 90.9%,
81.9% and 75.6% for BF, WF, and LF, respectively, and oversegmentation error drops
to 7.2%, and undersegmentation error drops to 2.0%. Like the general scores, these
scores are an improvement over combined model (PUM) presented in Chapter 7.



136 Learning From Past Decisions

boundary word lexicon error

model P R F P R F P R F Eo Eu

WM 77.4 86.0 81.5 65.1 70.2 67.6 30.6 57.6 40.0 9.5 14.0
PM 87.9 77.4 82.3 74.2 67.9 70.9 28.0 65.6 39.3 4.0 22.6
UM 82.9 84.8 83.8 70.6 71.7 71.1 33.7 67.0 44.9 6.6 15.2
PUM 82.6 90.7 86.5 72.4 77.4 74.8 42.8 65.3 51.7 7.2 9.3

PUWM 83.7 91.2 87.3 74.1 78.8 76.4 43.9 67.7 53.2 6.7 8.8

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 8.2: Performance scores for combination of WM with the models discussed previously,
predictability (PM) in Chapter 6 and utterance boundaries (UM) in Chapter 7. PUM denotes the
combination of PM and UM, and PUWM is the combination of all cues discussed so far.

8.3 Making use of lexical stress

As discussed in Section 4.2.2, lexical stress is one of the cues for segmentation
that is well supported by psycholinguistic research (e.g., Cutler and Butterfield, 1992;
Jusczyk, 1999; Jusczyk et al., 1999b). Lexical stress is used in many languages
for marking the prominent syllable in a word. As a result, in combination with the
regularities regarding the location of the stress, it is useful for deciding where the
word boundaries are. However, as is also noted by Christiansen et al. (1998), what
we perceive as lexical stress is a combination of multiple acoustic and physical cues
including amplitude, duration, segmental quality and pitch contours. Furthermore, the
features that correlate with lexical stress have different functions in different languages.
For example in tone languages (such as Chinese), the difference in pitch accent indicates
meaning differences rather than marking the prominent syllable in the word. Hence,
the notion of lexical stress itself has to be learned. Nevertheless, once the learner is
aware or the notion of stress, it can be useful for segmenting words.

Despite the prominence of stress as a cue for segmentation, there are relatively few
computational studies that incorporate this cue. There are a number of reasons for
neglecting stress in computational models of segmentation. First, there is no neutral
way of including the stress cue in the most popular and successful segmentation strategy,
the language modeling strategy, in the computational modeling literature. Second,
most computational studies use phonemes as the basic unit in the input. Since stress
is strongly related to the unit of syllable, it is generally difficult, or unnatural to mark
phonemes as having levels of stress or not. Last, and most importantly, currently we do
not have child directed speech corpora that mark stress realistically and reliably. As a
result, computational methods that study use of stress for segmentation tend to make
relatively unnatural assumptions regarding stress assignment.
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Figure 8.4: Boundary (BF), word token (WF), and word type (LF) f-scores and oversegmentation
(Eo) and undersegmentation (Eu) error rates for the word-based segmentation model, the WM,
and its combination with previous strategies, the PUWM. The scores are calculated for each
500-utterance block in the BR corpus during the learning process.

8.3.1 Related work
A well-known computation model of segmentation that does incorporate stress as

a cue was presented by Christiansen, Allen and Seidenberg (1998). This model is a
multiple-cue integration model using a connectionist architecture, more specifically,
a simple recurrent network (SRN, see Section 2.2.2 for a description). The model is
based on earlier model presented by Allen and Christiansen (1996), and used with
modifications in later models (e.g., Christiansen, Conway and Curtin, 2005; Rytting,
Brew and Fosler-Lussier, 2010). In the Christiansen et al. (1998) study, the input to the
SRN was a set of 11 phonological features for each phoneme; an indication of whether
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the phoneme precedes an utterance boundary or not; and two additional features
representing whether the phoneme belongs to a syllable with primary or secondary
stress. Christiansen et al. (1998) tested the model on the Korman corpus (Korman,
1984), by assigning canonical stress patterns found in the MRC psycholinguistic
database. Since the MRC database does not mark stress on mono-syllabic words, they
marked all monosyllabic words as having primary stress. The overall performance
of the model is rather low, 71% BF and 43% WF after an initial training period (the
detailed scores are presented in Table 5.4 in comparison with the other segmentation
studies in the literature). However, this study showed that adding stress as a cue
improves the performance of the SRN. Crucially, similar to the use of stress in this
section, Christiansen et al. (1998) stress that a learner may learn how to use lexical
stress for segmentation from the boundaries found by the other cues.

Swingley (2005) presents a word discovery procedure based on mutual information
and frequency. In this work, lexical stress is not used as a criterion for word discovery.
However, a careful analysis of stress patterns of the bisyllabic words found by the
discovery procedure was presented. The results, in summary, show that the preference
of the trochaic (strong–weak) stress pattern for bisyllabic words may emerge from a
word-clustering method based on mutual information and frequency. An interesting
finding is that, to learn the trochaic bias, one needs to pay attention to the stress pattern
in the lexicon rather than stress pattern found in the corpus. For English Swingley
(2005) found that only 14.2% of the bisyllabic word tokens (counted in the corpus)
was trochaic, while 19.7% of them were iambic (weak–strong). Counting the pattern
in word types (in the lexicon) reverses this balance: 21.2% trochaic, and 6.4% iambic.
In both cases, the dominant stress pattern was strong–strong. Swingley also used the
Korman corpus, but, with a more careful stress assignment. Rather than assuming that
all monosyllabic words have primary stress, they are assigned weak or strong stress
depending on their primary use. A word is still assigned a single stress pattern for
all of its occurrences in the corpus. However, this method of marking stress certainly
provides an improvement over the stress-marking by Christiansen et al. (1998).

In another segmentation model that uses stress, Yang (2004)2 reports rather good
performance using a rule-based system. The model essentially segments utterances
before strong syllables. If there are one or more weak syllables between two strong
syllables, it either inserts a boundary randomly (random model), or ignores this part
of the utterance (agnostic model). The words ignored in multi-word utterances are
learned later if they are observed as a single utterance. Gambell and Yang (2006) report
95.9% word precision, and 93.4% word-recall for their random model; and 85.9%
precision and 89.9% recall for their agnostic model on child-directed utterances from
Brown (1973) corpus from CHILDES.3 The stress information is obtained from the
CMU pronunciation dictionary. Even though the results look impressive, there are a

2An extended version is presented by Gambell and Yang (2006, unpublished manuscript).
3Not to be confused with the well-known Brown corpus of written English (Francis and Kucera, 1979).
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Word Form Stress Tokens Types

Monosyllabic 2 28566 812

Bisyllabic 20 3437 417
22 516 8
02 347 52
00 38 6

Trisyllabic 200 297 53
020 149 20
202 12 4
102 4 2

Quadrisyllabic 2000 6 3
2010 3 1
0200 2 2

Sum 12 forms 33377 1380

Table 8.3: The stress distribution on BR corpus. As in the MRC database, the stress patterns
are coded so that ‘2’ indicate primary stress, ‘1’ indicates secondary stress, and ‘0’ indicates no
stress.

number of assumptions this strategy makes that are difficult to justify. First, it assumes
that word boundaries always correspond to the syllable boundaries (see Section 5.1
for a discussion of problems with this assumption). Second, since stress is neither
universally available in all languages, nor is its location the same for all languages
with lexical stress, it is not clear how children might come to decide that the onset of a
strong syllable is the position to segment words.

8.3.2 An analysis of stress patterns in the BR corpus
Throughout this thesis the segmentation simulations are tested on the BR corpus

which has become the de facto standard for testing computational models of segmenta-
tion in the literature. This allows direct comparison of the models with each other and
with the other models in the literature. Unfortunately, none of the previous studies that
use stress for segmentation were tested on BR corpus.

For the results reported in this section, the BR corpus is stress-marked semi-
automatically following the procedure of Christiansen et al. (1998). The stress assign-
ment is done according to stress patterns of the MRC psycholinguistic database. All
single-syllable words are coded as having primary stress, and the words that were not
found or did not have stress assignment in the MRC database were annotated manually.
Further details on the annotation process can be found in Appendix A.
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Pattern Boundary Word internal
Syllable Phoneme

00 50 349 5830
01 0 3 3
02 2080 518 518
10 0 7 7
11 0 0 7
12 0 0 0
20 382 3911 3911
21 4 0 0
22 21071 516 52156
sum 23587 5295 62432

Table 8.4: Stress patterns at boundaries and word-internal positions for both phoneme- and
syllable-transitions.

Table 8.3 presents the stress patterns of words in the resulting corpus. Although
the corpora are different, these figures are similar to the ones reported by Christiansen
et al. (1998) for the Korman corpus. First thing to note is that majority of the words are
monosyllabic, 85.6% of the word-types and 58.8% of the word tokens are monosyllabic.
This means one can get 85.6% of the words correctly by inserting boundaries before
and after every syllable. Furthermore, according to this stress assignment, 98.4% of
the words start with a strong syllable.4

Another way to look at the stress data is to analyze the distribution of adjacent stress
patterns over boundaries and word-internal locations. This would give an indication
of stress transitions that signal possible word boundaries. Table 8.4 presents this
distribution for all possible transitions of stress levels specified in the MRC database.
For example, the last row of this table indicate that the stress pattern 22 (primary–
primary) straddles word boundaries 21,071 times. Within the words, this pattern occurs
at the syllable boundaries only 516 times, and it occurs 52,156 times during phoneme
transitions. Since the stress levels change only on syllable boundaries, that when there
is a transition between stress levels the values for syllables and phonemes are the same.

As expected, the majority of the transitions (or lack thereof) are from primary
stress to primary stress. For boundary detection most promising pattern is weak–
strong transition, which is expected because of the trochaic bias in English. A trivial
segmentation algorithm that inserts a boundary between all phonemes pairs with this
pattern would guess 2080 boundaries correctly, which would give a 80.0% precision,
but it would cover only 8.8% of the boundaries. On the other hand, it is clear that

4This further explains the success of the rule-based model of Gambell and Yang (2006).
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inserting a boundary is not a good idea when stress transition is strong–weak. Inserting
a boundary between two phonemes would discover 382 boundaries correctly with a
precision of 8.9%, and a recall of 1.6%. Since these transitions only occur at syllable
boundaries, for these two cases the difference between using the syllable or the phoneme
as the basic unit, does not cause much difference. To achieve a good segmentation
performance from stress patterns, the key factor is the strong–strong transitions that are
most frequent. Unfortunately, this is only possible with the assumption that the word
boundaries can only be at the syllable boundaries. If we insert a boundary between
every strong–strong transition, we get 97.6% precision, and 89.3% recall with syllables.
However, the same decision results in a mediocre precision of 28.7% if we do not
assume syllable boundaries are known (note that since number of boundaries do not
change with the change of units, recall is the same for both syllables and phonemes).

The analysis presented above does indicate that lexical stress can indeed be useful
in certain ways. However, there are a number of problems with its use for the type
of models presented here. The first problem is the assumption that word boundaries
coincide with the syllable boundaries. Note that this is not the same as assuming the
knowledge of syllable, which is well known to be a salient unit of language processing.
The problem stems from the fact that, in fluent speech, frequently the syllables can
often straddle word boundaries (see Section 5.1 for a discussion). Second, the use of
stress to mark prominent syllable in a word is not universal. And last, a more practical
problem is that currently corpora with realistic stress marking are not available.

8.3.3 Segmentation using lexical stress

Even though the analysis in Section 8.3.2 is somewhat discouraging for the seg-
mentation strategy followed throughout this thesis, this section presents results from
a stress-based segmentation model following the same strategy used throughout this
thesis.

As briefly discussed in Chapter 7, a possible strategy for using stress for segmen-
tation is to use the stress patterns at the utterance boundaries. This method does not
provide much help for the learner, because, as presented in Table 8.3 most of the
syllables in the corpus have primary stress. As a result, the beginnings and ends of
the utterances are also dominated with primary stress. In the BR corpus 98.9% of the
utterances begin with, and 82.5% of the utterances end with strong syllables. Even
though this indicates that it is more likely for words to end in weak syllables, compared
to word beginnings, it is a big leap of faith for a learner to choose segmenting after weak
syllables given that they occur 17.5% of the time at the end of utterances. As a result,
if we train any learner on utterance boundaries, the likely outcome is not segmenting at
all. However, as Swingley (2005) also pointed out, if we take the word-types instead
of the word tokens, we have a better chance of generalization. If we count the words
that start with strong syllables in the gold standard lexicon, it is similar to utterance
beginnings: 94.1%. However, if we count the stress at the end of the words, strong
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boundary word lexicon error

model P R F P R F P R F Eo Eu

SM 78.2 8.2 14.8 26.5 9.7 14.2 8.2 38.7 13.5 0.9 92.8
PUWM 83.7 91.2 87.3 74.1 78.8 76.4 43.9 67.7 53.3 6.7 8.8

PUWSM 92.8 75.7 83.4 78.3 68.1 72.9 26.8 62.7 37.5 2.2 24.3

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 8.5: The performance measures for stress-based segmentation model (SM). The third row
(PUWSM) is the combination of stress with previously presented models. As well as the usual
reference models, the performance scores for combination of the previous models without stress
(PUWM) are provided for comparison.

syllables are the last syllable of only 36.5% of the word types.
The model presented in this section, the stress-based model, uses a similar strategy

like the phonotactics models described before, except, instead of collecting statis-
tics about phoneme n-grams, the stress-based model collects statistics about stress
assignment on each phoneme. As before, the measures used are the probability of
observing a certain stress pattern l at the end of words, P(l|wb), and the probability
of observing a certain stress pattern r at the beginning of the words, P(r|wb). The
measures can be calculated using stress patterns spanning variable length l and r. For
the results reported below, both l and r are varied between one to three. Using the
peak based boundary decision (Section 6.2.1) and weighted majority voting algorithm
(Section 6.2.3), Table 8.5 presents performance scores for stress-based algorithm and
its combination with previously presented models. The line labeled ‘SM’ (short for
‘stress-based model’) presents the scores for calculating stress scores from already
discovered word types. Like the results presented previously in Table 8.1, the discovery
of words is bootstrapped by utterance boundaries.

The first row, labeled SM, in Table 8.5 presents the results of using the stress-
based model alone, bootstrapping from the utterance boundaries. As expected, the
performance is not impressive. However, even though it heavily undersegments, the
stress-based model makes very few oversegmentation errors. This is also reflected in
the performance scores with high precision and low recall. Note that the low error
rate is not only due to conservative boundary decisions. The stress-based model
indeed makes very few positive decisions for boundaries, however, a random model
constrained to insert same number of boundaries (leading to 92.8% undersegmentation)
is expected to make 7.2% oversegmentation errors, where the oversegmentation errors
the stress-based model makes are less than one percent. The findings are also in line
with the analysis provided in Section 8.3.2. As expected, the model learns to segment
at weak–strong transition, which is expected to be precise. However, since majority
of the stress transitions are strong–strong, this covers rather a small portion of the
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boundaries.
As shown in the second row of Table 8.5, the combination of the stress-based model

with others (performance scores presented in the row labeled ‘PUWSM’), increases the
performance over stress-based model. However, the contribution of the stress-based
model to the performance of the previously discussed models (repeated in the row
labeled ‘PUWM’) is not worthwhile.

Combining the stress-based model with others adversely affects the performance
scores calculated for the complete corpus, except BP and Eo. However, if we plot the
performance change as more input is provided, the benefit of the stress cue becomes
visible. Figure 8.5 presents the changes of BF, WF, LF for stress-based model alone
(SM), and the combination of the stress-based model with others (PUWSM). For the last
290 utterances of the BR corpus, BF, WF, and LF reaches to 91.4%, 83.9% and 78.8%,
respectively. The oversegmentation error rate drops to 4.5% and oversegmentation error
drops to 6.7%. These results present an improvement over most of the final performance
values of the combined model without stress (PUWM) presented in Section 8.2. Even
though stress-based model does not perform well alone, and even if it seems to have
an adverse effect on the performance scores calculated for the complete corpus, its
contribution to the final performance of the combined model is clearly positive. The
stress cue seem increase the errors at the beginning of the learning process. However,
as more data becomes available, the contribution of the stress to causes an increase in
precision, and this contribution is visible in the final performance of the PUWSM.

The reason that the lexical stress has not been very successful alone in the simu-
lations reported here may be due to a number of different problems. First, the stress
marking used here is rather crude and unrealistic. A better, more realistic, stress mark-
ing may help improve the situation. Second, the weighted majority voting algorithm
used for combining results is not flexible enough for deciding when and where a
particular cue is useful. A more elaborate combination model may exploit usefulness
of the stress cue in better ways. Third, despite its problems, a realistic inclusion of
syllable structure of the utterances may provide a major improvement.

8.4 Summary
This chapter investigated two ways of extending the segmentation models developed

so far in Chapter 6 and Chapter 7 using information from already discovered words.
The first strategy makes use of already known words and is based on the words

themselves. Even a partial lexicon with some incorrect words is useful for segmen-
tation, and this has been demonstrated by the performance of the model presented in
Section 8.2. Furthermore, the combination of this model with the previous models
improved overall performance of the combined model resulting in the best performance
values presented in this thesis. The model is still relatively simple, and can be improved
in many ways. For example, the phonotactic models used in this thesis pay attention
to only the beginning and ends of the words. However, the structure of words can be
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Figure 8.5: Boundary (BF), word token (WF), and word type (LF) f-scores and oversegmentation
(Eo) and undersegmentation (Eu) error rates for the word-based segmentation model, the WM,
and its combination with previous strategies, the PUWSM. The scores are calculated for each
500-utterance block in the BR corpus during the learning process.

modeled more realistically. For example, the learner can learn certain constraints or
tendencies (such as ‘a word should have a vowel’), or the length of a typical word in
phonemes or syllables. Similarly, using only the frequencies of words is not the best
way to characterize a word’s usage. A possible improvement that does not require addi-
tional resources would be to take the number of contexts where the word is observed.
This additional modeling component may match the intuition that words are not only
frequent, but also used in varying contexts.

The second strategy, the use of lexical stress, does not look as promising as the
lexical information. Even though the model presented in Section 8.3 achieved good
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precision scores on the BR corpus, the recall was very low. At first sight, combining
the stress-based model with the others affected the performance of the combined
model adversely. However, it seems this is because of the initial mistakes it causes
during learning. Once the combined model learns how to use the stress cue, i.e., in
the advanced phases of the learning, the results improve over the model without the
stress cue. The negative results obtained with the stress-based model have to do with
a number of factors that point to future directions for modeling the effect of stress.
Most importantly, the stress annotations in currently available corpora of child directed
speech are not realistic enough for drawing any strong conclusions. Furthermore,
for better use of the stress cue, the knowledge of the syllable (either built into the
system, or learned from the input) seems to be crucial for the success of a stress-based
segmentation model.

Even though the models presented in this chapter can further be improved in a
number of ways, the results presented here already indicate that the combination of
information at different levels lead to better performance. The next chapter will provide
an overall view of the results presented in this thesis.





9 An Overview of the Segmentation Strategies

I don’t pretend we have all the answers.
But the questions are certainly worth
thinking about.

Arthur C. Clarke

The last three chapters presented four different segmentation methods and their
combinations in the order in which they were presented. This chapter brings all the
results discussed in these three chapters together under a unifying perspective. In the
sections that follow, I will summarize the results presented in the preceding chapters,
compare them to each other, and discuss some common issues whose discussion was
deferred during discussion of individual strategies. Throughout this discussion I will
point to possible improvements, and future directions for the research.

9.1 The measures and the models
The first unsupervised model of discovering lexical units in continuous speech

stream is presented in Chapter 6. First part of this chapter, Section 6.1 defined four
measures of predictability (or uncertainty), namely, transitional probability (TP), point-
wise mutual information (MI), successor variety (SV) and boundary entropy (H). The
analysis presented in this section indicated that these measures correlate with word
boundaries. Furthermore, variations of these models which condition the calculations
right-to-left instead of left-to-right, and/or use multiple, varying sizes of phoneme
n-grams are discussed. The analysis indicated that despite the fact that they are not
completely independent, all measures provide some additional information regarding
boundaries. In addition, it was found that the measures form two groups: TP and MI in
one, SV and H in the other. The measures within each group are more closely related
to each other than the measures in the other group.

While presenting the use of these measures in segmentation, Section 6.2 defined an
unsupervised strategy for deciding whether there is a boundary at a position in the input
utterance, given an indication of a word boundary. The strategy suggests boundaries at
the positions where there is an increase in the unpredictability followed by a decrease.
In other words, boundaries are suggested at the peaks of unpredictability. Next, a
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simple algorithm, weighted majority voting for combining multiple indications was
described, which also allowed us to improve the peak-based boundary criterion.

The final segmentation model described in Chapter 6 as a representative example
of a predictability-based segmentation model (PM) was a model using measures MI
and H calculated on phoneme n-grams between one and three.

In Chapter 7 on using utterance boundaries, I presented a model that learned partial
phonotactics from utterance beginnings and ends. The segmentation strategy based on
utterance boundaries used the probability of observing a certain phoneme sequence
at the utterance beginnings and utterance ends as an indication of word beginnings or
word ends respectively. Again, a representative model for this strategy, the UM, was
defined. The UM combines the boundary measures using varying sizes of phoneme
sequences between one and three.

Chapter 8 introduced two strategies based on learning from previously discovered
words. First, a strategy that makes use of the words in the lexicon was defined. This
strategy favors use of frequent and well-formed words on both sides of the candidate
boundary. The models following this strategy make use of two separate measures, first,
the frequency of words, and second, the phonotactics of the words. The first measure is
simply the frequencies of the words discovered so far. The second measure is exactly
the same phonotactics measure defined in Chapter 7, but it uses the beginning and
ends of already discovered word types rather than utterance boundaries. The combined
model, the WM, uses n-gram sizes one to three for the phonotactics component, and
the sum of the frequencies of already known words on both sides of the boundary
position for the frequency component.

The second strategy investigated in Chapter 8 was based on lexical stress. This
strategy learns the stress pattern from already known words, and uses this knowledge
in later boundary decisions. The model is similar to the phonotactics models described
earlier, except that instead of phonemes, the model uses the stress levels of the syllable
that a particular phoneme is part of. I use the name SM for this model throughout this
thesis.

9.2 Performance
Along with their descriptions, a set of performance indications are reported for all

models described in the preceding chapters. These results, together with two reference
models introduced in Section 5.4, are repeated in Table 9.1. As in the previous
presentations, the results presented in these tables are the performance scores for the
complete corpus. The performance of the learners towards the end of the learning
phase will be discussed below.

Figure 9.1 presents the f-scores for boundaries, word tokens, and word types (BF,
WF and LF) and oversegmentation and undersegmentation errors (Eo and Eu) for each
individual model presented in previous chapters, including two reference models the
reference model based on language modeling strategy (the LM) and the pseudo-random
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boundary word lexicon error

model P R F P R F P R F Eo Eu

PM 69.6 92.5 79.5 56.9 70.2 62.9 36.7 49.8 42.3 15.3 7.5
UM 82.9 84.8 83.8 70.5 71.7 71.1 33.8 66.9 44.9 6.6 15.2
WM 77.5 71.3 74.3 60.6 57.2 58.9 18.3 47.7 26.4 7.8 28.7
SM 78.2 8.2 14.8 26.5 9.7 14.2 8.2 38.7 13.5 0.9 92.8

PUM 82.6 90.7 86.5 72.4 77.4 74.8 42.8 65.3 51.7 7.2 9.3
PUWM 83.7 91.2 87.3 74.1 78.8 76.4 43.9 67.7 53.3 6.7 8.8
PUWSM 92.8 75.7 83.4 78.3 68.1 72.9 26.8 62.7 37.5 2.2 24.3

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 9.1: Performance scores for all the models discussed in previous chapters. The values are
repeated here in a single table for ease of comparison.

segmentation baseline (th RM). The reference models were described in Section 5.5.
The results presented in Figure 9.1a–b were calculated over the complete corpus during
incremental learning. The results in Figure 9.1c–d reflect the performance of the
learner at the end of the learning phase. The first set of results are affected by the
initial mistakes the learner makes during the learning process, while the second set of
results reflect the performance of the learner in a more advanced phase in learning (see
Section 5.4 for a detailed discussion).

Except the stress-based model (SM), the rest of the models perform higher than
the random baseline (LM), and comparably to the state of the art reference model LM.
The model that learns phonotactics from utterance boundaries (UM) seems to perform
slightly better than others. However, in general, the performances of individual models,
except (SM), seem to be comparable to each other. Except the SM, all models perform
only slightly worse than the state of the art reference model LM.

The stress-based model performs even worse than random segmentation for some
scores. The reason, and the nature of this failure is clearer if we take a look at the
error scores. The SM performs badly because it is conservative: it makes very few
oversegmentation mistakes at the cost missing over 90% of the boundaries. The way it
is used here, the lexical stress seems to be a precise cue. However, its coverage is very
low.

Figure 9.2 presents the progression of the f-scores and error measures for the
combination path taken in the preceding chapters. Figure 9.2a presents the performance
of the models on the complete BR corpus, Figure 9.2b presents the performance values
for the last 290 utterances. The benefit of combining predictability (PM) and the
utterance boundaries (UM) is clear. All performance scores increase. The reason
is clear if we take a look at the asymmetry of the error scores of PM and UM in
Figure 9.1. The PM makes more oversegmentation errors than the UM, but the
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Figure 9.1: Boundary (BF), word-token (WF) and word-type (LF) f-scores and oversegmentation
(Eo) and undersegmentation (Eu) rates of all individual models, including the reference models,
calculated during learning (a,c) for the complete BR corpus, (b,d) only for the last 290 utterances
of BR corpus.

difference is reversed for undersegmentation errors. The combined model reduces the
oversegmentation errors of the PM, and achieves a better overall score. Figure 9.2 also
indicates a slight increase in undersegmentation errors for the combined model PUM,
compared to the PM, but this does not seem to affect the overall performance adversely.

The PUM, combination of the predictability (PM) and the utterance boundary (UM)
strategies shows a clear improvement over the individual components. However, the
effect of addition of the word-based segmentation model, as can be seen the difference
between the performances the PUM and the PUWM (PM–UM–WM combination), is
not as clear. However, as can be seen more clearly in Table 9.1, for overall performance,
there is a slight but consistent improvement on all measures. As expected, the usefulness
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Figure 9.2: Progression of the F-score and error values for the combination of models presented
in the last three chapters.

of the WM is particularly visible in increasing the lexical scores. However, the effect
of the WM on the final state of the learner is not that clear, and in some cases causes
a poorer performance. It seems that the WM speeds up the learning at the beginning,
so the overall performance of the combined model is better with the WM included.
However, it does not seem to have a clear effect on the final state of the learner.
Admittedly, the model of using lexical information for learning segmentation is one of
the less deeply investigated areas in this study, and some of the ideas for improvement
in the future research were listed at the end of Chapter 8.

Figure 9.2 reveals an interesting effect of combining the SM with others (the model
labeled PUWSM). The SM is very conservative, and it affects the overall performance
by causing many undersegmentation errors. As a result, all of the performance values
calculated on the overall corpus drops. However, its effect at the end of the learning
phase is positive. This can be explained by the fact that the model itself learns the
stress patterns that are useful, and the weighted majority voting algorithm learns how
to weigh decisions of the stress-based model, improving the performance slightly for
all performance scores.

The differences of performance scores in Figure 9.1 and Figure 9.2 between the
calculations based on the complete learning process and those based on the final state
of the learning demonstrates that for the incremental learners, the way performance
is evaluated changes the apparent success of the learners on the segmentation task.
This seems to be particularly important for lexical scores (LP, LR and LF), since
initial phases of learning introduce many incorrect word types, and causes overall
performance to degrade.
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The reason the inclusion of last two models, the WM and the SM, did not increase
the performance of the combined model substantially may be due to a number of
reasons. First, it may be that these two cues are utilized rather poorly by the models
described in Chapter 8. As discussed in Section 8.4, these models can indeed be
extended in a number of ways.

Second, on a related note, it may also be that the information provided by these
cues is insignificant. This is particularly true for the SM due to poorly marked stress in
the corpus. A corpus with more realistic stress annotation may allow better use of this
cue. These two possible reasons for the lack of compelling improvement seem to be
supported by the combination of these models in other ways. Compared to combining
the PM and the UM, particularly the SM (but also the WM to some extent) does not
increase the performance when combined with other models (a complete tabulation of
the performance values for all possible combinations is provided in Appendix B).

A third possibility is that combination of predictability and utterance boundaries
already uses most of the information in the data usable for segmentation. In other
words, we are close to the upper bound of what we can achieve with the information at
hand. This may seem likely, because (1) the final combined model performs similar to
other state of the art segmentation models in the literature, (2) except stress, the reason
all these segmentation strategies work stem from the fact that the input stream is formed
by concatenation of a limited set of lexical units. However, numerous possibilities for
improving individual models and their combination listed in this chapter suggest that
even without additional sources of information we may achieve better performance.
Nevertheless, an interesting task for the future research is to establish the upper bound
that can be achieved using only the information available in the transcribed corpus.

Fourth, the reason for not observing substantial improvements by adding more cues
may also be due to the way they are combined. The majority voting algorithm used for
combining these results is not the best known algorithm for this purpose. This possible
problem will be discussed at length in Section 9.6

9.3 Making use of prior information
Section 9.2 demonstrated an expected effect. Learners make mistakes at the

beginning. The performance measures calculated during the complete learning process
may set apart fast learners from slow learners. However, as long as learning is achieved
in a reasonable time, what counts more is their final performance. The models presented
earlier in this thesis learn two different aspects of the input languages. The first is the
statistical relationships between the neighboring phoneme sequences, and the second
is the optimal weights for different indications to word boundaries. This allows us to
investigate another plausible scenario relevant to acquisition of lexical units.

Children start to show some sensitivity to a limited set of words, such as their names,
around 6-months of age (Bortfeld et al., 2005). However, they start to utter their first
words later, around their first birthday. Typically, comprehension precedes production:
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with a rather large variability, the number of words a one-year-old understands seem
to be around 50 (Fenson et al., 1994). The lexical knowledge increases slowly until
about 18 moths of age, at which time a rapid increase in lexical knowledge, known
as the vocabulary spurt , starts (Reznick and Goldfield, 1992, see also the discussion
in Section 2.1.1). In the light of the research so far, it seems fair to assume that
children start building a lexicon around one year of age. However, infants attend to
speech and they start collecting statistics about sound sequences long before they start
building a lexicon. As a result, it is plausible that lexical segmentation starts with some
prior knowledge of phoneme sequences. To test the usefulness of this type of prior
knowledge, the learning algorithm described in Section 6.2.3 was modified to collect
phoneme n-gram statistics from a different data set as the first step. After collecting
the phoneme sequences, the learning proceeds as before.

The corpus used for initial statistics is gathered from the CHILDES database. For
all American English transcripts in the CHILDES, the recording sessions where target
children were less than a year of age were selected, and all child-directed speech in
these sessions are processed and converted to phonemic transcriptions following Brent
(1996). The resulting corpus contained 53,770 child directed utterances for 24 different
children recorded in 171 sessions. The ages of children were between 0;6 and 0;11.29
(mean=9;11, sd=48 days).1 Since the resulting corpus is larger than the BR corpus, and
it includes many words not marked for stress in MRC database, annotating this corpus
with stress information was not practical.2

Table 9.2 presents the performance of the models discussed so far using the modified
algorithm. First, the phoneme n-gram statistics from the corpus described above were
collected. During this first step no attempt was made to segment the corpus, or to learn
the weights of the boundary indications. In the second step, learning proceeded as
before. The phoneme statistics are updated over already existing statistics, and the
BR corpus is segmented using the methods indicated in Table 9.2, where previously
reported results without prior information are also provided for ease of comparison.

Compared to the results without the prior statistics, all models, except the word-
based model alone, show an increase in the performance scores. The WM, as expected,
shows no difference since the lexicon is not populated with the prior data collection.
Figure 9.3 presents these differences graphically only for combined model PUWM.
The differences are more visible for the performance scores calculated for the complete
corpus, especially increasing LF, and decreasing Eu. This is expected, since having
prior data reduces the initial mistakes that the learner otherwise makes. As can be seen
in Figure 9.3b, use of prior data also increases the performance scores in the final state
of the learner, albeit slightly.

1As previously explained in Section 2.1.1, the age notation follows the standard notation in the language
acquisition literature. 0;11.29 means 0 years, 11 months and 29 days.

2The decision is also related to the poor quality of the stress information available. If a more realistic
source of stress information available, the effort may be well justified as a future step.
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Figure 9.3: Boundary (BF), word-token (WF) and word-type (LF) f-scores and oversegmentation
(Eo) and undersegmentation (Eu) rates of the combined model PUWM, with and the without
prior phoneme statistics. The scores are calculated (a,c) for the complete BR corpus, and (b,d)
only for the last 290 utterances of BR corpus. Note the scale difference between the y-axes error
rates and the f-scores.
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boundary word lexicon error

model P R F P R F P R F Eo Eu

PM 69.6 92.5 79.5 56.9 70.2 62.9 36.7 49.8 42.3 15.3 7.5
66.9 96.0 78.9 53.7 70.2 60.9 42.7 47.1 44.8 18.0 4.0

UM 82.9 84.8 83.8 70.5 71.7 71.1 33.8 66.9 44.9 6.6 15.2
78.6 94.0 85.6 68.5 78.0 72.9 54.3 64.4 58.9 9.7 6.0

WM 77.5 71.3 74.3 60.6 57.2 58.9 18.3 47.7 26.4 7.8 28.7
77.5 71.3 74.3 60.6 57.2 58.9 18.3 47.7 26.4 7.8 28.7

PUM 82.6 90.7 86.5 72.4 77.4 74.8 42.8 65.3 51.7 7.2 9.3
79.7 95.7 86.9 70.3 80.3 74.9 57.3 62.6 59.8 9.2 4.3

PUWM 83.7 91.2 87.3 74.1 78.8 76.4 43.9 67.7 53.3 6.7 8.8
79.5 96.3 87.1 70.6 81.1 75.5 59.5 62.9 61.1 9.4 3.7

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0
LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

Table 9.2: Performance scores without and with prior information for the complete BR corpus.
For each model listed, the first row presents the previously presented scores without the prior
statistics, and the second row presents the performance scores for the complete learning process
on the BR corpus after the phoneme statistics were updated using a larger corpus of child directed
speech described in this section.

9.4 Variation in the input

A natural concern regarding the validity of the results presented in this thesis is
whether these results are representative for child directed speech, or are they due to
some peculiarities that may be found only or almost only in the BR corpus. Since the
BR corpus is used in segmentation research rather often, the performance can even be
a by-product of the research conducted using this corpus for over a decade. The larger
child-directed speech corpus used as prior data in Section 9.3 already gives some hints
that the model is not learning peculiarities of this data. The models are not specialized
for the BR corpus. In this section I will present two more results to reassure about this.
First, I will present the performance results obtained using the larger corpus presented
above. Second, I will present the performance results obtained by randomizing the
order of utterances in the BR corpus.

Table 9.3 presents the results obtained using the larger corpus described in Sec-
tion 9.3 in comparison to the previously reported results for the BR corpus. Except
the WM, all models perform better on the larger corpus. However, even though it
performs poorly on its own, the WM’s contribution to the combined model is positive.
Particularly, it decreases the undersegmentation errors and increases the LF.

The order of natural language utterances is not arbitrary. There are certain regu-
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boundary word lexicon error

model P R F P R F P R F Eo Eu

PM 69.6 92.5 79.5 56.9 70.2 62.9 36.7 49.8 42.3 15.3 7.5
73.1 98.2 83.8 62.8 77.7 69.5 35.4 56.2 43.4 13.8 1.8

UM 82.9 84.8 83.8 70.5 71.7 71.1 33.8 66.9 44.9 6.6 15.2
83.2 94.1 88.3 74.6 81.4 77.9 31.6 76.1 44.7 7.3 5.9

WM 77.5 71.3 74.3 60.6 57.2 58.9 18.3 47.7 26.4 7.8 28.7
51.5 86.8 64.7 33.8 49.9 40.3 15.7 32.7 21.2 31.3 13.2

PUM 82.6 90.7 86.5 72.4 77.4 74.8 42.8 65.3 51.7 7.2 9.3
85.2 97.2 90.8 78.6 86.2 82.3 44.2 71.2 54.6 6.4 2.8

PUWM 83.7 91.2 87.3 74.1 78.8 76.4 43.9 67.7 53.3 6.7 8.8
84.2 98.0 90.6 77.7 86.6 81.9 46.5 70.5 56.0 7.1 2.0

RM 27.4 27.0 27.2 12.6 12.5 12.5 6.0 43.6 10.5 27.1 73.0

LM 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3
88.9 93.1 90.9 81.8 84.5 83.1 50.2 66.0 57.1 4.5 6.9

Table 9.3: The comparative performance results obtained on the BR corpus and a larger child-
directed speech corpus (explained in Section 9.3). For each model, the first row presents the
previous results obtained on the BR corpus (previously summarized in Table 9.1), and the second
row presents the results obtained on the larger corpus. All values are calculated for the complete
corpus. As before, the performance scores of reference models are provided for comparison.

larities that can be found in utterances of a natural conversation. For example, it is
well known that a word used in an utterance is more likely to be repeated during the
same conversation compared to its base frequency of occurrence in the language. The
experiments presented next disregard this fact by re-ordering the utterances in the BR
corpus randomly. The variance of the performance scores for different orderings of the
input gives an indication of the robustness of the model with respect to ordering of the
utterances. In addition, the difference between the mean of the multiple randomized
runs and the results obtained using the natural ordering of the utterances may indicate
the usefulness of the natural ordering.

For this purpose, box-plots of f-scores and error values for 50 runs of the PUWM
with randomized input are presented in Figure 9.4. The dotted horizontal lines in the
graphs represent the scores obtained on the natural ordering of the utterances. The
ordering of the utterances does not seem to cause a large variation. Due to the shorter
sample size, the scores calculated on final 290 utterances are more varied. However,
in both cases, the standard deviations of the distributions of the scores are rather low.
Although it is difficult to get a conclusive interpretation from these values, the natural
ordering of the utterances seem to be useful. The scores obtained on natural ordering
seem to be higher (and for the error scores lower) than the mean of the random runs,
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Figure 9.4: Boxplots of the performance scores obtained over 50 learning trials over the BR
corpus with randomized orderings of utterances. (a) presents the scores calculated for complete
corpus, while (b) presents the scores calculated for last 290 utterances. Whiskers cover the
complete range of scores (including outliers).

and this is more visible for the performance scores calculated for last stage of the
learning.

9.5 Qualitative evaluation

In the evaluation of the models so far, quantitative measures of success and failure
have been presented. This is a reasonable approach, especially when dealing with a
large amount of data. However, inspecting the output of a model qualitatively also
helps identifying the cases where the model is successful, and where it fails. In this
section I will present some examples of utterances segmented and words identified by
the combined model (PUWSM) and the reference model (LM) starting with a familiar
example.

Figure 4.1 on page 45 presented a sequence of utterances from the BR corpus in the
form of a puzzle. The same sequence of utterances will serve here for evaluating the
performance of the learners qualitatively. In this section, the results will be displayed
using the phonemic transcriptions. To aid the reader in interpreting the results Figure 9.5
presents the phonemic and orthographic forms of the sequence of utterances that were
used in the puzzle.

This particular sequence is formed by utterances 422nd through 429th in the BR
corpus. Besides the repeated use of the word kitty, the utterances in this sequence
have another interesting property that they occur at an early position in the BR corpus,
where all models presented here are still actively learning. As can be observed from the
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Orthographic Phonemic

a kitty
do you think it’s a kitty
you can think it’s a kitty
is that a kitty
here kitty kitty sleeping kitty
look you can stick your finger in there
stick your finger in that hole right
good girl
now let’s see what’s the baby saying

6 kIti
du yu TINk Its 6 kIti
yu k&n TINk Its 6 kIti
Iz D&t 6 kIti
h( kIti kIti slipIN kIti
lUk yu k&n stIk y) fINgR In D*
stIk y) fINgR In D&t hol r9t
gUd g3l
nQ lEts si WAts D6 bebi seIN

Figure 9.5: The gold-standard solution of the puzzle presented in Figure 4.1. The orthographic
version and the phonemic transcriptions are displayed together to aid easy interpretations of the
results presented in this section.

graphs presenting the progress of the performance with increasing input (for example,
Figure 8.5), almost all models reach their stable state around the 2000th utterance. After
this point, some slight increase and some fluctuation is observed, but, the steepest
increase of performance (end decrease of error) is observed until around the 2000th

utterance. Figure 9.6a presents the segmentation solutions offered by the combined
model, the PUWSM, and the reference model LM. The models make different mistakes,
but both of them undersegment. This is expected, since they still are at the beginning of
the learning process. This is also in agreement with the progress of the Eu displayed in
Figure 8.5 and Figure 5.2 for the PUWSM and the LM, respectively. It is also visible
in this example that the LM learns faster. It finds more boundaries compared to the
PUWSM.

Figure 9.6b presents the outputs of the models for the same sequence of utterances.
However, for this demonstration, the utterances are moved to the end of the BR corpus.
This reflects the performance of the learners towards the end of the corpus. As expected,
both perform better than in the earlier phase. It is difficult to see the performance
differences very clearly. However, even though the LM also makes some oversegmen-
tation mistakes (for example segmenting /fINgR/ ‘finger’ as /fIN gR/), the PUWSM
makes more oversegmentation errors. This can be seen in the first utterance, and the
utterances where the PUWSM identifies /k/ as a word. These oversegmentation errors
indicate that the PUWSM can benefit from a better phonotactics component (e.g., one
that can learn that /k/ is an unlikely word).

This example also demonstrates that both models consistently segment the mor-
pheme /IN/ ‘ing’. Even though the comparison with the gold standard will mark this
as an error, it is not clear what this would mean for child language acquisition. The fact
that the morphemes are learned and used productively at some point in the acquisition
process suggests that identifying the morphemes is not necessarily bad for a learner.
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LM PUWSM

6kIti
du yu TINk It s6kIti
yu k&n TINk It s6kIti
Iz D&t 6kIti
h( kItikIti slipIN kIti
lUk yu k&n stIky)fINgRIn D*
stIky)fINgRIn D&t holr9t
gUd g3l
nQ lEtssi WAt sD6 bebi se IN

6kIti
du yu TINk Its6kIti
yu k&nTINk Its6kIti
Iz D&t 6kIti
h(kIti kIti slipIN kIti
lUk yuk&nstIky)fINgR In D*
stIky)fINgR In D&tholr9t
gUdg3l
nQ lEtssi WAtsD6bebi se IN

(a)

LM PUWSM

6kIti
du yu TINk Its 6kIti
yu k&n TINk Its 6kIti
Iz D&t 6kIti
h( kIti kIti slipIN kIti
lUk yu k&n stIk y) fIN gR In D*
stIk y) fIN gR In D&t hol r9t
gUd g3l
nQ lEtssi WAt s D6 bebi se IN

6k Iti
du yu TIN k Its6 kIti
yu k&n TIN k Its6 kIti
Iz D&t 6kIti
h( kIti kIti slip IN k Iti
lUk yu k&n stIk y) fINgR In D*
stIk y) fINgR In D&t hol r9t
gUd g3l
nQ lEts si WAts D6 bebi se IN

(b)

Figure 9.6: Solutions offered to the puzzle presented in Figure 4.1 by the LM and the PUWSM.
(a) presents the outputs of the models obtained where the utterances are in their normal position.
(b) presents the outputs obtained by moving the utterances that form the puzzle to the end of the
BR corpus.

Another way to inspect the output of the models is to check the most frequent
words that they identify. Table 9.4 presents the most frequent 10 words identified by
the PUWSM and the LM as well as the most frequent 10 words in the gold-standard
segmentation of the BR corpus. In general, the output of both models match well with
the gold-standard segmentation. Both miss some occurrences of highly-frequent words,
but, the number of times they find these words is also close to the gold standard. All
high-frequency words the PUWSM finds in this list are real words. Furthermore, except
that it misses the word a many times and except that the word do gets a higher rank, the
words in the list matches the gold-standard perfectly. The LM performs similarly, but
here the problem noted above surfaces again. The LM segments the morpheme /z/ ‘-s’.

The high-frequency words that the models find indicate that both models perform
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PUWSM LM Gold standard

freq. word freq. word freq. word

1488 /yu/ ‘you’ 1459 /yu/ ‘you’ 1704 /yu/ ‘you’
839 /D6/ ‘the’ 931 /D&t/ ‘that’ 1291 /D6/ ‘the’
802 /D&t/ ‘that’ 891 /WAt/ ‘what’ 895 /6/ ‘a’
778 /WAt/ ‘what’ 855 /D6/ ‘the’ 798 /D&t/ ‘that’
610 /Iz/ ‘is’ 749 /z/ ‘-s’ 783 /WAt/ ‘what’
572 /It/ ‘it’ 647 /Iz/ ‘is’ 653 /Iz/ ‘is’
525 /DIs/ ‘this’ 622 /It/ ‘it’ 632 /It/ ‘it’
504 /du/ ‘do’ 521 /du/ ‘do’ 588 /DIs/ ‘this’
465 /WAts/ ‘what’s’ 502 /tu/ ‘to’ 569 /WAts/ ‘what’s’

Table 9.4: Most frequent words discovered by the PUWSM and the LM in comparison to the
most frequent words in the gold standard. The sequences that do not exist in the gold-standard
lexicon are marked with boldface.

well in finding the frequent words. However, it gives limited indication as to what sort
of mistakes the models make. To demonstrate the mistakes, Table 9.5 presents the
most frequent sequences the PUSWM and the LM suggest as words, but which are not
found in the gold-standard lexicon. Since this list is constructed by checking the words
that are found regardless of their context, some errors (such as the ones caused by
mistakenly identifying a rare word) is not visible in this list. Nevertheless, errors listed
in Table 9.5 are useful indications of the mistakes the models make. In this table, there
is a mix of undersegmentation and oversegmentation errors for both models. The first
thing to note is that the errors listed for LM are more frequent. This is likely because
of the fact that the LM learns faster, and reaches to a stable state quickly, and once it
starts making a particular mistake, it has more chances to make more of them.

Another interesting difference between the PUWSM and the LM that can be de-
duced from these examples is that the oversegmentation mistakes the LM makes are
typically morphemes. On the other hand, the PUWSM makes rather bold oversegmen-
tation mistakes, such as segmenting peekaboo as pee kaboo. Despite the fact that /pi/
‘the letter P’3 is a word in the gold-standard lexicon, it rarely occurs outside the word
peekaboo, and /kabu/ is not a word. Similarly, the model oversegments the words
Cindy, daddy and mommy in similar settings. This is because of a problem we noted
in Section 8.4. The model requires words to be highly frequent, but does not require
words to occur in varying contexts. This particular error type indicates that modeling
properties of words more carefully is another future direction to pursue for improving
the model’s performance.

3Surprisingly, the word pee which would also match this sound sequence does not occur in the BR
corpus.
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PUWSM LM

rank freq. sequence example rank freq. sequence example

15 340 /IN/ -ing 5 749 /z/ -s
79 67 /d&/ daddy 10 477 /IN/ -ing
82 63 /#yu/ are you 12 462 /s/ -s
84 63 /lUk&t/ look at 29 263 /WAtsD&t/ what’s that
93 56 /nADR/ another 33 224 /k&nyu/ can you

109 45 /Its6/ it’s a 48 145 /s6/ it’s a
113 44 /ma/ mommy 50 139 /WAtsDIs/ what’s this
117 44 /D6d%/ the door 74 97 /~t/ are’nt
119 43 /s/ -s 81 84 /nADR/ another
122 43 /9dont/ I don’t 88 76 /anD6/ on the
123 43 /6fon/ a phone 102 65 /sr9t/ itsright
131 40 /#Doz/ are those 103 65 /pr/ pretty
132 39 /hQmEni/ how many 109 61 /6dOgi/ a doggy
136 38 /s6/ it’sa 111 59 /W*zD/ whre’sthe
138 38 /k6bu/ peekaboo 117 57 /Iti/ pretty
141 37 /9TINk/ I think 118 57 /b9b9/ bye bye
152 33 /gEn/ again 120 55 /snat/ itsnot
172 28 /9si/ I see 122 55 /6dOg/ a dog
174 27 /sIn/ Cindy 127 53 /WAtIzIt/ what is it
175 27 /sAm/ somebody 136 48 /sD6/ what’sthe

Table 9.5: Most frequent errors made by the PUWSM and the LM. For each sequence mistakenly
identified as a word, the number of times the model suggested the sequence as a word (freq),
the rank of the sequence, and, for the undersegmentation errors, the orthographic form of the
word sequence, otherwise an indication of the morpheme, or an example case where the error
occurred is given in the columns labeled ‘example’. For oversegmentation errors, a dash ‘-’ at
the beginning indicates a frequent morpheme, and boldface marking indicates the approximate
part-word identified by the model.

The qualitative analysis presented in this section supports some of the previous
findings. In particular, the model presented in this thesis can be improved by improving
the phonotactics and lexicon components. Before finalizing the overview, the next
section will discuss some of the possible improvements to the learning method used in
the models presented in this thesis.

9.6 The learning method
All the models in this thesis follow a simple unsupervised method for making

boundary decisions, and another simple method for combining the indications obtained
from multiple boundary-detection measures. For the first purpose, the local changes in
a measure’s values are used. If a measure provides a stronger indication for the current
position compared to the neighboring positions, it is taken as a boundary decision. In
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other words, a boundary decision is given at the positions where the indication of a
boundary peaks. The measures were combined using majority voting. In a nutshell, for
each position in an utterance, a number of boundary indications are collected, and if
a majority of the indications is positive, the combined decision is also positive. The
models assign weights to each boundary indicator, and these weights are updated based
on their agreement with the majority after every positive or negative boundary decision.
An indication, or a measure that agrees with the majority all the time gets a full vote,
and the weight of an indication that behaves randomly is set to zero, causing its further
decisions of it to be ignored.

As demonstrated by the performance scores presented so far, these simple mecha-
nisms worked well. The overall performance of the combined model is competitive
with the state of the art segmentation models in the literature. However, there are a
number of points where the learning method can be improved.

For this work, the attractiveness of the majority voting algorithm has been its
simplicity. The method provides a simple, but effective way of combining different
quantities. When dealing with a large number of indications with varying values coming
from different distributions, making yes-or-no decisions simplifies the combination
process. However, it also levels the differences between strong indications and weak
indications. This is bad for a good model of cue combination for segmentation, since
there may be cases where a single strong indication, such as a long pause, is enough
for the decision.

Two possibilities are considered as future extensions. One of the possibilities
is a weighted linear, or log-linear combination strategy. The log-linear models that
are becoming increasingly common in the computational linguistics literature are, in
principle, attractive here as well because of the exponential-like distributions some
of the measures follow (see Section 6.1). Another, possibly better, option is to use a
Bayesian cue combination method (e.g., Kording et al., 2007). However both of these
methods are considerably more complex than majority voting, and they are typically
trained using supervised systems, and/or batch algorithms that require large amounts
of input at once. Nevertheless, especially Bayesian cue combination may be another
future improvement for the models presented here. Attractiveness of the Bayesian cue
combination is two-fold. First, it allows the model to use the strengths the indications
to be modeled. Second gives a natural way to distinguish between the prior information
the learner has about a cue (i.e., how well a cue indicates a word boundary), and the
reliability of the particular measurement of the cue (i.e., how reliable is the current
observation).

Another possible improvement to the learning system may come from a more
structured model, for example a hierarchical model. Each cue described in the previous
chapters is composed of multiple sub-measures. For example, the predictability cue
uses both entropy and mutual information. The combined models combine these
sub-measures in a flat manner, without paying attention to which cue a particular
sub-measure comes from. A hierarchical model would get a single indication from a
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single cue, and combine the cues together according to a set of weights that are cue
specific. A model structured this way may be able to capture environmental effects on
a certain cue better. For example, if the stress cue is not reliable (as in the output of
a poorly constructed speech synthesizer, or a non-native speaker), a combined model
could reduce the weight of the cue once it is known to be unreliable given another
variable (e.g., speech synthesizer).

Besides the method of combining multiple information sources, an important
aspect of the computational models described here is that they are unsupervised. The
overall language acquisition process might be considered somewhat supervised,4 in
contrast to the assumptions we have consistently upheld in this thesis. Even though
the learner does not get feedback for abstract concepts such as grammar rules or word
boundaries, the learner’s communication with his/her environment and the efficiency of
the processing are dependent on learner’s success in using the language correctly. Since
during learning segmentation the learner has to learn one of these abstract concepts,
without the knowledge of what sort of feedback we can get from communication
failures, an unsupervised method is a better match for modeling this task.

The learning strategies presented in this thesis are unsupervised. In addition, they
do not have any free parameters, except the magical number three: in all cases where
phoneme n-grams are combined, the n-grams of size one to three are used. Section 6.2
investigated the effects of changing the length of the phoneme n-grams. However, in
general, it seems the phoneme n-grams are most useful for sizes three to four, after
which their usefulness starts to diminish slowly. A possible explanation for using
n-gram sizes up to three, as Cohen et al. (2007) note, is that this may be related optimal
processing capabilities of humans (see also Miller, 1956). The other explanation is
that it can be learned from the input. Since increasing n-gram sizes further does not
improve the results, even if the learner considers longer n-gram sizes as well at the
beginning, an effective weight update mechanism would eliminate the ones that are not
useful.

The aim of computational simulations described in this thesis is to model human
performance in learning segmentation. Consequently, good segmentation performance
is not the only aim. The models developed in this study try to be faithful to what we
know about the human performance in segmentation.

An important aspect of segmentation by humans is that they use a set of cues for
segmenting input utterances. The segmentation strategy described here does the same,
it combines a number of cues known to be used by children during segmentation,
and the framework is easily extensible to include more cues. As discussed above
the possible methods for cue combinations have not not fully explored in this study.
However, we do not yet have enough data about human performance to prefer one

4Even though the term may upset many linguists, language acquisition may fit better in the learning
framework called reinforcement learning in the machine learning literature. The main difference to supervised
learning is that learner is active, it gets feedback for its actions, but the feedback can be delayed.
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particular method of combination to another.
Human sentence processing is known to be incremental and predictive. Following

human segmentation and sentence processing, the models segment the input utterances
in an incremental way, without waiting for the end of the input. In a sense, the lexicon-
based segmentation described in Section 8.1 adds a predictive component by favoring
boundaries that start at known word beginnings.

One last issue that requires additional notice here is the input. The input used in
these simulations are realistic in the sense that they are samples from real child-directed
speech. However, the simulations reported here take a phonemically transcribed
speech as input. Furthermore, the transcriptions represent a word consistently the same
wherever it appears. In real-world speech, the tokens of the same words sound at least
slightly different depending on many variables, such as the context of the word, or
noise in the environment. The transcriptions remove these differences, making the
task of the learner easier. The same is also true for the stress marking used in this
research. On the other hand, transcribed speech also removes a set of cues that helps
discovering word boundaries. This relatively unrealistic input representation is used
for practical reasons: we have neither corpora that encodes all relevant aspects of
speech nor a standardized way of encoding these aspects. There have been attempts
to introduce variability in the input by randomly degrading the quality of the input
utterances, but, the representativeness of these approaches for the variation in actual
speech is questionable (see Section 5.1 for a discussion).

9.7 Summary
In a number of incremental steps spread over the preceding three chapters, this

thesis has described, the first incremental and multiple-cue combination model of
segmentation that performs competitively with the state of the art segmentation models
that use a language modeling strategy (such as the LM introduced in Section 5.5). In
the present chapter I have provided a summary of what was presented before, brought
the results obtained previously into a unified scheme, analyzed a number of issues that
were delayed during the presentation of the individual models, and suggested possible
future improvements to the models described here. Now it is time to have the general
summary of thesis and to conclude.
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I would have written far less, but I did not
have the time.

Blaise Pascal

This study has mainly developed computational models of language acquisition and
tested these models using computational simulations on realistic samples that children
receive during language acquisition. The first two chapters of this thesis surveyed
the broader field of language acquisition, focusing mainly on the formal methods of
studying language acquisition. The particular aspect of language acquisition that is
at the focus of this study is segmentation. After an introduction to the segmentation
problem, the remainder of the thesis described a general strategy for segmentation, and
reported results from the computational simulations of models following this strategy.

Chapter 2 introduced a central debate in the field of language acquisition, the
nature–nurture debate, and a number of influential theories of language acquisition in
relation to this debate. The discussion in this chapter led to the conclusion that based
on the evidence available from language acquisition, we are far from concluding this
age-old debate. Furthermore, most of the positions on both sides of the debate seems
to be fuzzy, and very difficult or impossible to conclude. More importantly, the benefit
of placing this debate at the center of the research agenda is questionable, and often,
seems to be unfruitful, or even counterproductive.

In Chapter 3, the formal modeling practice for language acquisition research was
introduced, and its strengths and weaknesses were identified. This chapter also provided
a review of relevant studies from computational learning theory. Some common
misconceptions in the language acquisition literature stemming from results of certain
studies in computational learning theory were pointed out. The formal, analytical
approach typically used in the computational learning theory literature is one of the
approaches to studying computational models of learning. Another common method
often employed in the study of cognitive processes is to use computational simulations.
I argued that the approach taken in this thesis, the computational simulations, sometimes
provide easier modeling opportunities than are available to formal analysis methods
typically used in the field of computational learning theory. The input to the language
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learner is an example where computational simulations allow more realistic and more
straightforward modeling options.

Most studies outlined in these two chapters focus on learning syntax. Children’s
acquisition of rules governing formation of sentences is indeed an interesting subject.
However, learning syntax, as Miller (1996, p.238) puts it, is only ‘slightly more
amazing’ than learning new words. The focus of this study is one of the first steps
children need to take for learning words. The question of interest is: how do children
extract lexical units, e.g., words, from a continuous stream of speech sounds without
knowing which sound sequences are words? This problem, the segmentation problem,
and what we know from developmental psycholinguistics about how children deal with
this problem was reviewed in Chapter 4. In a nutshell, children seem to use several
cues that are partial, noisy, overlapping, and sometimes conflicting indications to find
word boundaries and words in continuous speech. These cues include predictability
statistics, phonotactics, lexical knowledge, and lexical stress.

After discussing the segmentation problem from a computational perspective, the
related work in this subfield was reviewed. Chapter 5 presented issues regarding
evaluating the computational models of segmentation, pointing out a few confusions in
interpreting the results of these models, and described two new error measures that may
serve to assess the performance of segmentation models better. Next, a reference model
was described. The reference model shares a common strategy, the ‘language modeling’
strategy with most successful computational models of segmentation. However, it does
not model the child language acquisition process closely.

The following three chapters presented computational models of segmentation that
are compatible with what we know about child language acquisition. These chapters
define models that use the cues listed above, leading to a combined model which uses
all the cues. Chapter 9 provided an overview and comparison of the models developed
in preceding three chapters.

In the development of the framework that was shared by all these models, partic-
ular care has been taken that the work be compatible with what we know about the
segmentation of speech by children from psycholinguistic research. First, as the psy-
cholinguistic studies reviewed in Chapter 4 indicate, adults and children use multiple
cues in segmentation task. Following this fact about human language acquisition, the
model integrates multiple cues. Furthermore, it starts segmenting input utterances with
language-general cues, and learns to use cues that are useful only after learning words
of the input language.

Second, the segmentation decisions are incremental. Unlike computational models
that require the complete utterance (or the complete corpus) to be presented before
deciding for the best segmentation, the models presented here decide on boundaries
while processing the utterance from left to right. In accordance with the results of some
of the psycholinguistic studies, a certain amount of right context is used. However,
the models presented here do not exhaustively search for best segmentation. The
incremental nature of the segmentation algorithm also indicates that the computational
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resources required by the models are modest.
A third aspect, which can further be improved, is the input. As in most psycho-

logically motivated computational models of segmentation, all simulations are run on
phonemically transcribed child directed speech. The phonemic transcription neces-
sarily introduces some idealizations, and it removes some of the cues available in the
speech sound. However, these limitations are practical. The model can trivially be
extended to make use of more realistic input.

The results of the simulations are encouraging. The segmentation performance,
measured using performance scores used in the related literature indicates that the
combined model is competitive with the state of the art segmentation models without
similar levels of fidelity to what is known about child language acquisition.

As far as I can determine, the combined model presented here is the first model
following the child acquisition process as faithfully as it does, with this level of
segmentation performance. Besides the improvements in the performance, another
advantage of the model presented in this thesis in comparison to previous models,
such as connectionist systems, is that it uses an explicitly specified statistical model of
learning. As a result, it allows easier interpretations of what the model is learning, and
easier extensions where necessary.

The segmentation model presented in this thesis demonstrates a way to achieve good
segmentation performance using more plausible segmentation strategies. However,
this is only the beginning. As discussed in Chapter 9 at depth, there are many ways to
improve the model. Of these improvements, two of them stand out. The first one is to
use better cue combination mechanisms, and the second one is the use of more realistic
input.
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Short summary

Segmenting continuous speech into lexical units is one of the early tasks an infant
needs to tackle during language acquisition. This thesis investigates this particular
problem, segmentation, by means of computational modeling and simulations.

The segmentation problem is more difficult than it may be appreciated at first sight.
Children need to find words in a continuous stream of speech, with no knowledge of
words to start with. Fortunately, experimental studies reveal that children and adults use
a number of cues in the input and simple strategies that exploit these cues in order to
segment the speech. More interestingly, some of these cues are language independent,
allowing a learner to segment the continuous input before knowing any words.

Two major aspects set the models presented in this thesis apart from other com-
putational models in the literature. First, the models presented here use simple local
strategies—as opposed to global optimization— that rely on cues known to be used
by children, namely, predictability statistics, phonotactics and lexical stress. Second,
these cues are combined using an explicit cue-combination model which can easily be
extended to include more cues.

The models are tested using real-world transcribed child-directed speech. The
simulation results show that the performance of individual strategies are comparable to
the state-of-the-art computational models of segmentation. Furthermore, combinations
of individual cues provide a consistent increase in performance. The combined model
performs on a par with the reference state-of-the-art model, while while employing
only mechanisms more similar to those available to humans performing the same task.

The dissertation starts with a general introduction to the problem of language
acquisition, the difficulties and disagreements in the field. No work in language
acquisition can be complete without mentioning the central debate of the field between
nativism and empiricism. It is rare for a work in language acquisition not to take a
clear side on this debate. The philosophical debate is intriguing. However, as I argue
in Chapter 2 and Chapter 3, there seem to be no scientific criteria that would decide
in favor of the one or or the other side, at least not until more physiological evidence
becomes available. Furthermore, although it is a common practice in the field to take
one of these view points a priori, it is not necessarily fruitful. The problem of language
acquisition is a fascinating research topic in itself without its implications for the
nature–nurture debate. Like many other questions of cognitive sciences, understanding
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language acquisition better may contribute to this bigger debate. However, forming
research questions which assume one of the viewpoints of this unsettled debate runs
the risk of committing the fallacy ‘ignoratio elenchi’, begging the question of whether
nature or nurture is more important for language learning. This is unlikely to contribute
to our scientific understanding of the language acquisition.

As in many fields of science, modeling, particularly computational modeling, is one
of the ways to study some of the questions regarding language acquisition. Modeling
aids us in understanding the natural phenomena better by (1) finding parallels between
the natural phenomenon and the computational model, (2) testing hypotheses that
are difficult or impossible to test directly, and (3) providing more insight into the
problem by describing it in detail. Computational models can be studied either by
mathematical analysis, or by simulations. Chapter 3 offers a closer look at these two
methods. These methods are complementary. However, computational simulations
allow easier modeling practices with regard to probabilistic aspects of the phenomenon
to be modeled. In the case of language acquisition, for example, it is difficult to model
input to the child analytically. However, it is relatively easier to model the input with a
sample of child-directed speech in adult–child conversations.

After surveying the related psycholinguistic research on segmentation in Chapter 4,
the computational problem of segmentation and the solutions offered in the literature,
is discussed in Chapter 5. Besides providing a taxonomy of segmentation models
and discussing the issues regarding evaluation of the models, Chapter 5 also defines a
reference model similar to many state-of-the-art models.

Some aspects of a computational model of segmentation that are discussed in
Chapter 5 include, (1) the way the input is modeled, e.g., whether syllables, phonemes,
or phonetic features are assumed to be the basic units of the input stream, (2) whether
the model guesses boundaries or lexical units, (3) whether the model requires a large
amount of input (batch) at once, or if it segments as the learning proceeds (incre-
mentally), and (4) whether it discovers the lexical units by dividing larger chunks,
e.g., utterances, or by combining basic units, e.g., phonemes. These aspects, together
with the resource requirements of the models are important considerations for their
suitability as a psychologically plausible model of segmentation.

The evaluation of any cognitive model is a rather difficult task. Ideally, we expect
human-like performance from our models. However, depending on the modeling aims,
we do not have enough data on human performance to come up with quantitative
evaluation methods in most cases. As a result, all else being equal, we prefer the
models that perform better, and we test the performance against a common gold-
standard. Fortunately, increasingly many recent models follow common quantitative
measures of success (precision, recall and F-score) and common reference corpora.
This makes the comparison of different models relatively easy. However, comparing the
models’ performance is still not trivial. There are a few cases where the performance
figures can easily be misinterpreted, and there are cases where using different measures
may reveal more information. Chapter 5 points out common pitfalls in comparing
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different models’ performance. For example, it is easy to over-credit a batch model
in comparison to an incremental model if we compare the results as they are typically
presented in the literature.

Many state-of-the-art computational models of segmentation follow a strategy
similar to well-studied ‘language models’ in the computational linguistics literature.
Instead of using one of these models of segmentation as a reference, Chapter 5 defines
a simple model following the same strategy. The model (called LM in this thesis)
shows a similar performance to the state-of-the-art models in the literature. The LM
sets a high standard of performance to achieve. Besides the LM, a particular random
segmentation model common in the computational segmentation literature is redefined
here. Both models serve as reference models for the other models presented in the
thesis.

The LM and the related models perform well on the segmentation task, and they are
typically defined as explicit statistical models that are easy to reason with. However,
this particular strategy does not follow what we know about human processing closely.
A number of connectionist models follow human performance more closely. However,
these systems tend to perform poorly, and interpreting what connectionist models learn
is generally difficult. It seems, we lack explicitly described segmentation models that
follow what we know about the way humans segment continuous speech. This study
tries to fill this gap by developing and testing explicit models that use the strategies
believed to be used by humans in this task. Crucially, special emphasis is given to how
these strategies combine to improve segmentation.

After setting the stage for the intended modeling exercise, following three chapters
investigate techniques based on three different strategies. The first strategy discussed
in depth is segmentation using predictability statistics. In a nutshell, we know from
the psycholinguistic literature that statistical regularities between the consecutive
phonemes or syllables is a cue used by infants in the segmentation task. This chapter
starts by analyzing a set of measures commonly used for quantifying this notion,
namely, transitional probability, mutual information, successor variety and entropy.
The analysis reveals similarities and differences between these measures, but it also
shows that all of these measures indicate something relevant to word boundaries.
Furthermore, despite considerable overlap in what they measure, they each seem to
include some relevant aspect of the input that is not covered by the others. This suggests
that combining these measures may be more effective than picking the best of them.
The rest of the chapter defines a simple algorithm to combine all of these measures,
and shows (using simulations) that the combination indeed produces better results than
using the individual measures alone. As well as investigating the usefulness of the
predictability cue and different ways of quantifying predictability, this chapter also
presents an example combination model that can be extended using different cues.

The simulations with the model based on predictability statistics indicate that the
model performs consistently better than the random results. Although, the performance
results are not as good as the reference model LM, they are not not too far behind
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either.
Another language-independent strategy is the use of the information gathered from

utterance boundaries for finding lexical unit boundaries. The information from ut-
terance boundaries is useful in two ways. First, utterance boundaries are also word
boundaries. It is possible to learn common word beginnings and endings from the
utterance beginnings and endings. Second, words in natural languages follow certain
regularities, which may allow us to extract broader generalizations than we would if we
only memorized the exact sequences that occur at utterance boundaries. Chapter 7 in-
vestigates the use of information extracted from utterance boundaries for segmentation.
As demonstrated in this chapter, the analysis of real-world child-directed speech indi-
cates that utterance boundaries are good predictors of word boundaries. The analysis
in Chapter 7 also shows that paying attention to the sequences that occur at utterance
boundaries not only allows one to detect words previously seen at utterance boundaries,
but also some words that have never occurred at utterance boundaries. This indicates
that a learner paying attention to utterance boundaries can learn generalizations about
word structure as well as complete words that occur at utterance boundaries. These
intuitions are also tested using computational simulations with a model similar to
the model developed in Chapter 6. The model based on utterance boundaries alone
performs even better than the model based on predictability. More importantly, the
combination of both performs better than the individual models, getting closer to the
performance of the reference model LM.

Once some lexical units are discovered using the strategies similar to the ones
discussed above, we can use (language-specific) information contained in these units.
Chapter 8 discusses segmentation strategies based on two such sources of information.
First, a model that favors the use of already known words has been tested. The
model, when combined with previous two models, provides a consistent but small
improvement in the overall performance. The second language-specific cue investigated
is lexical stress. The results of the simulations with lexical stress are more difficult
to interpret. Adding lexical stress as a cue seems to have an adverse effect on the
overall performance. However, if the performance through time is examined more
carefully, the effect of stress towards the end of the learning phase is positive. The
difficulties regarding interpreting the contribution of stress are mainly due to the stress
coding in the corpora used. Unfortunately, the available stress marking was rather
crude, and unlikely to be representative of real-world data. Both language-specific
cues are studied less in depth relatively in this study which leaves quite some room for
improvement. Nevertheless, the simulations in Chapter 8 demonstrate that once we
start learning some lexical units, they may be helpful in finding other lexical units.

Chapter 9 gives a summary of the segmentation models presented in the thesis,
provides further analysis and comparison of the models presented earlier and discusses
possible future directions.



Samenvatting in het Nederlands

De segmentatie van continue spraak in lexicale eenheden is één van de eerste vaardighe-
den die een kind moet leren gedurende de taalverwerving. Dit proefschrift onderzoekt
segmentatie met behulp van computationeel modelleren en computationele simulaties.

Segmentatie is moeilijker dan het op het eerste gezicht kan lijken. Kinderen moeten
woorden vinden in een continue stroom van spraak, zonder kennis van woorden te
hebben. Gelukkig laten experimentele studies zien dat kinderen en volwassen een
aantal aanwijzingen uit de invoer gebruiken, alsmede simpele strategieën die gebruik
maken van deze aanwijzingen, om spraak te segmenteren. Nog interessanter is dat
een aantal van deze aanwijzingen taal-onafhankelijk zijn, waardoor een taalverwerver
continue input kan segmenteren voordat het een enkel woord kent.

De modellen die in dit proefschrift voorgesteld worden, verschillen op twee belan-
grijke vlakken van modellen uit de literatuur. Ten eerste gebruiken ze lokale strategieën
– in tegenstelling tot globale optimalisatie – die gebruik maken van aanwijzingen
waarvan bekend is dat kinderen ze gebruiken, namelijk voorspelbaarheidsstatistieken,
fonotactiek en lexicale beklemtoning. Ten tweede worden deze aanwijzingen gecom-
bineerd met behulp van een expliciet aanwijzing-combinatie model, dat eenvoudig
uitgebreid kan worden met meer aanwijzingen.

Deze modellen zijn getest met behulp van reële getranscribeerde kind-gerichte
spraak. De resultaten van de simulaties laten zien dat de prestaties van de individu-
ele strategieën vergelijkbaar zijn met state-of-the-art computationele modellen voor
segmentatie. Daarnaast levert het combineren van individuele aanwijzingen een consis-
tente verbetering in prestaties op. Het gecombineerde model presteert even goed als
het state-of-the-art model dat als referentie gebruikt wordt, terwijl het alleen gebruik
maakt van mechanismen die beter vergelijkbaar zijn met mechanismen die voorhanden
zijn voor mensen die dezelfde taak verrichten.

Dit proefschrift vangt aan met een algemene introductie in het probleem van
taalverwerving, de en beschrijft de moeilijkheden en geschillen in het vakgebied. Het
komt nauwelijks voor dat een werk geen standpunt kiest in het welbekende nature–
nurture debat. Ik beargumenteer echter in Hoofdstuk 2 en Hoofdstuk 3 dat er geen
wetenschappelijke criteria zijn die het debat ten gunste van één van beide standpunten
beslecht, tenminste niet totdat er meer fysiologisch bewijs beschikbaar komt. Ondanks
het feit dat er in dit onderzoeksgebied gewoonlijk a priori stelling wordt gekozen voor
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één van deze standpunten, is dit niet per definitie nuttig.
Zoals in veel andere vakgebieden in de wetenschap kan modelleren, of specifiek

computationeel modelleren, gebruikt worden om vragen met betrekking tot taalver-
werving te bestuderen. Computationele modellen kunnen bestudeerd worden met
behulp van wiskundige analyse of computationele simulaties. Hoofdstuk 3 beschrijft
deze methodes, die complementair zijn, nader. Computationele simulaties maken het
modelleren echter eenvoudiger ten aanzien van de probabilistische aspecten van het
fenomeen dat gemodelleerd wordt.

Na het bestuderen van gerelateerd psycholinguistisch onderzoek naar segmentatie
in Hoofdstuk 4, wordt in Hoofdstuk 5 het probleem van computationele segmentatie
besproken, alsmede oplossingen voor dit probleem in de literatuur. Hoofdstuk 5
geeft naast een taxonomie van segmentatiemodellen en een beschrijving van de evalu-
atiemethoden een referentiemodel dat lijkt op veel van de state-of-the-art modellen.

Na het bediscussiëren van de modelleeroefening, onderzoeken de volgende drie
hoofdstukken de verschillende strategieën. Hoofdstuk 6 geeft een grondige beschrijving
van segmentatie met behulp van voorspelbaarheidsstatistieken. Deze strategie vereist
geen initiële taal-specifieke kennis, en het is aangetoond dat mensen dezelfde strategie
gebruiken in deze taak. Een andere taal-onafhankelijke strategie gebruikt informatie
die verzameld is over uitingsgrenzen voor het vinden van grenzen in lexicale eenheden.
Hoofdstuk 7 onderzoekt deze strategie grondig, en toont aan dat het combineren van
deze twee strategieën betere prestaties oplevert dan de strategieën afzonderlijk.

Zodra enkele lexicale eenheden ontdekt zijn met behulp van de strategieën die
hierboven zijn beschreven, kunnen we (taal-specifieke) informatie uit deze eenheden
gebruiken. Hoofdstuk 8 beschrijft segmentatiestrategieën die gebaseerd zijn op twee
van dergelijke informatiebronnen. Ten eerste, een model dat voorkeur geeft voor het
gebruik van bekende woorden, ten tweede een model dat gebruik maakt van lexicale
beklemtoning. Hoofdstuk 8 demonstreert dat, zodra een taalverwerver een aantal
lexicale eenheden heeft geleerd, ze hulpvol zijn in het verdere leerproces.

Alvorens tot een conclusie te komen, geeft Hoofdstuk 9 een samenvatting van
de segmentatiemodellen die in dit proefschrift besproken zijn, geeft het een verdere
analyse en vergelijking van deze modellen, en speculeert het over mogelijk toekomstig
onderzoek.



A The Corpora

Two corpora of child directed speech from the CHILDES database (MacWhinney and
Snow, 1985) are use in this study.

The first corpus, the BR corpus, is collected by Bernstein Ratner (1987) and
phonemically transcribed and processed by Brent and Cartwright (1996) and Brent
(1999a). The symbols used while transcribing are listed in Table A.1. Brent (1999a)
describes the corpus as follows:

The speakers were nine mothers speaking freely to their children, whose
ages averaged 18 months (range 13–21). In order to minimize the number
of subjective judgments and the amount of labor required every word
was transcribed the same way every time it occurred. Onomatopoeia
(e.g., bang) and interjections (e.g., uh and oh) were removed for the
following reasons: (1) They occur in isolation much more frequently than
ordinary words, so they would have inflated performance scores; (2) their
frequency is highly variable from speaker to speaker and transcriber to
transcriber, so their presence would have increased the random variance in
performance scores; and (3) there is no standard spelling or pronunciation
for many of them, so we could not tell from the orthographic transcript
what sound was actually uttered. The total corpus consisted of 9790
utterances, 33,387 words, and 95,809 phonemes. The average of 3.4
words per utterance is typical of spontaneous speech to young children.
The average of 2.9 phonemes per word is not surprising for a transcription
system like ours, where diphthongs, r-colored vowels (e.g. the “ar” of
bar), and syllabic consonants (e.g., the second syllable of bottle) are each
transcribed by a single symbol. These sounds are represented by two
symbols in some transcription systems and sometimes more than two in
English orthography.

This corpus has been used by many other computational studies of segmentation.
The corpus is also distributed with the implementation of the models presented by
Venkataraman (2001) and Goldwater et al. (2009). The copies of the corpus in these
sources are identical, and the same copy has been used in this study without any
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modifications except for 12 boundary mismatches between segmentation of two words
in the text version and phonemic transcriptions. The phonemic transcriptions of
10 instances of the word /ebisi/ ‘ABC’ and two instances of the word /Enim%/
‘anymore’ have been modified to match the text version. In all cases, this resulted in
removing boundaries in the instances of /e bi si/ and /Eni m%/. The modifications
were motivated by matching the words exactly with the stress patterns in the MRC
database, for which the standard spellings were used as a key. Regardless of the use of
stress, the modified version of the BR corpus was used for all simulations reported in
this thesis. The effect of this modification to the performance scores is insignificant.

For the experiments in Section 8.3, the BR corpus was annotated with stress
information using a procedure similar to Christiansen et al. (1998). This process is
described in detail in Section 8.3.2.

The second corpus used in this study was gathered from multiple sources in the
CHILDES database. For all American English transcripts in the CHILDES database as
of April 2011, the recording sessions where target children were less than a year of
age were combined. The resulting corpus was a partial combination of the following
sections of CHILDES: Brent (Brent and Siskind, 2001), Higginson (Higginson, 1985),
Providence (Demuth et al., 2006), Rollins (Rollins et al., 1994, the section of the
corpora for normally developing children) and Sodesrstrom (Soderstrom et al., 2008).

All child-directed utterances in these sessions are processed and converted to
phonemic transcriptions following Brent (1999a). The resulting corpus contained
53,770 child directed utterances for 24 different children recorded in 171 sessions. The
ages of children were between 0;6 and 0;11.29 (mean=9;11, sd=48 days). The ordering
of the utterances in each session was kept intact, and the sessions were combined
according to the age of the child from younger to older.
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Consonants
Symbol Example
D the
G jump
L bottle
M rhythm
N sing
S ship
T thin
W when
Z azure
b boy
c chip
d dog
f fox
g go
h hat
k cut
l lamp
m man
n net
p pipe
r run
s sit
t toy
v view
w we
y you
z zip
~ button

(a) Consonants

Vowels
Symbol Example
& that
6 about
7 bOy
9 fly
A but
E bet
I bit
O law
Q bout
U put
a hot
e bay
i bee
o boat
u boot

(b) Vowels

Rhotic Vowels
Symbol Example
# are
% for
( here
) lure
* hair
3 bird
R butter

(c) Vowels with ‘r’ (Rhotic
Vowels)

Table A.1: The symbols used for phonemes in the BR corpus.





B Detailed Performance Results

This appendix lists the detailed performance results, including true positive, false
positive and false negative values, and all relevant combinations of the models described
in this thesis.

Table B.1 presents performance scores for all models described in this thesis and
all possible combinations of these models on the BR corpus. First part of the table
presents the scores calculated for the complete learning process, and the second part
presents the results for the last 290 utterances.

Table B.2 presents the same scores where the larger child directed corpus described
in Appendix A was used to collect prior statistics on phoneme n-grams. This table does
not present the result including stress due to the fact that the larger corpora has not
been marked for stress. The details of using prior statistics are described in Section 9.3.

The last set of results in Table B.3 presents the scores for the larger collection of
child directed speech alone. As in Table B.2, the models requiring stress information
could not be included in this table.
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P 21826 9524 1761 23422 17718 9955 660 1137 664 69.6 92.5 79.5 56.9 70.2 62.9 36.7 49.8 42.3 15.3 7.5
U 20005 4140 3582 23936 9999 9441 886 1739 438 82.9 84.8 83.8 70.5 71.7 71.1 33.8 66.9 44.9 6.6 15.2
W 16819 4895 6768 19097 12407 14280 631 2824 693 77.5 71.3 74.3 60.6 57.2 58.9 18.3 47.7 26.4 7.8 28.7
S 1927 536 21660 3246 9007 30131 512 5731 812 78.2 8.2 14.8 26.5 9.7 14.2 8.2 38.7 13.5 0.9 91.8
PU 21404 4501 2183 25848 9847 7529 864 1153 460 82.6 90.7 86.5 72.4 77.4 74.8 42.8 65.3 51.7 7.2 9.3
PW 21864 10090 1723 22931 18813 10446 666 1027 658 68.4 92.7 78.7 54.9 68.7 61.1 39.3 50.3 44.1 16.2 7.3
PS 1974 528 21613 3282 9010 30095 510 5722 814 78.9 8.4 15.1 26.7 9.8 14.4 8.2 38.5 13.5 0.8 91.6
UW 20764 4943 2823 24606 10891 8771 857 1486 467 80.8 88.0 84.2 69.3 73.7 71.5 36.6 64.7 46.7 7.9 12.0
US 2105 455 21482 3521 8829 29856 518 5649 806 82.2 8.9 16.1 28.5 10.5 15.4 8.4 39.1 13.8 0.7 91.1
WS 1877 548 21710 3194 9021 30183 504 5711 820 77.4 8.0 14.4 26.1 9.6 14.0 8.1 38.1 13.4 0.9 92.0
PUW 21669 4878 1918 26067 10270 7310 870 1062 454 81.6 91.9 86.4 71.7 78.1 74.8 45.0 65.7 53.4 7.8 8.1
PUS 14005 720 9582 17292 7223 16085 758 3320 566 95.1 59.4 73.1 70.5 51.8 59.7 18.6 57.3 28.1 1.2 40.6
PWS 2111 623 21476 3462 9062 29915 508 5659 816 77.2 8.9 16.0 27.6 10.4 15.1 8.2 38.4 13.6 1.0 91.1
UWS 6175 495 17412 8349 8111 25028 552 4865 772 92.6 26.2 40.8 50.7 25.0 33.5 10.2 41.7 16.4 0.8 73.8
PUWS 17863 1389 5724 22736 6306 10641 830 2268 494 92.8 75.7 83.4 78.3 68.1 72.8 26.8 62.7 37.5 2.2 24.3
RM 11720 31134 11867 4537 48107 28840 515 6351 809 27.3 49.7 35.3 8.6 13.6 10.5 7.5 38.9 12.6 49.9 50.3
LM 19512 3676 4075 23755 9223 9622 807 787 517 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3
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P 680 238 24 769 439 225 159 124 86 74.1 96.6 83.8 63.7 77.4 69.8 56.2 64.9 60.2 13.7 3.4
U 657 127 47 803 271 191 189 90 56 83.8 93.3 88.3 74.8 80.8 77.7 67.7 77.1 72.1 7.3 6.7
W 600 184 104 685 389 309 158 141 87 76.5 85.2 80.6 63.8 68.9 66.2 52.8 64.5 58.1 10.6 14.8
S 46 15 658 95 256 899 46 222 199 75.4 6.5 12.0 27.1 9.6 14.1 17.2 18.8 17.9 0.9 93.5
PU 681 115 23 855 231 139 186 73 59 85.6 96.7 90.8 78.7 86.0 82.2 71.8 75.9 73.8 6.6 3.3
PW 687 270 17 758 489 236 152 115 93 71.8 97.6 82.7 60.8 76.3 67.6 56.9 62.0 59.4 15.6 2.4
PS 48 13 656 98 253 896 47 220 198 78.7 6.8 12.5 27.9 9.9 14.6 17.6 19.2 18.4 0.8 93.2
UW 668 142 36 802 298 192 180 95 65 82.5 94.9 88.2 72.9 80.7 76.6 65.5 73.5 69.2 8.2 5.1
US 50 13 654 103 250 891 51 217 194 79.4 7.1 13.0 29.2 10.4 15.3 19.0 20.8 19.9 0.8 92.9
WS 45 17 659 92 260 902 45 224 200 72.6 6.4 11.7 26.1 9.3 13.7 16.7 18.4 17.5 1.0 93.6
PUW 684 137 20 840 271 154 185 80 60 83.3 97.2 89.7 75.6 84.5 79.8 69.8 75.5 72.5 7.9 2.8
PUS 558 19 146 721 146 273 173 105 72 96.7 79.3 87.1 83.2 72.5 77.5 62.2 70.6 66.2 1.1 20.7
PWS 50 19 654 95 264 899 50 223 195 72.5 7.1 12.9 26.5 9.6 14.0 18.3 20.4 19.3 1.1 92.9
UWS 201 28 503 287 232 707 90 191 155 87.8 28.6 43.1 55.3 28.9 37.9 32.0 36.7 34.2 1.6 71.4
PUWS 629 51 75 817 153 177 190 78 55 92.5 89.3 90.9 84.2 82.2 83.2 70.9 77.6 74.1 2.9 10.7
LM 626 77 78 801 192 193 181 63 64 89.0 88.9 89.0 80.7 80.6 80.6 74.2 73.9 74.0 4.4 11.1

Table B.1: Performance scores for all possible combinations of the models described in Chapters 6, 7 and 8 and two reference models
described in Chapter 5. The first block reports the performance or error measures for the complete BR corpus, and the second block of reports
the results for the last 290 utterances. The measures are described in Chapter 5.
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model BTP BFP BFN WTP WFP WFN LTP LFP LFN BP BR BF WP WR WF LP LR LF Eo Eu

P 22652 11211 935 23442 20211 9935 623 837 701 66.9 96.0 78.9 53.7 70.2 60.9 42.7 47.1 44.8 18.0 4.0
U 22173 6049 1414 26031 11981 7346 852 718 472 78.6 94.0 85.6 68.5 78.0 72.9 54.3 64.4 58.9 9.7 6.0
W 16819 4895 6768 19097 12407 14280 631 2824 693 77.5 71.3 74.3 60.6 57.2 58.9 18.3 47.7 26.4 7.8 28.7
PU 22576 5766 1011 26793 11339 6584 829 619 495 79.7 95.7 86.9 70.3 80.3 74.9 57.3 62.6 59.8 9.2 4.3
PW 22612 10901 975 23523 19780 9854 615 745 709 67.5 95.9 79.2 54.3 70.5 61.4 45.2 46.5 45.8 17.5 4.1
UW 22352 6684 1235 25853 12973 7524 842 756 482 77.0 94.8 85.0 66.6 77.5 71.6 52.7 63.6 57.6 10.7 5.2
PUW 22723 5864 864 27079 11298 6298 833 568 491 79.5 96.3 87.1 70.6 81.1 75.5 59.5 62.9 61.1 9.4 3.7
RM 11720 31134 11867 4537 48107 28840 515 6351 809 27.3 49.7 35.3 8.6 13.6 10.5 7.5 38.9 12.6 49.9 50.3
LM 19512 3676 4075 23755 9223 9622 807 787 517 84.1 82.7 83.4 72.0 71.2 71.6 50.6 61.0 55.3 5.9 17.3

L
as

t2
90

ut
te

ra
nc

es

P 683 258 21 750 481 244 151 117 94 72.6 97.0 83.0 60.9 75.5 67.4 56.3 61.6 58.9 14.9 3.0
U 678 145 26 825 288 169 190 76 55 82.4 96.3 88.8 74.1 83.0 78.3 71.4 77.6 74.4 8.4 3.7
W 600 184 104 685 389 309 158 141 87 76.5 85.2 80.6 63.8 68.9 66.2 52.8 64.5 58.1 10.6 14.8
PU 686 138 18 844 270 150 187 70 58 83.3 97.4 89.8 75.8 84.9 80.1 72.8 76.3 74.5 8.0 2.6
PW 686 298 18 737 537 257 141 126 104 69.7 97.4 81.3 57.8 74.1 65.0 52.8 57.6 55.1 17.2 2.6
UW 678 172 26 802 338 192 184 86 61 79.8 96.3 87.3 70.4 80.7 75.2 68.1 75.1 71.5 9.9 3.7
PUW 690 146 14 851 275 143 186 73 59 82.5 98.0 89.6 75.6 85.6 80.3 71.8 75.9 73.8 8.4 2.0
LM 626 77 78 801 192 193 181 63 64 89.0 88.9 89.0 80.7 80.6 80.6 74.2 73.9 74.0 4.4 11.1

Table B.2: The performance results with prior data. The detailed performance measures for all possible combinations of the models described
in Chapters 6, 7 and 8 and two reference models described in Chapter 5. The first block reports the performance or error measures for the
complete BR corpus, and the second block of reports the results for the last 290 utterances. The measures are described in Chapter 5.
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model BTP BFP BFN WTP WFP WFN LTP LFP LFN BP BR BF WP WR WF LP LR LF Eo Eu

P 119280 43852 2237 136241 80661 39046 865 1577 675 73.1 98.2 83.8 62.8 77.7 69.5 35.4 56.2 43.4 13.8 1.8
U 114303 23098 7214 142657 48514 32630 1172 2534 368 83.2 94.1 88.3 74.6 81.4 77.9 31.6 76.1 44.7 7.3 5.9
W 105525 99348 15992 87428 171215 87859 503 2698 1037 51.5 86.8 64.7 33.8 49.9 40.3 15.7 32.7 21.2 31.3 13.2
PU 118055 20454 3462 151184 41095 24103 1097 1383 443 85.2 97.2 90.8 78.6 86.2 82.3 44.2 71.2 54.6 6.4 2.8
PW 119672 49608 1845 132194 90856 43093 844 1406 696 70.7 98.5 82.3 59.3 75.4 66.4 37.5 54.8 44.5 15.6 1.5
UW 116259 27369 5258 142003 55395 33284 1101 2088 439 80.9 95.7 87.7 71.9 81.0 76.2 34.5 71.5 46.6 8.6 4.3
PUW 119106 22391 2411 151739 43528 23548 1085 1249 455 84.2 98.0 90.6 77.7 86.6 81.9 46.5 70.5 56.0 7.1 2.0
RM 11720 31134 11867 4537 48107 28840 515 6351 809 27.3 49.7 35.3 8.6 13.6 10.5 7.5 38.9 12.6 49.9 50.3
LM 113141 14188 8376 148114 32985 27173 1017 1008 523 88.9 93.1 90.9 81.8 84.5 83.1 50.2 66.0 57.1 4.5 6.9

L
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ut
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P 837 393 29 802 698 334 145 132 97 68.0 96.7 79.9 53.5 70.6 60.8 52.3 59.9 55.9 18.5 3.3
U 852 248 14 900 470 236 174 79 68 77.5 98.4 86.7 65.7 79.2 71.8 68.8 71.9 70.3 11.7 1.6
W 768 682 98 551 1169 585 84 186 158 53.0 88.7 66.3 32.0 48.5 38.6 31.1 34.7 32.8 32.1 11.3
PU 855 208 11 945 388 191 183 69 59 80.4 98.7 88.6 70.9 83.2 76.5 72.6 75.6 74.1 9.8 1.3
PW 854 419 12 817 726 319 141 118 101 67.1 98.6 79.9 52.9 71.9 61.0 54.4 58.3 56.3 19.7 1.4
UW 857 235 9 900 462 236 175 77 67 78.5 99.0 87.5 66.1 79.2 72.1 69.4 72.3 70.9 11.1 1.0
PUW 861 215 5 957 389 179 180 71 62 80.0 99.4 88.7 71.1 84.2 77.1 71.7 74.4 73.0 10.1 0.6
LM 814 102 52 941 245 195 184 50 58 88.9 94.0 91.4 79.3 82.8 81.1 78.6 76.0 77.3 4.8 6.0

Table B.3: The performance for the larger child-directed speech corpus (see Appendix A for a description of the corpus). The detailed
performance measures for all possible combinations of the models described in Chapters 6, 7 and 8 and two reference models described in
Chapter 5. The first block reports the performance or error measures for the complete corpus, and the second block of reports the results for
the last 270 utterances. The measures are described in Chapter 5.
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