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Abstract

This study investigates the use of syllables
and phone(me)s in computational models
of segmentation in early language acqui-
sition. We present results of experiments
with both syllables and phonemes as the
basic unit using a standard state-of-the-
art segmentation model. We evaluate the
model output based on both word- and
morpheme-segmented gold standards on
child-directed speech corpora from two ty-
pologically different languages. Our re-
sults do not indicate a clear advantage for
one unit or the other. We argue that the
computational advantage for the syllable
suggested in earlier research may be an ar-
tifact of the particular language and/or seg-
mentation strategy used in these studies.

1 Introduction

Segmentation is a prevalent problem in language
processing. We process linguistic input as a com-
bination of linguistic units such as words. How-
ever, spoken language does not include reliable
cues to word boundaries that are found in many
writing systems. The hearer needs to extract
words, or lexical units, from a continuous stream
of sounds using the information available in the in-
put signal as well as his/her/its (implicit) linguis-
tic knowledge. This makes segmentation a partic-
ularly challenging task for the early learners, since
they need to discover the lexical units in the input
without a lexicon and without much insight into
the workings of the input language. The question
of how early learners may accomplish this task has
been an active area of research.

The problem have been studied extensively,
through both psycholinguistic experiments and
computational modeling. Experimental studies are
mainly focused on particular cues that could help

adults or children to solve the segmentation prob-
lem. Just to name a few, these cues include pre-
dictability statistics (Saffran, Aslin, and Newport,
1996), lexical stress (Cutler and Butterfield, 1992;
Jusczyk, Houston, and Newsome, 1999), phono-
tactics (Jusczyk, Cutler, and Redanz, 1993), al-
lophonic differences (Jusczyk, Hohne, and Bau-
man, 1999), vowel harmony (Kampen et al., 2008;
Suomi, McQueen, and Cutler, 1997) and coartic-
ulation (E. K. Johnson and Jusczyk, 2001). Com-
putational models offer a complementary method
to the psycholinguistic experiments. There have
been an increasing number of computational mod-
els of segmentation in the literature, particularly
within the last two decades (just to exemplify a
few, Elman, 1990, Aslin, 1993, Cairns et al.,
1994, Christiansen, Allen, and Seidenberg, 1998,
Fleck, 2008, Brent and Cartwright, 1996, Brent,
1999, Venkataraman, 2001, Xanthos, 2004, Gold-
water, Griffiths, and M. Johnson, 2009, M. John-
son and Goldwater, 2009, Monaghan and Chris-
tiansen, 2010, Çöltekin and Nerbonne, 2014).

In this paper, we investigate a recurring issue
in the segmentation literature: the use of syllable
or phoneme as the basic input unit in computa-
tional models of segmentation.1 Most psycholin-
guistic research is based on syllable as the basic
unit. The likely reason behind this choice is the
early research pointing to syllable as a salient per-
ceptual unit for adults (Cutler, Mehler, et al., 1986;
Mehler et al., 1981; Savin and Bever, 1970), and
infants (Eimas, 1999). However, these findings do
not necessarily mean that infants are not sensitive
to, and do not use, sub-syllabic units in speech seg-
mentation. Although it is known that infants do
not form adult-like phonetic categories until late

1Since the corpora used in majority of the computational
studies of segmentation lack phonetic variation, the input unit
in these models are effectively phonemes. We acknowledge
that the input to the children exhibit phonetic variation, but
this is not directly relevant to our results since the same applies
to both units we compare.



in the first year in life (Kuhl, 2004), they are sen-
sitive to sub-syllabic changes in the input (Jusczyk
and Derrah, 1987; Werker and Tees, 1984). Be-
sides potential constraints due to young age, a log-
ical reason for early learners not to have adult-like
phonetic categories is the fact that learning these
categories is largely mediated by their use in dis-
tinguishing lexical units from each other. For the
purposes of segmentation, what really matters is
not that infants are capable of classifying relevant
phonetic segments into adult-like categories, but
being able to detect the differences (and similar-
ities) between such segments. Furthermore, it is
also unrealistic to expect infants, who did not form
phonetic categories, to perceive syllables categori-
cally. Hence, whether the syllable or the phoneme
is an earlier or better perceptual unit is still open to
debate, and reality seems to be more complex than
choosing one over the other (Dumay and Content,
2012; Foss and Swinney, 1973; Healy and Cutting,
1976; Morais and Kolinsky, 1994; Pallier, 1997).

A few exceptions aside (Gambell and Yang,
2006; Lignos and Yang, 2010; Phillips and Pearl,
2014; Swingley, 2005), most of the computational
models in the literature take phonetic segments as
the basic unit. For some of the models, the sylla-
ble is a natural choice as the basic unit because they
are based on information associated with syllables
rather than sub-syllabic units. For example both
lexical stress (Gambell and Yang, 2006; Swingley,
2005), and vowel harmony (Ketrez, 2013) operates
at the level of syllable. Even when such informa-
tion, e.g., lexical stress, is used in phoneme-based
models (e.g., by Christiansen, Allen, and Seiden-
berg, 1998, Çöltekin, 2011), the lexical stress is
marked on all phonemes that span the stressed syl-
lables, effectively informing the model about the
syllable boundaries. For other models, the choice
of basic unit does not alter the computations in-
volved. However, the performance of the model
may be affected by the choice of the basic unit.

Assuming syllables are the basic units, and eval-
uating the models based on gold-standard segmen-
tation of words eases the learning task in general.
However, syllabification of the input is not neces-
sarily straightforward. In fluent speech, words are
not uttered in isolation, hence, perceived syllables
are likely to straddle lexical unit boundaries. For
example the utterance [ɡɛt ɪt] will be syllabified
as [ɡɛt.ɪt] if the word boundaries are given. How-
ever, the likely syllabification will be [ɡɛ.tɪt] when

we do not assume word boundaries. Another prob-
lem with assuming that the syllable is an indivis-
ible unit for lexical segmentation comes from the
fact that some morphemes that learners eventually
learn to extract out of continuous speech and use
it productively are sub-syllabic. Hence, not only
that the syllable is not the only unit of perception
in early language acquisition, but it is also not nec-
essarily the best basic unit for segmenting natural
speech since some lexical unit boundaries may be
syllable-internal.

This study contrasts the use of phoneme and syl-
lable as the basic units in speech segmentation. To
this end, we use a simple state-of-the-art segmenta-
tion model, and run a set of simulations on two ty-
pologically different languages, English and Turk-
ish. We evaluate the results based on word- and
morpheme-segmented gold standards.

The next section describes the model and the
data used in this study, Section 3 presents results
from a series of computational simulations, we dis-
cuss the results in Section 4 and conclude in Sec-
tion 5.

2 Method and the data
2.1 Data
For the experiments reported in this paper, we use
corpora of child-directed speech from English and
Turkish. Both corpora used parts of the CHILDES
(MacWhinney and Snow, 1985).

For English, we use the de facto standard cor-
pus collected by Bernstein Ratner (1987) and pro-
cessed by Brent (1999). The age range of children
in our English data (the BR corpus) is between
0;6 and 0;11.29. Unlike earlier studies, we do
not make use of phonemic transcriptions by Brent
(1999) in our main experiments. Instead, we con-
vert the orthographic transcriptions to transcrip-
tions based on Carnegie Mellon University pro-
nouncing dictionary (version 7b, Carnegie Mellon
University, 2014). The main motivation for using
an alternative (but more conventional) transcrip-
tion has been to be able to apply the standard syl-
labification methods. The new transcription also
avoids some of the arbitrary choices in phonemic
transcriptions of Brent (1999).

Turkish child-directed corpus was formed by
taking all child-directed utterances from the Aksu
corpus (Slobin, 1982). The Aksu corpus contains
53 files (one for each recording session) with 33
target children between ages 2;0–4;4. Although



English Turkish

Utterances 9 790 10 767
MLU (word) 3.41 3.42
MLU (morph) 3.89 5.82
MLU (syl.) 4.00 7.45
MLU (phon.) 10.81 17.44

Word tokens 33 377 36 789
Word types 1 380 4 808
Word TTR 0.041 35 0.130 69

Morph tokens 38 081 62 612
Morph types 1 024 1 802
Morph TTR 0.026 89 0.037 89

Syllable tokens 39 150 80 178
Syllable types 1 165 1 044
Syllable TTR 0.029 76 0.013 02

Phone tokens 105 801 187 738
Phone types 37 29
Phone TTR 0.000 35 0.000 16

Table 1: General statistics about the corpora
used. Besides type and token counts of each unit,
type/token ratio (TTR) and mean length utterance
(MLU) measured in different units are given.
Note: the number of utterances was mistakenly re-
ported as 10 206 in the version printed in the pro-
ceedings. The number of utterances, and the other
numbers affected from this change has been cor-
rected in this table.

the age range is not similar to the BR corpus, this
corpus is currently the best option available for
Turkish. We order the files by the age of the target
child, and take all child-directed utterances. Sim-
ilar to Brent (1999), onomatopoeia, interjections
and disfluencies are removed. Turkish corpus was
not converted to a phonetic/phonemic transcription
as Turkish orthography follows the standard pro-
nunciation rather closely (this practice is common
in the literature, e.g., Göksel and Kerslake, 2005;
Ketrez, 2013).

Table 1 presents some basic statistics about the
corpora used. Although our corpora are similar in
number of utterances, there are important differ-
ences due to differences between languages, and
potentially due to the age of the target children.

2.1.1 Gold-standard syllabification and
morpheme segmentation

Both corpora are syllabified and marked for mor-
pheme boundaries for some of the experiments
reported below. Most of the earlier studies rely
on dictionaries or human judgments in syllabifi-

cation of English. Since we do not only syllab-
ify words, but also utterances, we do not use a
dictionary-based method. For English, we use a
freely available syllabification software that im-
plements a few additional sub-regularities over
the maximum-onset principle. English morpheme
segmentation is done manually (Gorman, 2013).
The morpheme boundaries are determined for each
word type, and the same morpheme segmentation
is used for all tokens of the same word. For syllab-
ification and morpheme segmentation of Turkish,
we use another set of freely available tools (Çöl-
tekin, 2010, 2014).

Some statistics regarding morpheme-segmented
and syllabified corpora are given in Table 1. Ad-
ditionally, we note that the ratios of multi-syllabic
word tokens are 16% and 56% in our English and
Turkish input, respectively.

2.2 Evaluation

As with other models of language acquisition,
evaluating models of segmentation is non-trivial.
Not only we do not know our target, the early child
lexicon, well, but it is also likely to differ substan-
tially based on age, language and even the individ-
ual child. Furthermore, the linguistic units used
by linguists may not necessarily match the units
in a typical human lexicon. For the lack of a bet-
ter method, we evaluate our model based on gold-
standard word and morpheme segmentations. We
acknowledge that early learners’ lexicon is likely to
contain multi-word units. To avoid arbitrary and
corpus dependent decisions, however, we do not
quantitatively evaluate the model’s output based on
a selection of multi-word expressions.

As in earlier studies, we report three types of F1-
scores (or F-scores). Boundary F-score (BF), mea-
sures the success of the model in finding bound-
aries. Word, or token, F-score requires both
boundaries of a word to be found. Hence, discov-
ering only one of the boundaries of a word does not
indicate success for this measure. Lexicon, or type,
F-score similar to token scores, however, the com-
parisons are done over the word types the model
proposed and word types in the gold standard. F-
score is the harmonic mean of precision and recall,
and these three types of F-scores (also precision
and recall) have conventional measures of success
reported in the field (see e.g., Goldwater, Griffiths,
and M. Johnson, 2009, for precise defintions).

Besides F-scores, we present oversegmentation



(EO) and undersegmentation (EU) rates with the
following definitions.

EO =
FP

FP + TN
EU =

FN
FN + TP

where TP, FP, FN and TN stands for true pos-
itive, false positives, false negatives and true
negatives, respectively. The error rates defined
above are related to boundary precision and
recall. Especially, the undersegmentation rate
is equal to 1 − recall. The difference between
the information conveyed by EO and boundary
precision is more subtle. Unlike precision which
measures the rate of the correct decisions over
all boundary decisions made by the model, EO
ranges over the word-internal positions in the
gold-standard segmentation. For example, if
the model admits one correct and one incorrect
boundary, the precision will be 0.5. However,
the EO depends on the number of word-internal
positions in the gold standard. The smaller the
number of potential false positives, the higher the
EO will be for the same number oversegmentation
errors. As a result, the error measures defined
above give a more direct indication of how much
room is left for improvement.

Similar to the earlier literature, we do not split
our data as test and training set since we are using
an unsupervised learning method.

2.3 The segmentation model
For the experiments reported below, we implement
and use a well-known segmentation model.2 The
model assigns probabilities to possible segmenta-
tions as described in Equations 1 and 2.

P(s) =

n∏
i=1

P(wi) (1)

P(w) =

{
(1− α)f(w) if w is known
α
∏m

j=1 f(aj) if w is unknown
(2)

where s is a sequence of phonemes (e.g., an ut-
terance or a corpus), wi is the ith word in the se-
quence, aj is the jth basic unit in the word, f(wi)
and f(aj) are the relative frequencies of word wi

or basic unit ai respectively, n is the number of
2The source code of the implementation, the data files and

utilities used in preprocessing the data are publicly available
at http://doi.org/10.5281/zenodo.27433.

model BF WF LF

Brent, 1999 82.3 68.2 52.4
Venkataraman, 2001 82.1 68.3 55.7
Goldwater, Griffiths, and M. Johnson (2009) 85.2 72.3 59.1
Blanchard, Heinz, and Golinkoff (2010) 81.9 66.1 56.3

Current model (incremental) 83.4 71.6 55.3
Current model (final) 86.6 76.3 70.7

Table 2: Performance scores of the present model
in comparison to some of the models in the litera-
ture that are tested on the BR corpus.
words in the utterance, m is the length of the word
in input units, and 0 ≤ α ≤ 1 is the only pa-
rameter of the model. The parameter α can be
interpreted as the probability of admitting novel
lexical items, and it also affects how eager or the
conservative the model is in inserting boundaries.
In the simulations reported in this paper, we fix α

at 0.5, and adopt an incremental learning method
where learner processes the input utterance by ut-
terance. Each utterance is segmented using the
current model parameters (phoneme and word fre-
quencies), and parameters are updated based on the
segmented utterance before proceeding to the next.

One way to view this model is as an instance
of minimum description length (MDL) principle
(Rissanen, 1978). (Creutz and Lagus, 2007; Gold-
smith, 2001; Marcken, 1996; Rissanen, 1978).
Equation 1 imposes a preference for short utter-
ances (in number of words). Assuming each word
is represented by an index or pointer in the lexi-
con, this leads to a preference towards a represen-
tation that minimizes the corpus length. Let alone,
this preference would result in no segmentation,
and corpus size would be equal to the number of
utterance types. Despite small corpus representa-
tion, this would lead to a large lexicon containing
all the utterance types. The second part of Equa-
tion 2, on the other hand, imposes a preference
for short words and, since shorter strings result in
fewer word types, a shorter lexicon. In its limit-
ing case, this preference would result in a lexicon
containing the basic units. Resulting in a large cor-
pus representation despite a very small lexicon. As
a result, learning for this model is about finding
a compromise (hopefully the best) between these
two extremes.

The model as described above can also be seen
as a generative model. At each step, the model ei-
ther decides to produce a novel word with prob-
ability α, or pick a word from the lexicon with
probability 1 − α. The probability of words from
the lexicon is proportional to their empirical prob-

http://doi.org/10.5281/zenodo.27433


ability (relative frequency with which they are ob-
served). If the model decides to generate a novel
word, it produces a series of basic units. Choice of
basic units is, again, proportional to their probabil-
ity of occurrence (for completeness, one needs to
either introduce a special end-of-word unit which
terminates the sequence) With this description, the
model is similar to the model suggested by Brent
(1999), Venkataraman (2001, although he does not
formulate his model as a generative model), and
the unigram model of Goldwater, Griffiths, and M.
Johnson (2009).

For simplicity, we use a fixed α and we do not
consider word context (e.g., word bigrams). De-
spite these simplifications, the performance of the
present model is competitive with the state-of-the-
art models in the literature. To enable a rough
comparison, we provide the performance scores
of some of the similar models evaluated on the
same corpus, together with result obtained using
the present model in Table 2. Unlike the rest of
the experiments reported in this paper, to increase
the comparability of the results with the earlier lit-
erature, the result presented here are obtained us-
ing the phonemic transcription of the original BR
corpus (the version transcribed by Brent, 1999).
The row marked ‘incremental’ reflects the scores
obtained by evaluating the segmentations on the
whole corpus during a single pass. Although it
is the common method of evaluating the incre-
mental models in the literature, this leads to an
unfair disadvantage when the model is compared
with a batch model which would have already
made many passes over the complete corpus at the
time of evaluation. The row marked ‘final’ in Ta-
ble 2 reports the final evaluation metrics obtained
while they were calculated for each 1 000-utterance
block. Hence, the ‘final’ results are obtained from
a more ‘learned state’ of the model, providing a
better comparison with batch models. In the rest of
this paper, we present only the ‘incremental’ ver-
sion of the performance score.

Although the results in Table 2 indicate that the
model is comparable to (and better than on some
counts) the state of the art, we note that our aim in
this work is not to introduce another segmentation
model, but compare two basic units using a model
that shares many features with the earlier state-of-
the-art models.

BF WF LF EO EU

En (words) 89.1 77.6 55.1 3.2 0.0
En (uttr.) 71.9 56.7 42.4 5.8 19.3
Tr (words) 54.5 17.4 5.8 25.8 0.0
Tr (uttr.) 48.6 16.0 3.4 27.5 11.0

Table 3: Scores of ‘syllable as word’ baseline.
3 Experiments and results

3.1 ‘Syllable as word’ baseline
For languages like (child-directed) English where
most words are mono-syllabic, a potentially de-
ceiving aspect of using syllable as the basic unit
for segmentation is that the learner may learn sin-
gle input units, syllables, as words. Hence, an
interesting baseline can be obtained by segment-
ing at every syllable boundary. We segment both
corpora trivially at syllable boundaries, and evalu-
ate against the gold-standard word segmentation of
these corpora. To approximate a possible syllabi-
fication when word boundaries are not given, we
also preset results where syllabification algorithm
is applied without marking the word boundaries.
The evaluation results for both languages are pre-
sented in Table 3.

Not surprisingly, when syllabification is done
at word boundaries, the model recovers all word
boundaries, hence EU is 0 for both languages. The
oversegmentation errors in this setting is the up-
per bound for EO when syllables are used as the
basic unit. The F-scores of the syllable baseline
on the BR corpus, where the words are predomi-
nantly monosyllabic, is similar to the state-of-the-
art models presented in Table 2, while the numbers
are substantially lower for Turkish.

To contrast with this ‘syllable as word’ base-
line, it is also instructive to consider a ‘phoneme
as word’ strategy. If one would segment at ev-
ery phoneme, the error rates go up to 62.1% and
89.7% for English and Turkish respectively. This
results in 0.4% and 0.04% lexical F-scores for En-
glish and Turkish. Clearly, the models consider-
ing syllable as the basic unit starts with a great ad-
vantage for English. While helpful, the results for
Turkish is far from what we observe for English.

As expected, when syllabification is done with-
out word boundaries, error rates increase for both
languages. Undersegmentations are caused by syl-
lables straddling the word boundaries, and over-
segmentations increase because of increased num-
ber of word-internal syllable boundaries. How-
ever, the effect is not as drastic as the differences



BF WF LF EO EU

En (phon) 80.9 68.2 51.0 5.7 20.3
En (syl/w) 48.5 29.4 23.5 0.01 67.9
En (syl/u) 55.5 36.1 25.0 0.2 61.3

Tr (phon) 65.7 42.1 29.0 9.4 24.3
Tr (syl/w) 69.8 50.7 39.1 2.6 38.5
Tr (syl/u) 68.5 49.6 38.2 2.8 39.3

Table 4: Segmentation scores using phonemes and
syllables.
between the two languages in the same setting.

3.2 Syllables vs. phonemes
Table 4 presents segmentation performance of
models that use phonemes or syllables as basic in-
put units. We present results for syllabification
with and without restricting syllable boundaries at
word boundaries. We first note that the phonemic
transcription we use seems to be harder to seg-
ment than the transcription by Brent (1999). The
F-scores presented on the first row of Table 4 are all
lower than the corresponding F-scores in Table 2.

For English, we observe an overall decrease in
performance scores when the basic units are syl-
lables. Despite the fact that model makes very
few oversegmentation errors, the undersegmenta-
tion rate is even worse than a process that inserts
boundaries at random. Given the overall conserva-
tive segmentation tendency of the model, this is not
surprising. Surprisingly, however, when the syl-
labification is done based on whole utterances, the
model seems to perform better. The decrease in
EU seems to result in an improvement in all con-
ventional F-scores.

The phoneme-based segmentation scores for
Turkish is lower than English. This is in-line
with earlier studies that compared English with
other languages. As in English, the EO decreases,
and the EU increases when syllables (rather than
phonemes) are used as the basic units. However,
unlike English, the effect of this is positive on all
F-score measures. The surprising positive effect
of syllabification of full utterances does not persist
on the Turkish corpus. The utterance-based syllab-
ification causes an increase on both EU and EO,
resulting in a slight drop in all F-scores.

Although the overall performance/error scores
presented are informative, the pattern of learn-
ing for the model is also important. To show
how learning proceeds for both models, we plot
over- and under-segmentation rates progressively
for both languages, both for phoneme and syllable

as basic units in Figure 1. As the description of the
model in Section 2.3 indicate, all models start with
a preference of undersegmentation. In the process,
the EO increases, and EU decreases. In general,
the models learn quickly. After a short initial pe-
riod of the increase in EO and decrease in EU, the
changes are rather small.

With syllables, the decrease in EU is very small,
particularly for English. We observe a quicker
drop of errors for phoneme-based models in gen-
eral, and the expected trend of higher EU lower
EO of the syllable-based model in comparison to
phoneme based models holds in all settings. With
respect to the differences between the languages,
the undersegmentation curves for phoneme-based
models are very similar, leading to similar error
rates at the end of the learning. However, for Turk-
ish we observe a higher rate of oversegmentation
errors. The peak in EO for the phoneme-based seg-
mentation just before the 1 000th utterance for En-
glish seems to be due to the particular ordering of
the BR corpus. Multiple experiments with shuf-
fling the sentences produce similar curves without
abrupt changes.

3.3 Words vs. morphemes
Next, we use the same input described in Sec-
tion 3.2, but evaluate on the morpheme-segmented
gold standard corpora. The scores are presented in
Table 5. Compared to the scores based on word
segmentation in Table 4, we observe a slight in-
crease in the performance scores in segmenting the
BR corpus, since fewer of the model’s segmen-
tations are now marked as oversegmentation er-
rors. The undersegmentation, on the other hand,
increases slightly. The positive effect of reduced
oversegmentation errors are more pronounced for
Turkish. However, segmentation performance for
Turkish with phonemes as the basic unit is still
much lower than English. For both languages, the
performance with syllables as basic unit is lower
when tested against morpheme-segmented gold
standard. Most of the morphemes being formed
by sub-syllabic units, this is the expected result for
English. However, syllabification does not help the
model to find morphemes for Turkish either.

4 General discussion

Our main motivation in this study has been to
gain further insight into usefulness of syllables or
phonemes as the basic input units. We presented
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Figure 1: Oversegmentation (left) and undersegmentation (right) rate plotted incrementally during learn-
ing. Note that the y-axis ranges are not the same.

BF WF LF EO EU

En (phon) 82.7 70.5 51.3 2.6 25.2
En (syl/w) 47.7 24.1 20.8 0.1 68.6
En (syl/u) 54.6 30.4 22.5 0.1 62.4

Tr (phon) 68.4 44.1 33.6 3.6 43.4
Tr (syl/w) 55.3 25.4 21.9 0.6 61.2
Tr (syl/u) 56.1 27.4 23.3 0.7 60.3

Table 5: Segmentation scores using phonemes
and syllables with morph-segmentation as gold-
standard segmentation.
results from experiments from two typologically
different languages and two different settings for
the gold-standard, one considering written words
as the lexical units as in earlier studies, and the
other with morphemes as lexical units.

Unlike earlier studies (e.g., Gambell and Yang,
2006; Phillips and Pearl, 2014), our results do
not suggest a direct indication of the usefulness
of the syllable (or the phoneme) as the basic in-
put representation for segmentation. The syllable-
based model performs worse than phoneme-based
model on English, while it improves the segmen-
tation performance on our Turkish corpus. For
both languages, the invariant trend is that syllable-
based models make fewer oversegmentation mis-
takes with the cost of higher undersegmentation
rate. For English, where the words are rather short,
the undersegmentation is severe, and syllable-
based segmentation causes F-scores to drop drasti-
cally. For Turkish, since the average word length is

much larger (see Table 1), the undersegmentation
is less severe, and we see increase in the F-scores
for segmentation.

The low oversegmentation is expected from the
syllable-based models, simply because the models
are restricted to insert boundaries in fewer loca-
tions. As the ‘syllable as word’ baseline results
presented in Table 3 suggests, most of these loca-
tions are true word boundaries. If we allow a more
eager segmentation strategy (through a different
model, or different parameter settings), syllable-
based models are expected to yield good segmenta-
tion scores for English. The success of the most ea-
ger segmentation strategy ‘syllable as word’ base-
line is a clear example of this case. If such an
eager strategy is constrained in the right direc-
tion, it is not surprising that one can get really
good segmentation performance from a syllable-
based segmentation model. This, probably, is also
the reason for high segmentation scores of stress-
based segmentation strategy presented by Gam-
bell and Yang (2006). Since their model is re-
stricted to insert word boundaries only at sylla-
ble boundaries and include some linguistically-
informed constraints, the high segmentation F-
socre is expected as the ‘syllable as word’ baseline
already achieves a boundary F-score of 89% (Ta-
ble 3).

Besides the fact that syllables constrain the loca-
tions that one can insert boundaries, the success of
syllable-based models are also related to some of



the fine details of the model definition. As an ex-
ample, consider the boundary decision involving a
known word w consisting of basic units a1 . . . ak,
and an adjacent unknown string s. With the model
defined in Equations 1 and 2, the decision to insert
a boundary between w and s in string ws (or sw)
requires

(1− α)P(w)αP(s) > αP(a1) . . . P(ak)P(s)

(1− α)P(w) > P(a1) . . . P(ak)

In this setting, the probability of inserting a bound-
ary decreases with the length of the known word.
Since syllables reduce the lengths of lexical units,
the model becomes more conservative.3 This par-
tially explains the low scores we obtain using syl-
lable as the basic unit. A potential reason for the
model to segment more eagerly (hence better) is
high lexical word probabilities. Probably, this is
part of the explanation for the better segmentation
performance reported by Phillips and Pearl (2014)
for syllable-based models only with bigram word
probabilities. The probabilities of (real) words
conditioned on the previous word will be higher
if the words tend to cooccur. Hence, the model
tends to segment more eagerly around the frequent
bigrams, counteracting the conservative segmen-
tation tendency introduced by using syllable as the
basic unit.

Unlike our results on English, syllable-based
model improves word segmentation of Turkish.
Contrary to our expectations, however, the scores
go down when evaluated on morpheme-segmented
gold standard. There are at least three reasons
for expecting the results to be even better with
the syllable-based models when evaluated on the
morpheme-based gold standard. First, on av-
erage, Turkish words are formed by longer se-
quences of morphemes. Second, Turkish mor-
phemes are syllabic, our Turkish corpora does not
contain any morpheme boundaries that are not syl-
lable boundaries. Third, similar to the English
function words, frequent affixes are more frequent
than frequent roots/stems. Hence they should be
more likely to be picked as lexical units. How-
ever, for both languages, syllable based model per-
forms worse when evaluated against morpheme-
based gold standard. Looking closer to the errors

3Also note the model’s unintuitive preference for low-
probability basic unit sequences as known lexical units. If
word length is fixed, right side of the inequality will be higher
if the probabilities of the basic units forming the word are
higher.

suggests that the syllable-based models exhibit a
similar behavior on morpheme-based gold stan-
dard as the English syllable-based model evaluated
on word-based gold standard. The model is pre-
cise, but misses many of the boundaries.

Besides missing the morphemes that may be
formed by sub-syllabic sequences, another po-
tential problem with the syllable-based mod-
els when evaluated against morpheme segmented
gold-standard is that the syllables perceived from
fluent speech may straddle word boundaries. As a
result, we expect worse segmentation scores if the
syllabification does not consider word boundaries
as absolute syllable boundaries. However, the re-
sults are surprising for English, at least. It seems
syllabification of complete utterances causes a
decrease in undersegmentation errors. Despite
a small increase in oversegmentation errors, the
overall effect of this on the F-scores reported in
Table 4 is positive. The reason for this seems to
be the change in the syllable distribution resulting
in smaller syllable probabilities on average, and
hence, more eager segmentation. In general, it
seems both problems mentioned above regarding
syllable-based models do not cause serious diffi-
culties. However, in general, we did not find a clear
computational benefit of one unit or the other as the
basic unit for both languages.

5 Conclusions

In this paper, we compared the effects of syllables
or phonemes as the basic unit for segmentation us-
ing child-directed speech corpora from two typo-
logically different languages. The simulations re-
ported in this paper do not favor one unit over an-
other. In different settings, the success of models
based on syllables or phonemes seems to differ.
A reasonable explanation for these differences is
the relative lengths of lexical and basic units, and
their distributions. In other words, the differences
observed are likely to be an artifact of the model-
ing practice. This is not necessarily a disadvan-
tage if the model in question matches the way hu-
mans perform the task. Otherwise, the conclusions
that may be drawn from these models regarding
whether syllable or phoneme is a better choice as
the basic unit for early segmentation may be mis-
leading.

In this paper, we investigated the behavior of
a single family of models. It would be interest-
ing to observe the difference between syllables and



phonemes in other modeling approaches, such as
the ones that use local cues, possibly using more
distributed representations for the basic units. Al-
though our aim here was to contrast these two po-
tential basic units, it is likely that humans make use
of multiple units at different levels. Hence, another
interesting question for the future work is whether
these units play complementary roles in segmenta-
tion.
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