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Çağrı Çöltekin♠ Taraka Rama♥ Verena Blaschke♠
♠Department of Linguistics, University of Tübingen, Germany
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Abstract

This paper describes our systems for the VarDial 2018 evaluation campaign. We participated
in all language identification tasks, namely, Arabic dialect identification (ADI), German dialect
identification (GDI), Discriminating between Dutch and Flemish in Subtitles (DFS), and Indo-
Aryan Language Identification (ILI). In all of the tasks, we only used textual transcripts (not using
audio features for ADI). We submitted system runs based on support vector machine classifiers
(SVMs) with bag of character and word n-grams as features, and gated bidirectional recurrent
neural networks (RNNs) using units of characters and words. Our SVM models outperformed
our RNN models in all tasks, obtaining the first place on the DFS task, third place on the ADI
task, and second place on others according to the official rankings. As well as describing the
models we used in the shared task participation, we present an analysis of the n-gram features
used by the SVM models in each task, and also report additional results (that were run after the
official competition deadline) on the GDI surprise dialect track.

1 Introduction

Identifying the language of a text or speech is an important step for many (multi-lingual) natural lan-
guage processing applications. At least for written text, the language identification is a ‘mostly-solved’
problem. High accuracy values can be obtained with relatively simple machine learning models. One
challenging issue, however, is identifying closely related languages or dialects, which is an interesting
research question as well as being relevant to practical NLP applications. The series of VarDial eval-
uation campaigns (Malmasi et al., 2016; Zampieri et al., 2017; Zampieri et al., 2018) included tasks
of identifying closely related languages and dialects from written or spoken language data. This pa-
per is a description of our efforts in the VarDial 2018 shared task, which featured four dialect/language
identification tasks, as well as one morphosyntactic tagging task. We only participated in the language
identification tasks.

The aim of the ADI task, which was also part of the earlier two VarDial evaluation campaigns, is to
recognize the five varieties of Arabic (Egyptian, Gulf, Levantine, North-African, and Modern Standard
Arabic) from spoken language samples. The task provides transcribed text as well as pre-extracted audio
features and raw audio recordings. The DFS task, introduced this year, is on discriminating Dutch and
Flemish subtitles. The GDI is another task that was present in earlier VarDial shared tasks, where the
aim is to identify four Swiss German Dialects (Basel, Bern, Lucerne, Zurich). This year’s edition also
included a surprise dialect. Finally, the ILI task, another newcomer, is about identifying five closely
related Indo-Aryan languages (Hindi, Braj Bhasha, Awadhi, Bhojpuri, and Magah).

A simple approach to language/dialect identification is to treat it as a text (or document) classification
task. Two well-known methods for solving this task are linear classifiers with bag-of-n-gram represen-
tations, and, recently popularized, recurrent neural networks. As in our participation at earlier VarDial
evaluation campaigns (Çöltekin and Rama, 2016; Çöltekin and Rama, 2017), we experiment with both
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the methods. Although our main participation is based on the SVM models, we also report the perfor-
mance of the RNN models for comparison, and provide further analyses regarding the feature sets used
in the SVM models.

We outline our approach in the next section, describing the models used briefly and explaining the
strategies we used for the GDI surprise dialect track. Section 3 introduces the data, explains the experi-
mental procedure used, and presents the analyses and results from the experiments run during and after
the shared task. After a general discussion in Section 4, Section 5 concludes with pointers to potential
future improvements.

2 Approach

2.1 SVMs with bag-of-n-gram features
Our SVM model is practically the same as the one used in Çöltekin and Rama (2016) and Çöltekin and
Rama (2017), which in turn was similar to Zampieri et al. (2014). Similar to last year’s participation,
we used a combination of character and word n-grams as features.1 All features are concatenated as
a single feature vector per text instance and weighted by sub-linear tf-idf scaling. For the multi-class
classification tasks (all except the DFS task which is binary), we used one-vs-rest SVM classifiers. All
SVM models were implemented with scikit-learn (Pedregosa et al., 2011) and trained and tested using
the Liblinear backend (Fan et al., 2008).

2.2 Bidirectional gated RNNs
Our neural model, for this task, again based on our previous models (Çöltekin and Rama, 2016; Çöltekin
and Rama, 2017), includes two bidirectional gated RNN components: one taking a sequence of words
as input and another taking a sequence of characters as input. The recurrent components of the network
build two representations for the text (one based on characters and the other based on words), the repre-
sentations are concatenated and passed to a fully connected softmax layer that assigns a language label
to the document based on the RNN representations. Both sequence representations are trained jointly
within a single model. We experimented with two well-known gated recurrent network variants, GRU
(Cho et al., 2014) and LSTM (Hochreiter and Schmidhuber, 1997). For both character and word inputs,
we used embedding layers before the RNN layers. Character sequences longer than 250 characters and
word sequences longer than 100 tokens are truncated. All neural network experiments were implemented
with Tensorflow (Abadi et al., 2015) using the Keras API (Chollet and others, 2015).

2.3 GDI surprise dialect
After the submission deadline, we experimented with the surprise dialect track of the GDI task, wherein
the test set contains the surprise dialect ‘XY’ in addition to the four dialects for which training and
development sets had been provided. We used the tuned SVM model for the classification of the four
known dialects, but changed its decision rule such that it allows the classifier to predict a fifth class as
well. Our initial SVM system consists of one one-versus-rest (OvR) SVM classifier per dialect in the
training data; and, the dialect predicted for a given sample is the one whose corresponding OvR classifier
yields the highest decision function value for the sample.

We experimented with this decision rule by altering it in the following ways:

• Rejected by all: When a sample is rejected (i.e. classified as ‘rest’) by all OvR classifiers, it is
predicted as XY.

• Accepted by several: When a sample is accepted by several OvR classifiers, it is predicted as XY.
• Rejected or multi-accepted: When either of the two previous rules applies, the label is predicted

as XY.
• Standard deviation: The fifth of the test set where the OvR classifiers’ decision function values

exhibit the smallest standard deviations is predicted as XY.
1‘Word’ refers to the strings produced by a simple regular-expression tokenizer that splits documents into consecutive

alphanumeric characters or consecutive non-space, non-alphanumeric characters.
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• Difference: The fifth of the test set where the differences between the two highest decision function
values are smallest is predicted as XY.

The last two rules naı̈vely assume a balanced label distribution, which is actually not the case for
the gold-standard test set. The four known dialects each constitute 21–22% of the gold-standard labels
whereas the surprise dialect only contributed 14%.

3 Experiments and results

3.1 Data

The ILI and DFS tasks are new tasks that featured for the first time, whereas ADI and GDI are tasks that
were present over the past years. The Arabic data set is based on Ali et al. (2016). This year’s shared
task data included additional audio features and access to the audio recordings. However, in this study
our focus is text classification, hence we did not use of any of the audio features, nor did we use the
transcripts created by automatic speech recognition systems. A new aspect of the current GDI data set
(Samardžić et al., 2016) was a surprise dialect that was not part of the four dialect labels that were present
in the training set. We did not try to guess the ‘unknown’ dialect for our submission, but experimented
with it afterwards. The new DFS data set (van der Lee and van den Bosch, 2017) is the largest of the
data sets and contains only two labels. Finally, the ILI data set (Kumar et al., 2018) contains written
texts from five closely-related Indo-Aryan languages. Some statistics about the data sets are presented
in Table 1. The DFS data set has a perfectly balanced label distribution, while the other data sets show
slight label imbalance. The reader is referred to the shared task description paper (Zampieri et al., 2018)
for further details.

Number of instances Text size

train dev test mean st. dev. min max

ADI 14 591 1 566 6 837 124.32 185.78 0 6 830
DFS 300 000 500 20 000 39.90 22.73 1 267
GDI 14 646 4 658 4 752 181.24 25.00 118 953
ILI 70 263 10 329 9 692 76.60 64.65 3 2 910

Table 1: The number of instances in the training (train), development (dev), and test sets followed by
the length of texts in each data set. The text-length statistics are calculated on combined training and
development sets.

We did not perform any preprocessing, except for truncating the longer documents (and padding the
shorter ones) to 250 characters and 100 tokens for the RNN models. We treated frequency cut-off and
case normalization (where it made sense) as hyperparameters.

3.2 Experimental procedure

For all results submitted, we combined the training and development sets, and tuned the hyperparameters
of the models with 5-fold cross validation. For the bag-of-n-grams models, we used an exhaustive grid
search over the range of hyperparameter settings. For the RNN models, we used random search, since
the RNN models required higher run times, and a full grid search was not feasible.2 The ranges of
parameter values used during random or grid search are listed in Table 2. The bag-of-n-gram features
always include all n-gram sizes from unigrams to the n-grams of the specified order for the systems used
in the shared participation. We use the same set of parameters for the backward and forward RNNs in our
bidirectional RNN models. The random search is run for approximately 40 different parameter settings
for each data set (task).

2As a rough indication, we note that the full grid search using SVMs (5-fold training/testing over 560 hyperparameter
configurations) on a modern multi-core CPU took approximately the same amount of time as it took for 40 random RNN
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Parameter SVM RNN

Minimum document frequency (min df) 1–5 1–5
Case normalization (lowercase) word, character,

both, none
word, character,
both, none

Maximum word n-gram size (c ngmax) 2–6 –
Maximum character n-gram size (w ngmax) 4–10 –
SVM margin (C) 0.01–1.20 –
Character embedding dimension (c embdim) – 16, 32, 64
Word embedding dimension (w embdim) – 32, 64, 128
RNN architecture (rnn) – GRU, LSTM
Char RNN hidden state dimension (c featdim) – 32, 64, 128
Word RNN hidden state dimension (w featdim) – 64, 128, 256
Dropout rate for character/word embedding/RNN layers
(c embdrop, w embdrop, c featdrop, w featdrop)

– 0.10–0.50

Table 2: The range of values used for hyper-parameter search for the SVM and the RNN models. Case
normalization only applies to the DFS data set. The last row corresponds to 4 separate parameters (used
both for forward- and backward-RNNs).

Table 3 presents the parameter settings that yielded best average macro-averaged F1 score based on
5-fold cross validation on the combined training and development sets. Although we report these values
for the purpose of reproducibility, a rather large range of values result in similar performance scores.
The distributions of F1 scores for both models are presented in Figure 1. The central tendency in box
plots presented in Figure 1 indicate that the F1 score for many parameter settings for the SVM models
are close to the top score. Hence, a large range of ‘reasonable’ hyperparameter settings yield the scores
similar to the top performing setting. The scores of the RNNs distributed more evenly (symmetrically),
since they include a smaller number of randomly selected hyperparameter configurations.

We tune the hyperparameters which interact, for instance, both decreasing C and increasing min df
may reduce overfitting. As a result, it is difficult to observe global trends of hyperparameter settings that
yields better performance in a particular task. However, in general, frequency thresholds seems to hurt
systems’ performances. The best performing hyperparameter settings used all features regardless of their
frequencies (hence, frequency thresholds are not shown in Table 3).

3.3 Shared task results

During the evaluation campaign, we submitted predictions from the SVM and RNN models described
above. In all the tasks, our SVM models were the best models among the ones for which we submitted
predictions. Table 4 presents the macro-averaged precision, recall, and F1 scores of our SVM and RNN
models, as well as the official ranks obtained by the SVM model, and a rough indication of the rank of
the RNN models assuming they were the only additional models to be included in the official rankings.
For the ADI task, we only used the manually transcribed data, not making use of automatic transcriptions
or audio features. The data presented in Table 4 also excludes the surprise dialect of the GDI task. We
present results of the experiments on the surprise dialect conducted after the end of the shared task below.
In general, our SVM system got the first rank on the DFS task, as well as ranking second or third on the
other tasks. The scores of the RNN models are always behind the score of the SVMs, and the gap is
particularly large for the ADI and ILI tasks.

The results on the test set presented in Table 4 are also drastically lower than the ones we obtained
during development for some of the tasks, particularly for GDI and ADI, and to some extent for ILI. As
presented in Table 5, the results on tests set is lower than the k-fold cross validation results on combined

hyperparameter settings on an NVIDIA Titan Xp GPU. However, we did not measure the training/tuning times of both models
precisely and systematically, and our implementations does not pay attention to computational efficiency or parallelization.
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SVM RNN

ADI DFS GDI ILI ADI DFS GDI ILI

lowercase – word – – – word – –
C 1.00 0.40 0.70 1.00 – – – –
c ngmax 9 4 6 6 – – – –
c wgmax 3 2 3 3 – – – –
c embdim – – – – 64 16 64 64
w embdim – – – – 128 128 128 32
rnn – – – – GRU LSTM LSTM GRU
c featdim – – – – 32 128 64 32
w featdim – – – – 128 256 64 256
c embdrop – – – – 0.10 0.20 0.20 0.10
w embdrop – – – – 0.50 0.50 0.10 0.20
c featdrop – – – – 0.10 0.10 0.10 0.20
w featdrop – – – – 0.50 0.50 0.50 0.50
Best epoch – – – – 17 4 10 27

Table 3: Best parameters for both SVM and RNN models tuned with 5-fold cross validation on the
combined training and development data. The abbreviations for the parameters are explained in Table 2.

50 55 60 65 70 75 80 85 90 95 100

ADI

DFS

GDI

ILI

Figure 1: Box plots showing the distribution of F1 scores obtained during the tuning process for the
SVM (blue, solid) and the RNN (dashed, red) models. The SVM scores include all hyperparameter
values listed in Table 2, while the RNN scores only include approximately 40 random choices among
indicated list of hyperparameters. Note that the RNN models have much lower number of data points
and does not necessarily include the settings within the hyperparameter ranges that result in worst or best
performance which may explain low variance in the RNN score distributions.

training and development sets with 15.97%, 18.07%, and 7.27%, for ADI, GDI, and ILI respectively,
indicating a difference in distributions of training and the test sets. To check whether the designated
development sets are closer to training or test sets, we also tuned the SVM models on the development
set, whose results are also presented in Table 5. Indeed, for most data sets, the development sets seems to
be closer to the test set. This may suggest that tuning the parameter values on the development sets rather
than using k-fold cross validation may be better for obtaining better results in the shared task, despite its
inferior performance to k-fold cross validation in an i.i.d. setting.

The differences between training/development/test distributions aside, the results on ADI and GDI
data sets are similar to the last year’s results. Our scores for these tasks are approximately 7% and 4%
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Task
SVM RNN

Precision Recall F1-score Rank Precision Recall F1-score Rank

ADI 51.44 51.69 51.26 3 (5/ 6) 46.17 44.84 44.57 7
DFS 66.01 66.01 66.00 1 (1/11) 64.19 63.61 63.24 4
GDI 64.28 64.37 63.99 2 (4/ 8) 62.13 61.76 61.62 8
ILI 91.28 90.86 90.72 2 (2/ 8) 77.96 75.21 75.29 9

Table 4: Macro-averaged Precision, Recall, and F1-score of our SVM and RNN models. The scores of
the SVM models are the official results calculated by the organizers. The scores of the RNN models
are calculated by us on the provided gold-standard test set. The ‘Rank’ column for the SVM lists the
official rank based on statistically-significant differences, followed by the absolute rank and the number
of participants for each task. The ‘Rank’ column of the RNN model is provided for a rough comparison
and lists the absolute rank that would be obtained if the model were the only additional/unlisted model
during the competition.

K-fold Dev-set Official

ADI 67.23 52.14 51.26
DFS 66.54 73.60 66.00
GDI 82.06 67.63 63.99
ILI 97.99 96.26 90.72

Table 5: The best F1-scores obtained during tuning with k-fold CV and using development set, as well
as the official score. Clearly, there is a discrepancy between the full training set (k-fold results) and the
test set for ADI and GDI. In the case of DFS, the development set seems to be closer to the training set.
For ILI, the extent of the discrepancy seems to be smaller, but also development set is not necessarily
closer to the test set than the training set.

5% below the winning systems in ADI, GDI and ILI tasks respectively. The low performance of the
system for the ADI is, however, expected since we did not make use of all the information. In general,
the ILI task seems to be relatively easy, allowing over 90% F1 score on 5-way classification task. The
DFS task, on the other hand, seems more difficult. Although the classifiers certainly does much better
than a random baseline, about 66% F1 score is hardly impressive on a binary classification task.

3.4 Contribution of n-gram features

Our SVM models combine the word and character n-grams of various sizes. To investigate the usefulness
of the individual n-gram features, we run a set of additional experiments, using only a limited set of
features at a time. The results of these experiments are shown in Figure 2. The figure present the results
of individual features (character or n-gram sizes) and combined features up to the indicated character or
word n-gram order (e.g., the performance score corresponding to ‘combined’ trigrams include unigrams
and bigrams of the indicated feature type). Across the datasets, we find that higher order features do not
improve the results. In fact, we find that the F1 scores drop rapidly when only higher-order n-grams are
used for both with character and word features.

For most data sets, performance of the systems peak for individual character ngrams of order 4 or 5,
after which usefulness of the higher order character n-grams start to degrade. It is also worth noting that
even character unigrams are useful features across all data sets. The combined character n-gram features
seem to yield slightly better scores than best-performing single n-gram order across the data sets, and
with proper tuning, the additional, relatively useless features does not seem to hurt.

The point where higher order n-grams becomes less useful is much earlier for word n-grams. Except
for the ILI task, even word bigrams are not as useful as word unigrams. However, again, combining ‘less-
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Figure 2: The macro averaged F1-scores for the SVM models using character (top) or word (bottom)
n-gram of only the indicated n-gram size (blue lines with round markers) and up to the indicated n-gram
size (red lines with triangle markers). The scores are the best macro-averaged F1 scores obtained on the
combined training and development sets using 5-fold cross validation (averaged over 5 folds). Dashed
horizontal lines indicate the expected scores of majority class baselines for each data set.

useful’ bigrams (or trigrams in case of ILI) seems to have a positive effect on the combined models. The
GDI dataset presents an exception here. As well as slight performance drop when bigrams are combined
with unigrams, higher-order word n-grams becomes less-informative, and degrades to majority baseline
very quickly.

Figure 2 also indicates that character n-grams yield slightly better scores. This is also evident in the
best F1 scores obtained by the character and word n-gram combinations presented in Table 6. We also
present the best setting that combines character and word n-grams for each dataset in Table 6. Although
the character n-grams yield better results across all data sets, combining word n-grams is useful for DFS
and GDI. Interestingly, despite the word n-grams seem least useful in the GDI task, the combination of
character and word n-ngrams bring a noteworthy gain. In the ADI and the ILI tasks, we observe small
performance loss when character and word n-grams are combined, compared to only using character
n-grams.

3.5 GDI surprise dialect

Our submitted predictions and all the results related to the GDI task presented so far are based on four
non-surprise dialects. Table 3.5 shows the performance scores of the SVM models with the different
decision rules described in Section 2.3 for predicting the surprise dialect. The first row presents the
scores for the 4-way classifier evaluated on gold-standard label set with five classes. Although all of
the results are (naturally) lower than the non-surprise 4-way classification, all strategies do substantially
better than not predicting the surprise dialect. Particularly, the ‘rejected by all’ rule yields the best macro-
averaged F1-score, and the proportion of samples it classifies as the surprise dialect is also closest to the
actual proportion of XY labels within the entire test set.
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ADI DFS GDI ILI

F1 c w F1 c w F1 c w F1 c w

Characters 67.28 7 0 65.98 6 0 81.42 8 0 98.05 7 0
Words 64.12 0 2 65.92 0 2 78.86 0 1 97.25 0 7
Characters and words 67.23 9 3 66.54 4 2 82.06 6 3 97.99 6 3

Table 6: Best macro-averaged F1 scores obtained on the combined training/development set with 5-fold
cross validation with the SVM model. The column ‘c’ indicates the maximum character n-gram size and
the column ‘w’ indicates maximum word n-gram size that yielded the corresponding score.

Decision rule
No. of samples

predicted as XY
Precision Recall F1-score

– (only four dialects) 0 44.02 51.48 47.39
Rejected by all 985 52.57 51.80 51.96
Accepted by several 413 46.80 49.36 47.74
Rejected or multi-accepted 1 398 52.91 49.62 50.51
Standard deviation 1 108 51.55 49.69 50.32
Difference 1 108 52.08 50.38 50.90

Table 7: Number of predictions for the surprise dialect ‘XY’ and macro-averaged precision, recall and
F1-score of the SVM model for different decision criteria for predicting XY. We calculated the scores on
the full gold-standard test set including the surprise dialect. The test set contains 790 XY samples out of
5542 samples total.

4 General discussion

As in earlier years, our participation in the VarDial 2018 shared task was based on two well-known
classification methods, namely linear SVMs with bag-of-n-gram features, and recurrent ANN classifiers.
Besides describing the systems, and presenting the official results, we also present a number of additional
experiments and analysis of features used in our SVM models.

A common theme in our participation to VarDial has been the comparison between SVM and RNN
classifiers. We and others have found SVMs to outperform RNNs in dialect / language identification
tasks (Çöltekin and Rama, 2016; Çöltekin and Rama, 2017; Clematide and Makarov, 2017; Medvedeva
et al., 2017), as well a few other text classification tasks (Rama and Çöltekin, 2017; Çöltekin and Rama,
2018; Malmasi and Dras, 2018). Similar to the results of the previous years, we found SVM models to
work better than RNNs across all dialect identification tasks. Although in-line with earlier findings, the
DFS task provided a possible advantage for RNNs, since the DFS data set is larger when compared to the
other data sets, and large data is often considered one of the strengths of the deep learning methods. Our
SVM model not only outperformed our RNN model, but also obtained the first place with an F1-score
difference of 1.50% above the systems sharing the second place. Although RNNs are clearly behind
SVMs also at the DFS task, the gap between RNNs and SVMs are smaller for DFS compared to ILI and
ADI. One potential explanation, indeed, is the large data size. However, the GDI task, which has one of
the smallest data sets, also exhibits a small performance difference similar to DFS task. A common trait
of both the DFS and the GDI data sets is a more balanced text-length distribution (see Table 1), which
may also be responsible for relatively better performance of the RNN models. However, more systematic
experiments are required for identifying the conditions that affect the performances of the models.

Although we tuned both models through hyperparameter search, our models, and training methods
are relatively simple. Both models can be improved in various ways. For example ensemble of n-
grams (Malmasi and Zampieri, 2017b; Malmasi and Zampieri, 2017a), or simple extensions to feature
weighting (Bestgen, 2017) are shown to improve the SVM classifiers considerably. Besides many pos-
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sible architectural improvements, performance of RNNs may be improved through data augmentation
(Clematide and Makarov, 2017). Nevertheless, with their ‘baseline’ forms our present results support the
earlier findings that in similar text classification tasks, SVMs with bag-of-n-gram features outperform
the ANN classifiers based on gated RNN architectures.

With the SVM classifiers, it has been found earlier that character n-gram features perform well in lan-
guage / dialect identification tasks (Çöltekin and Rama, 2016; Bestgen, 2017). Our best submissions in
this VarDial evaluation campaign were based on a combination of both character and word n-gram fea-
tures which is supported through our analysis presented in Section 3.4. Moreover, the analysis also shows
that depending on the task at hand, combining character n-gram features with word n-gram features may
be helpful. The analysis in this section also shows that most of the gain in classification performance
is based on rather low order features, character n-grams of order 4–5 and word uni- or bigrams seem to
contain most valuable information while the higher order n-grams do not contribute much. This trend
seems to persist with data sets with different size and properties, only with slight variation.

One of the interesting aspects of the present VarDial evaluation campaign has been the ‘surprise di-
alect’ track of the GDI task. Although we did not submit results during the shared task due to time
restrictions, we did a number of experiments with this task. Our results show that simple strategies based
on assigning test instances where one-vs-rest multi-class classifiers are uncertain to the surprise dialect
yields reasonable improvements. Particularly, assigning the test instances which were rejected by all of
the one-vs-rest classifiers seems to perform the best in the present task.

5 Conclusions and outlook

In this paper we described our participation in the VarDial 2018 shared task. Our systems based on SVMs
with bag-of-n-grams features ranked first in the DFS task, while obtaining second or third place in other
language/dialect identification tasks. We reported scores of the alternative RNN classifier, presented
analysis of usefulness of n-gram features in the SVM models, and also discussed possible strategies for
predicting the surprise dialect in the GDI task.

Our results and analysis supports the earlier results that SVMs work better than RNNs in the tasks
presented, and character (n-gram) features are seem to be most useful in SVM classifiers, while there may
be small gains using both character and word n-gram features. Although we do not have a baseline to
compare to at the time of this writing, our strategies for the surprise dialect also seem to bring reasonable
improvements compared to not predicting the surprise dialect at all.

Although our models were successful during the shared task, they are ‘baseline’ models based on our
participations in the earlier VarDial evaluation campaigns. There are a few straightforward points of
improvements that can increase the performances of both the SVM and RNN models. For SVMs, one
point of improvement is using a better feature weighting method than the sub-linear tf-idf used in this
study. Another potentially useful direction for both SVMs and RNNs is the use of ensemble methods.
This has been shown to work well with SVMs in earlier VarDial tasks. However, it is clearly not limited
to the SVMs, it can be applied to RNNs too. Furthermore, since most ensemble methods work best when
underlying classifiers are diverse, hybrid SVM-RNN ensembles are likely to perform even better. Last,
but not the least, data augmentation methods are often shown to improve performance of deep learning
methods such as RNNs. Although it is common to apply data augmentation for deep learning systems,
investigating their effects on more ‘traditional’ models such as SVMs is another interesting possibility
for improving results obtained with these models.
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