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Abstract
As in many experimental sciences, reproducibility of experiments has gained ever more attention in the NLP community. This paper
presents our reproduction efforts of an earlier study of automatic essay scoring (AES) for determining the proficiency of second language
learners in a multilingual setting. We present three sets of experiments with different objectives. First, as prescribed by the LREC 2020
REPROLANG shared task, we rerun the original AES system using the code published by the original authors on the same dataset.
Second, we repeat the same experiments on the same data with a different implementation. And third, we test the original system on a
different dataset and a different language. Most of our findings are in line with the findings of the original paper. Nevertheless, there are
some discrepancies between our results and the results presented in the original paper. We report and discuss these differences in detail.
We further go into some points related to confirmation of research findings through reproduction, including the choice of the dataset,
reporting and accounting for variability, use of appropriate evaluation metrics, and making code and data available. We also discuss
the varying uses and differences between the terms reproduction and replication, and we argue that reproduction, the confirmation of
conclusions through independent experiments in varied settings is more valuable than exact replication of the published values.

1. Introduction
Confirmation of results through independent replication is
a well-established practice in experimental sciences. How-
ever, a number of recent negative reproduction results in
medical and behavioural sciences indicate that a significant
number of published results are not verifiable through inde-
pendent reproduction efforts (Open Science Collaboration,
2015; Freedman et al., 2015, for example). The issue, of-
ten titled reproducibility crisis, has become influential both
in scientific communities and popular media. Similar con-
cerns have been raised in the fields of machine learning and
artificial intelligence (Kitzes et al., 2017; Hutson, 2018;
Raff, 2019). As a field that heavily relies on experimental
work, the same concerns apply to computational linguis-
tics and natural language processing (NLP), and there have
been recent efforts to understand the extent of the problem
and identify potential solutions. The present work is con-
ducted in the context of such an effort, REPROLANG 2020
shared task on reproducibility of results in computational
studies of language.1

Our study, in particular, is concerned with the reproduc-
tion of a study of automatic assay scoring (AES) for de-
termining language proficiency levels of second language
learners (Vajjala and Rama, 2018). In AES, the aim is to
assign a score, mark or level to a text by means of an au-
tomatic system. The motivation behind the development of
such systems lies in the time, cost and reliability that are
involved in manual essay correction marking (Dikli, 2006).
AES is one of the NLP applications that could find its way
into real life applications, and hence, have a high potential
impact on the society. For example, some of these systems
are currently being used in high stake examinations.2 Since
the quality of such high-impact applications is an important
concern, reproducibility is especially desirable and needed.
Another motivation for the choice of the present task has

1
https://www.clarin.eu/event/2020/reprolang-2020.

2For instance, Pearson use their in-house Intelligent Essay As-
sessor to grade the written part of the PTE academic test (https:
//pearsonpte.com/wp-content/uploads/2015/05/7.-PTEA_
Automated_Scoring.pdf).

to do with the fact that AES is a text classification (or re-
gression) task, which is a well-studied and straightforward
NLP task. This allows us to focus less on the specifics of
the systems and the original task, and more on issues re-
garding reproducibility.
The target paper we attempt to reproduce by Vajjala and
Rama (2018) presents a series of models for predicting the
Common European Framework of Reference (CEFR) lev-
els of essays written by German, Czech and Italian learners.
The authors use the MERLIN corpus (Boyd et al., 2014) for
the task, and present multilingual and cross-lingual models
along with monolingual models.
We present three sets of experiments in this paper. First,
we use their publicly-available code to replicate their re-
sults. The second set of experiments are performed using
the same dataset, the same machine learning models and the
same features, but we use our own implementation, and per-
form additional tuning of the model hyperparameters. And
third, we test whether their features can be used to success-
fully predict essay scores of a fourth language, namely En-
glish. We use the Cambridge Learner Corpus (CLC) which
includes texts that were written as part of a First Cambridge
exam (Yannakoudakis et al., 2011). The first two sets of ex-
periments verify the reproducibility of the original results,
while the additional dataset allows for testing whether the
model is general enough to be extended to another language
with a different label granularity.
This paper is structured as follows. In Section 2., we
give some relevant pointers to existing literature on repro-
ducibility in NLP. Additionally, a brief overview of previ-
ous work on AES, and a brief summary of the target paper
is given. Section 3. includes our reproduction experiments
of Vajjala and Rama (2018) where we discuss our results
in comparison to the original ones. Section 4. presents the
results from experiments where we use the same data but a
different implementation. The results of experiments where
we use their system on a different language are presented in
Section 5.. We summarise and discuss the findings of this
paper in Section 6., with a brief conclusion in Section 7..

https://www.clarin.eu/event/2020/reprolang-2020
https://pearsonpte.com/wp-content/uploads/2015/05/7.-PTEA_Automated_Scoring.pdf
https://pearsonpte.com/wp-content/uploads/2015/05/7.-PTEA_Automated_Scoring.pdf
https://pearsonpte.com/wp-content/uploads/2015/05/7.-PTEA_Automated_Scoring.pdf
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2. Background
2.1. Rep(roduc|licat)tion
Along with the reproducibility crisis in the wider scientific
context (Fidler and Wilcox, 2018), the issue of reproduction
in NLP and related fields has also attracted recent attention.
Besides the present shared task, there has been a number of
recent workshops and campaigns in the field,3 as well as in
the closely related field of machine learning.4

Despite an increasing interest in studies that aim to verify
earlier results, it is often unclear what is exactly being ver-
ified, and the terms reproduction and replication are used
for referring to different activities in different studies (Co-
hen et al., 2018). Some use reproduction and replication in-
terchangeably, whereas others distinguish between the two
or use only one of them. The issue may become even more
confusing as the terms are sometimes used with opposite
meanings in different studies.
So far, we have also used these two terms without a clear
definition. Before providing a brief overview of relevant
work in NLP, we first clarify our use of the terms. In the
rest of this paper, we adopt the usage of the terms as defined
by Drummond (2009). We use the term replication to refer
to the activity of running the same code on the same dataset
with the aim of producing the same (or sufficiently simi-
lar) measurements presented in the original paper. We use
the term reproduction to refer to the activity of verifying the
claims with experimental settings that are different from the
ones in the original paper. For NLP experiments, this typi-
cally means re-implementation of the method(s) and the use
of different datasets and/or languages. However, for exam-
ple, Branco et al. (2017) uses the terms in the opposite way.
Cohen et al. (2018), on the other hand, defines replication
(or repetition) as running the experiment as implemented
by the original study without reference to the aims of the
repetition, while calling reproducibility the activity of veri-
fying an outcome of the experiment. In their definition, re-
production is associated with one of three levels: a value, a
finding or a conclusion. The present REPROLANG shared
task is also rather vague about its aims in this respect. Given
a clear recipe to produce the values in the selected figures
and tables, we assume that the aim is closer to replication
according to our definition. However, varying the experi-
mental conditions (e.g., using different languages, corpora)
is also encouraged in the task description.
Benefits of verifying the conclusions of an experiment with
independent reproduction experiments is hardly disputable.
However, the same is not true for replication of experi-
ments. The position in earlier work often ranges from
a strong emphasis on the value of replication (Pedersen,
2008; Wieling et al., 2018) to strong arguments against any
utility of it (Drummond, 2009). Our position on the sub-
ject is similar to Drummond (2009). We believe a scien-
tific result gains more support when its overall conclusions

3The Workshop on Replicability and Reproducibility in Natural Language
Processing: adaptive methods, resources and software at IJCAI 2015 (https:
//sites.google.com/site/adaptivenlp2015/), 4REAL Workshop on
Research Results Reproducibility and Resources Citation in Science and Technology
of Language (http://4real.di.fc.ul.pt/), and CLEF lab on reproducibil-
ity (http://www.centre-eval.org/) .

4For example, reproducibility challenges at NeurIPS (https://
reproducibility-challenge.github.io/neurips2019/) and ICLR
(https://reproducibility-challenge.github.io/iclr_2019/).

are verified with a different experimental setting. However,
there are some cases where replication experiments are use-
ful, especially when it means that one shares the code and
data used in the experiments.
Although it is not always clear what is exactly being repro-
duced (or replicated), there is clearly an increasing interest
in the subject in the NLP community. Most early reproduc-
tion or replication studies in NLP is concerned with sub-
fields whose applications may have high potential impact,
such as biomedical NLP (Névéol et al., 2016; Cohen et al.,
2018). A number of studies include surveys of papers in
prominent NLP conferences for quantifying the properties
related to reproduction and replication, such as release of
the data and code, actual availability of the resources used,
authors’ willingness to share their code if it is not already
available, or whether the reported results are statistically
sound (Mieskes, 2017; Dror et al., 2017; Wieling et al.,
2018).
There has also been a number of interesting papers with
case studies. Fokkens et al. (2013) focus on (a lack of)
system descriptions (e.g., preprocessing, versions of the re-
sources used) that cause reproduction attempts to fail. They
further note that replication attempts are also useful for
gaining further insight into the original problem and the so-
lution. Cohen et al. (2018) also includes three case studies,
which are analyzed carefully according to dimensions sum-
marized above. Moore and Rayson (2018) perform repro-
duction experiments of over 10 sentiment analysis methods.
Their focus is on the reproduction of results on multiple
datasets, emphasizing the use of as many datasets as pos-
sible in evaluation of NLP systems, which is in line with
the other studies where careful, less biased data is shown to
change the conclusions of earlier reports (Pirina and Çöl-
tekin, 2018). 10 case studies reported by Wieling et al.
(2018) involve only replication. The authors tested whether
the code released by earlier studies could be run in a limited
‘human time’ and, if so, whether the values output by the
software are the same as the ones reported in the original
papers.
The replication or reproduction attempts listed above re-
port mostly negative results, mirroring the results reported
in other fields (Open Science Collaboration, 2015, for ex-
ample). As a result, it is clear that there is need for mech-
anisms or guidelines to increase the confirmability of the
studies in the field, as well as more reproduction studies
and further discussion on fruitful ways to perform replica-
tion and reproduction studies.

2.2. Automated Essay Scoring
Automated essay scoring, also called automatic text scor-
ing, goes back to the 60s when Ellis Page developed Project
Essay Grader (Page, 1967), A number of AES schemes
have emerged since then, some of the most prominent in
the field being e-rater (Attali and Burstein, February 2006)
and Intelligent Essay Assessor (Foltz et al., 1999) based on
Latent Semantic Analysis (Deerwester et al., 1990).
A wide range of features have been developed to analyse
essays, from as simple as document length to more com-
plex ones involving, for instance, discourse cohesion (see
Zesch et al. (2015) for an overview of features in the litera-

https://sites.google.com/site/adaptivenlp2015/
https://sites.google.com/site/adaptivenlp2015/
http://4real.di.fc.ul.pt/
http://www.centre-eval.org/
https://reproducibility-challenge.github.io/neurips2019/
https://reproducibility-challenge.github.io/neurips2019/
https://reproducibility-challenge.github.io/iclr_2019/
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ture). The emergence of Neural Networks and Deep Learn-
ing has also prompted an appearance of a body of work that
uses deep learning to automatically score essays (Alikan-
iotis et al., 2019; Taghipour and Tou Ng, 2016; Nadeem
et al., 2019). For instance, Alikaniotis et al. (2019) use
score-specific word embeddings for which they use pre-
trained embeddings and further train them on predicting es-
say scores.
A common question raised in the literature is whether to
treat AES as a regression or a classification task. Berggren
et al. (2019) tackle this issue by experimenting with both
regression and classification and also non-neural and neural
models for Norwegian Essay Scoring.
Both corpora used in this paper have previously been ap-
plied for AES. Weiß (2017) demonstrated the power of
complexity features to predict CEFR levels of German es-
says using the MERLIN corpus. Yannakoudakis et al.
(2011), in the paper introducing the CLC corpus, also
present AES experiments in which they consider the task
as a rank preference learning problem. They use features
such as phrase structure rules and error rate to predict essay
scores.

2.3. Target study: CEFR scoring
Our target paper by Vajjala and Rama (2018) reports three
sets of AES experiments on the MERLIN corpus, which
consists of essays written by learners of three different lan-
guages, namely Czech, German and Italian. The first set
of results includes a comparison of feature sets on all three
languages, where the models are trained and tested on the
monolingual data. In the second set of experiments, the au-
thors train a single model using data from all languages.
The final results are from cross-lingual experiments, where
the authors train a model on German data, and test the
model on the other languages, investigating cross-lingual
transfer on the AES task. The authors present F1-scores
(weighted by the support of each class) for each setting. In
this section we briefly describe the dataset, and the models
used in the original study.

Data and preprocessing Vajjala and Rama (2018) use
the MERLIN corpus (Boyd et al., 2014) for their experi-
ments which contains 2286 essays by L2 speakers of Ger-
man, Italian and Czech. These essays were written as part
of written examinations and manually marked with the cor-
respondent CEFR level. CEFR categorises language profi-
ciency into three groups: basic user, independent user and
proficient user. These three levels - A, B and C - are again
divided into two subclasses, resulting in a total of six levels
(A1 < A2 < B1 < B2 < C1 < C2). The essays are anno-
tated with levels on different linguistic dimensions, such
as sociolinguistic appropriateness and vocabulary control.
However, in their experiments, Vajjala and Rama (2018)
only predict the overall score. They remove any essay that
is rated with a level occurring less than 10 times in the sub-
corpus of one of the languages, and they further remove any
unmarked essays. The final distribution of the essays can be
seen in Table 1.

Features and classifiers Vajjala and Rama (2018) use
features that are common across AES systems, and most
of them often appear in other text classification tasks:

CEFR level DE IT CZ

A1 57 29 0
A2 306 381 188
B1 331 393 165
B2 293 0 81
C1 42 0 0

Table 1: This table shows the distribution of essays in the
MERLIN corpus. An identical table can be found in Vajjala
and Rama (2018, Table 1).

1. word n-grams and POS n-grams where n is 1 to 5;

2. dependency n-grams where n is 1 to 3;

3. domain features which consist of features that are spe-
cific to AES research. These include document length,
lexical richness features and error features (see their
paper for a more detailed description);

4. combined features where domain features are concate-
nated with each of the three n-gram features.

The texts were POS-tagged and automatically annotated
with dependency relations using UDPipe (Straka et al.,
2016). The annotated files are readily available in their
git repository. They combine the dense domain features
and the sparse n-gram features by first training a classifier
on the sparse features to get the probability distribution of
CEFR classes for each essay. As a second step, they use
those probability distributions as features together with the
dense features to train the final classifier.
The authors train and test three ‘traditional’ classifiers, ran-
dom forests, linear support vector machines (SVMs) and lo-
gistic regression, as well as a multi-layer perceptron (MLP)
with word embeddings trained on the task. The traditional
classifiers are trained in different combinations of the fea-
tures introduced above. The results are compared to a triv-
ial baseline with document length as the only feature. The
authors present F1-scores for each setting, where the scores
are weighted by the support (the number of positive sam-
ples in the gold standard data). In all settings, the mod-
els are evaluated by doing 10-fold cross validation. Vajjala
and Rama (2018) use sci-kit learn (Pedregosa et al., 2011)
to implement the traditional classifiers, and Keras (Chollet,
2015) with Tensor Flow as the back-end to implement the
neural networks.

What to reproduce or replicate The task formulated by
the REPROLANG organizers is to replicate the values from
three tables presenting the results of three sets of exper-
iments including monolingual, cross-lingual and multilin-
gual models. We present the results concerning the replica-
tion experiments in Section 3..
The more interesting undertaking, however, is to further
explore the results and conclusions of our replication and
the original paper by reproducing the experiments. The
straightforward contribution of the original paper is demon-
strating the success of the method on three different lan-
guages. However, Vajjala and Rama (2018) do not state
any clear, explicit conclusions. Although it is not easy
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to draw general conclusions because the expected level of
success differs from application to application, the readers
are likely to form a general opinion of the success of the
method based on the scores presented in the paper. An in-
teresting aspect of the study is the inclusion of multilingual
and cross-lingual experiments, which may show whether
cross-lingual transfer helps for this task. The results pre-
sented, however, do not support any clear conclusions on
this matter, as we discuss it further in Section 3.. One last
potential message a reader may get from the paper is re-
lated to the comparison between the classification meth-
ods. Since the authors performed experiments with mul-
tiple classification methods, one may be inclined to draw
conclusions about the best classification method for the
task.

3. Replication: Same Data, Same Code
The aim of the experiments presented in this section is to
replicate the values presented in the original paper for all
three settings: monolingual, cross-lingual and multilingual.
In our replication attempts, we used the code published by
the authors5 with minor modifications.6 Our first modifica-
tion is to let the random seed vary as opposed to the original
code where the random seed was fixed. Although fixing the
random seed may help replicating the exact same values,
it hides an important aspect of most machine learning sys-
tems: the variation due to random initialization and differ-
ent training–test splits. As a result, we repeat each of their
experiments 10 times, and allow the random seed to differ
in each run.
Our second modification pertains to the reported evaluation
metric. The original paper reports F1 scores weighted by
support, which promotes models that make fewer mistakes
on majority class(es), while errors made on minority classes
are not heavily penalized. For example, confusing the level
C1 with another level is considered less severe than con-
fusing the level B1 with another level, merely because B1
contains more data points than C1. Since we are not aware
of a reason for such a preference, we believe that report-
ing macro-averaged F1 scores is more appropriate. For the
required replication scores, we report both weighted and
macro-averaged F1 scores. For the additional reproduction
experiments, we report only macro-averaged F1 scores.

3.1. Monolingual Classification
The first set of results presented in Vajjala and Rama (2018)
scores on monolingual models. Table 2 presents scores we
obtained in our replication attempt alongside the difference
from the results reported in the original paper. Note that
we do not attempt to replicate the single-value results in the
original paper. The values we report are averages of mul-
tiple experiments with varying cross-validation splits and
random initializations. Most results in Table 2 are within
a reasonable range of the results reported in the original
article. However, some large discrepancies occur in some
of the experiments. The large differences in baseline scores

5
https://github.com/nishkalavallabhi/

UniversalCEFRScoring; commit: 86d60de.
6The software that we used to get the replication results are available as a docker

container at https://gitlab.com/coltekin/cefr-reproduction;
commit hash: 94d5a7700e2c39aab8cb1fc7f6a8182a0c076c2c; commit tag: v1.0.

and domain-only scores are due to a bug in the original soft-
ware where ‘macro-averaged’ F1 scores were calculated,
while the paper reports them as ‘weighted’ F1 scores. The
discrepancy regarding embedding scores is less clear. A
plausible explanation is differences in the libraries. Partic-
ularly the libraries used for training neural networks are in
active development, and there may be important changes
in short time periods. However, our attempts to unify the
software and libraries that may have obvious effects did not
reduce the discrepancy.
Besides some large discrepancies, other observations from
the replication results in Table 2 include the fact that macro-
averaged F1 scores are lower in all settings. Weighted av-
eraging inflates the scores, potentially giving an impression
of a higher success rate.
The variability of scores is, in general, low, rarely exceed-
ing 1 % difference in F1 scores. Yet, this variation already
invalidates some conclusions one may get from the results
reported in the original article. For example, although the
paper is careful about not making strong claims, the authors
mark combination of word n-gram and domain features as
the best overall solution for all three languages. Accord-
ing to the weighted F1 scores reported in Table 2, this is no
more true for Italian and Czech. Our findings for German
are almost in line with the original result. The combined
features of domain and word n-grams yield the best results,
but they are within a standard deviation of the scores of the
other two combined features. Hence, this may indicate that
some of the differences here are by chance.

3.2. Multilingual Classification
The second replication target in the REPROLANG shared
task is the results from the multilingual model reported in
Vajjala and Rama (2018, Table 3). This experiment com-
pares the feature sets used in the monolingual experiments
in a single big model trained on the data from all languages.
The authors present two settings, where the difference is
whether the model is informed about the language of the
training and test instances. For the traditional classifiers,
the language id is given to the system as another symbolic
feature. The neural model, on the other hand, predicts the
language as an additional objective.
Similar to the monolingual replication experiments, we use
the code published by the authors with minor modifications
to report macro-averaged F1 scores alongside the weighted
F1 scores. Table 3 reports our replication results similar to
the way our monolingual replication results were presented.
The replication of the multilingual model also comes with
few surprises. The discrepancies occurring in the differ-
ences in baseline and domain features are again due to the
fact that in the original paper, the macro-averaged F1 score
was reported instead of the weighted F1 score. Our present
guess for the cause of the other large differences is again
based on the software/library configuration.
A general difference here is that none of the multilingual
models in our replication study outperforms the best per-
forming monolingual models, while their multilingual re-
sults are better than monolingual scores for German. The
utility of this model, especially the fact that it was tested
on the complete data, is not entirely clear to us. Perhaps, a

https://github.com/nishkalavallabhi/UniversalCEFRScoring
https://github.com/nishkalavallabhi/UniversalCEFRScoring
https://gitlab.com/coltekin/cefr-reproduction


5607

DE IT CZ

Features F1w σF1w ∆F1w F1m σF1m F1w σF1w ∆F1w F1m σF1m F1w σF1w ∆F1w F1m σF1m

base 61.6 0.00 13.7 48.9 0.00 80.0 0.00 22.2 57.3 0.00 59.6 0.00 0.9 55.3 0.00
word 59.8 0.74 −6.8 46.1 1.05 80.8 0.31 −1.9 59.8 1.42 71.6 0.96 −0.5 68.4 1.10
pos 65.2 0.35 −1.1 50.3 0.32 80.5 0.28 −2.0 59.5 0.19 69.2 0.68 −0.7 65.0 0.85
dep 63.6 0.68 −2.7 49.1 0.68 79.7 0.37 −1.6 59.1 0.72 71.5 0.75 1.1 68.5 0.83
dom 62.7 0.29 9.4 48.9 0.62 81.1 0.00 15.8 65.5 0.00 67.0 0.52 0.7 63.6 0.68
word+dom 63.4 0.53 −5.2 52.7 1.06 79.7 0.44 −4.0 58.1 1.53 72.4 0.89 −1.0 69.3 1.02
pos+dom 64.8 0.75 −3.8 53.5 1.23 79.2 0.42 −2.4 55.0 0.66 70.5 0.97 −0.4 67.6 1.12
dep+dom 63.6 0.49 −4.6 52.4 1.10 78.8 0.50 −1.8 54.9 0.99 71.5 1.55 0.3 69.0 1.73
emb 46.7 0.72 −17.9 37.8 0.46 64.7 0.91 −14.7 53.3 1.21 48.2 0.82 −14.3 42.2 0.94

Table 2: Replication results for monolingual experiments Vajjala and Rama (2018, Table 2). Besides weighted F1 score
(F1w), we report macro-averaged F1 scores (F1m) in all settings. The values reported are averages of scores of 10 runs.
The columns with prefix σ indicate the standard deviation of the scores obtained. ∆Fw report the difference between the
mean score presented in this table and the value reported in the original paper. All numbers are percentages.

Without language information With language information

Features F1w σF1w ∆F1w F1m σF1m F1w σF1w ∆F1w F1m σF1m

base 49.3 1.69 6.5 42.7 0.00 - - - - -
word 60.3 0.28 −11.8 42.9 0.24 60.4 0.16 −11.5 42.9 0.29
pos 68.1 0.51 −4.5 48.2 0.33 68.0 0.23 −4.4 48.3 0.27
dep 66.0 0.46 −4.3 47.2 0.42 66.1 0.34 −3.2 47.2 0.44
dom 60.0 0.15 15.1 39.0 0.43 64.7 0.31 17.6 43.7 0.53
emb 65.8 0.75 −3.5 46.2 0.66 66.2 0.77 −2.7 46.7 0.38

Table 3: Replication results for multilingual model of Vajjala and Rama (2018, Table 3). Besides weighted F1 score (F1w),
we report macro-averaged F1 scores (F1m) in all settings. The values reported are averages of scores of 10 runs. The
columns with prefix σ indicate the standard deviation of the scores obtained. ∆Fw report the difference between the mean
score presented in this table and the value reported in the original paper. All numbers are percentages.

different test setup, for instance, testing the model on indi-
vidual languages, may be more insightful.

3.3. Cross-lingual Classification
Our final set of replication experiments consists of the
cross-lingual model of Vajjala and Rama (2018, Table 4).
Table 4 reports our replication results in the same manner
as our earlier results for monolingual and multilingual mod-
els were presented.
The scores in Table 4 do not present any surprises. The
scores are reasonably close to the reported values. Similar
to the original findings, the transfer seems to work better
for Italian than Czech, and as expected the scores are lower
than the corresponding monolingual models.

4. Reproduction: Same Data, Different
Code

In this section, we report our first reproduction results,
where our experiments differ from theirs in the text clas-
sification software employed. The software we use is based
on our earlier studies (Rama and Çöltekin, 2017; Çöltekin
and Rama, 2018; Wu et al., 2019). Here, we only use tradi-
tional classifiers used by Vajjala and Rama (2018), namely,
support vector machines (SVMs), logistic regression, and
random forests. Since we use the same underlying library
(Pedregosa et al., 2011), our experiments should arguably
not deviate strongly from theirs.

The main difference in our implementation is that we op-
timise parameters. Although Vajjala and Rama (2018) try
a few alternative classification methods, each model’s pa-
rameters are set to library defaults. For the results presented
here, we tune each model using random search. The hyper-
paramters tuned for all methods are the maximum number
of n-grams (0 to 5), the feature weighting algorithm (tf-
idf or BM25), and the minimum document frequency for a
feature to be included in the model. For the random forest
classifier, we tune the number of estimators (300, 400, 500),
and for SVM and logistic regression classifiers we tune the
(L2) regularization constant (0.01 to 10.0). For each classi-
fication experiment, we repeat the classification 2000 times
with parameters chosen randomly from the above values.
The optimum values found are reported in Table 9 in Ap-
pendix A. As in Vajjala and Rama (2018), we report the
average of 10-fold cross-validation results for the monolin-
gual and multilingual experiments, and we report a single-
best value for cross-lingual experiments.
Tables 5, 6 and 7, report reproduction results correspond-
ing to Tables 2, 3 and 4 in the original paper, respectively.
In all cases, we report macro-averaged F1-scores, and the
difference of the present result from our replication re-
sults in Section 3.. The standard deviation reported in Ta-
bles 5 and 6 are the deviation of the scores obtained dur-
ing a single 10-fold cross validation experiment. Note that
this is different from the ones reported in section 3., where
the standard deviation measures the variability of average
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Italian Czech

Features F1w σF1w ∆F1w F1m σF1m F1w σF1w ∆F1w F1m σF1m

base 56.1 2.38 0.8 37.1 2.17 49.3 1.69 0.6 47.2 4.68
pos 74.4 1.14 −1.4 42.0 0.86 69.4 1.60 4.5 67.4 1.69
dep 62.1 0.97 −0.3 35.4 0.66 65.9 1.61 0.6 64.8 1.56
dom 64.0 4.31 1.0 35.4 9.52 48.9 0.58 1.4 37.2 0.43

Table 4: Replication results for cross-lingual model of Vajjala and Rama (2018, Table 4). Besides weighted F1 score
(F1w), we report macro-averaged F1 scores (F1m) in all settings. The values reported are averages of scores of 10 runs.
The columns with prefix σ indicate the standard deviation of the scores obtained. ∆Fw report the difference between the
mean score presented in this table and the value reported in the original paper. All numbers are percentages.

German Italian Czech

Features F1m σ ∆ F1m σ ∆ F1m σ ∆

word 54.1 5.49 8.0 68.4 7.18 8.6 75.1 5.11 6.7
pos 56.4 3.76 6.1 70.3 6.68 10.8 70.5 4.63 5.5
dep 52.3 4.22 3.2 65.5 7.33 6.4 70.5 3.86 2.0
dom 56.1 8.40 7.2 73.3 6.18 7.8 67.4 7.17 3.8
word+dom 57.0 6.75 4.3 74.5 9.02 16.4 75.8 5.38 6.5
pos+dom 58.8 4.78 5.3 73.1 10.27 18.1 68.3 9.65 0.7
dep+dom 57.9 7.43 5.5 74.5 9.57 19.6 71.0 5.83 2.0

Table 5: Reproduction of Vajjala and Rama (2018, Table 2) with a different software. We only report macro-averaged
F1 score (F1m) The columns with title σ indicate the standard deviation of the score within 10-fold cross validation. ∆
columns report the difference between the mean score presented in this table and macro-averaged F1 score reported in
Table 2. All numbers are percentages.

Features F1m σ ∆

word 58.1 3.58 15.2
pos 57.5 4.43 9.3
dep 53.6 2.47 6.4
dom 48.5 4.89 9.5

Table 6: Reproduction of Vajjala and Rama (2018, Table 3)
with a different software. We only report macro-averaged
F1 score (F1m) The columns with title σ indicate the stan-
dard deviation of the score within 10-fold cross validation.
∆ column reports the difference between the mean score
presented in this table and macro-averaged F1 score re-
ported in Table 3. All numbers are percentages.

scores over multiple cross-validation experiments.
In all cases, unsurprisingly, the tuned models yield bet-
ter scores than the replicated results, varying from almost
identical results (monolingual model for Czech with POS
and domain features) to around 20 % (cross-lingual mod-
els with domain features). Another finding in line with the
original study is that the addition of hand-crafted domain
features seems to provide a modest, but consistent boost to
the monolingual models in most cases.
Nevertheless, tuning the models changes some of the con-
clusions one may derive from the original study. For exam-
ple, the ordering of the most powerful features often differs
from the ones in Vajjala and Rama (2018) and our repli-
cation study. More importantly, unlike the original study,

Italian Czech

Features F1m ∆ F1m ∆

pos 59.0 10.8 63.4 15.2
dep 58.4 11.2 62.9 15.7
dom 64.4 25.4 60.0 21.0

Table 7: Reproduction of Vajjala and Rama (2018, Table 4)
with a different software. We only report macro-averaged
F1 score (F1m) ∆ columns report the difference between
the mean score presented in this table and macro-averaged
F1 score reported in Table 4. All numbers are percentages.

where the numbers indicate substantially better transfer
from German to Italian in comparison to Czech, our cross-
lingual experiments suggest that transfer to Czech from
German is almost in line with transfer from Italian to Ger-
man.

5. Reproduction: Different Data, Same
Code

In our second reproduction study, we apply their software
on a different language, namely English, and on a different
scoring system. To do so, the Cambridge Learner Corpus
(CLC) is used. The CLC comprises essays which are an-
swers to some prompts as part of a Cambridge First Exam
in 2000 and 2001. Each file consists of two essays writ-
ten by the same student. We have argued that using the
MERLIN corpus for AES may lead to results that show a
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all scores collapsed to 5 collapsed to 3

Features F1m σ F1m σ F1m σ

base 7.55 1.49 23.14 2.31 32.44 3.44
word 10.58 <0.01 31.50 <0.01 43.36 <0.01
pos 11.46 <0.01 28.28 <0.10 36.96 0.07
dep 9.74 <0.01 29.65 <0.01 37.35 <0.01
dom 9.66 0.16 28.96 <0.01 35.20 0.17
word+dom1 9.32 0.53 30.89 1.25 37.28 1.78
word+pos 9.32 0.57 28.70 1.12 35.35 0.73
word+dep 9.18 0.40 28.78 0.90 35.24 0.51

Table 8: Reproduction of Vajjala and Rama (2018, Table 3) with a different dataset. We only report macro-averaged F1
score (F1m) The columns with title σ indicate the standard deviation of the scores obtained when running the system 10
times, allowing the random seed to vary. All numbers are percentages.

task-effect rather than a difference in proficiency levels. We
shall, therefore, only use the first essay of each student to
train and test the software to avoid mixing different text
genres. The files are annotated with an overall score (0-
40) that the student achieved in the exam as well as scores
for each essay individually (0-5.5). Essays that were anno-
tated with a score appearing less than 10 times in the corpus
have been removed. The total number of 1223 is compara-
ble to the German part of the MERLIN corpus in Vajjala
and Rama (2018) in terms of size. An explanation that was
given by the authors of why the classifier predictions were
worse for the German texts than for the Italian and Czech
was that for German it was a five-class problem, whereas
for Italian and Czech only a three-class problem. Thus, in
our experiment, three experiment settings are carried out.
We first want to see how well the classifiers do on all data
points as categorical values. Then, we want to see how it
does in a setting similar to the German one, namely col-
lapsing the labels into five classes. Lastly, we conflate the
labels into three bins, thus the same number of classes as in
the Italian and Czech setting.

1. all scores: all scores as categorical data points

2. scores collapsed to five bins:

• scores of first essay: <1; 1-2; 2-3; 4-5; 5+

3. scores collapsed to 3 bins:

• scores of first essay: <3; 3-4.2; 4.2+

The numbers of essays for each group can be found in ta-
ble 10 in Appendix A.
For the reproduction, we try to follow the preprocessing
steps of Vajjala and Rama (2018) as closely as possible.
The essays from the CLC come with manual error annota-
tion. For the sake of consistency and comparability, we use
the functions provided in Vajjala and Rama (2018) to ex-
tract error features. As in Vajjala and Rama (2018), POS
tags and Universal Dependencies are extracted with the
UDPipe parser (Straka et al., 2016). We, however, do not
reproduce all of their experiments. Since the experiments
including embeddings do not yield promising results, we
only apply the three traditional classifiers. In order to eval-
uate our models, we do 10-fold cross-validation. Further,

we only reproduce their monolingual experiments since the
scores in the CLC are not comparable to the CEFR levels in
the MERLIN corpus. As in the first reproduction study, we
only report macro-averaged F1 scores. The trivial baseline
to which the results are compared is again using document
length as the only feature.
The best results for the 12-class model are achieved by
using POS n-grams only. However, the results are only
around 4 % better than the baseline results. Attaining good
results in a 12-class classification task is generally diffi-
cult. If one wants to undertake such a fine-grained analysis,
treating AES as a regression task might be more suitable.
The results for the five-class and three-class classification
experiments are better, and for both tasks, the best mod-
els use word features only. However, compared to the re-
sults of the original paper, the results are still far below the
ones achieved for German, Italian and Czech in the original
study.
The result of the model that predicts labels collapsed into
five classes is 22 % below the best macro-averaged F1 score
for the German data. Similarly, the model that only pre-
dicts between three labels achieves results that are 22.14 %
below the Italian and 25.94 % below the Czech macro-
averaged F1 scores.
The reason why the results for English diverge from the
ones using the MERLIN corpus may be explained by the
nature of the texts of the CLC corpus. Since all texts are
written by students taking the Cambridge First exam, the
proficiency levels of the authors are less heterogeneous than
in the MERLIN corpus, where texts of all CEFR levels are
included. Therefore, the models and features may not be
able to predict the fine-grained scores of a more homoge-
neous dataset with regard to the levels of the writers. It is
possible that the models do not pick up on the more sub-
tle differences between texts written by language learners
whose levels are closer to each other. Note that we do not
tune our models as in our first reproduction task. Tuning
the models might increase the performance of the models
on the English dataset, which is worth pursuing in the fu-
ture. The fact that the genres of the essays for German,
Italian and Czech differ between the CEFR levels might be
an additional reason why the model performed much worse
on the English data. While the English data is more homo-
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geneous regarding the levels and the genres, the essays of
the MERLIN corpus are the opposite.

6. General Observations and Discussion
In this paper, we reported our reproduction and replication
efforts of a study on automatic essay scoring by Vajjala
and Rama (2018), in three different settings: (1) using the
same dataset and the same code, (2) using the same dataset
with an alternative implementation, and (3) testing the same
code on another dataset. This section discusses some inter-
esting and, in our opinion, important points that emerged
from the experiments reported above.

Availability of code and data Some of the experiments
above were possible because of the fact that both code and
data was available. Relatively readable and straightforward
code allowed us to re-run their experiments with minor
changes to the code (e.g., changing hard-coded paths). The
discrepancies we observed with the published results and
our replication are difficult to explain, except the changes
in the software environment, or potential (unintentional) er-
rors in transferring the values from the software output to
the paper. Regardless of the source of the problem, a mis-
match between the results from the software and the publi-
cations is not desirable, but there is little we can solve with
exact replications. On the other hand, code and data avail-
ability is also crucial for reproduction. The reproduction
experiments we report in Section 4. relies on availability
of the data, and experiments we report in Section 5. re-
lies on availability of the code. And, as noted by Wieling
et al. (2018), the availability of code and data has further
advantages for the community and the authors, such as fa-
cilitating comparisons in later studies, and increasing the
visibility of the study.

Use of appropriate evaluation metrics We noted that
the authors reported F1 scores weighted by the number
of positive classes in the gold standard without any clear
motivation. This inflates the scores presented, and favours
systems that do well on majority classes. Although this is
rather an issue with the review process, another benefit of
reproduction studies is to catch similar issues missed during
peer review.

Reporting variation Overemphasizing replicability of
exact values encourages researchers to eliminate some of
the natural sources of variation from the output of the re-
leased code due to, for example, random initializations or
random splits of the data into training and test sets. A
method that is commonplace, namely fixing the random
seed, was also used in the code released by Vajjala and
Rama (2018). In any data-driven experiment, the results
are expected to vary with changes in the data. Fixing our
software to generate exactly the same numbers may give us
a false sense of absolute results. We believe that reporting
the variability in such results, and drawing our conclusions
with appropriate levels of caution depending on the vari-
ability of the results is more important than generating ex-
act replication results. In our experiments, we have shown
that paying attention to natural variation in the experiment
can prevent making wrong conclusions.

The inevitable bugs Good software engineering prac-
tices help reducing bugs, but a zero-bug code is close to
impossible for any non-trivial software. And, as reported
by Cohen et al. (2018), they may be discovered at any point
in the lifetime of a publication. We also discovered a few
bugs, notably the reporting of unintended type of score in
the publication due to wrong calculation in the software.
Note, however, that finding bugs is enabled by the repro-
duction experiments presented in Section 4.. If we were
interested in replication of the sort promoted by Pedersen
(2008) and Wieling et al. (2018), we would not have dis-
covered these bugs.

Tuning the machine learning models We obtained quite
different results than the originally reported results in Sec-
tion 4., mainly due to tuning the model parameters.
Although one should pay attention not to ‘overtune’, there
is nothing special about the default hyperparameters coded
in the machine learning libraries. In fact, not tuning the hy-
perparmeters of a machine learning method hides the actual
potential of the method, but more crucially other aspects of
the systems, such as the feature set. For example, it is likely
that a model with a large feature set, and hence more pa-
rameters, overfits and performs worse than a simpler model
if models were trained with the same settings. However,
tuning the regularization parameter may allow the complex
model to utilize the signal in the additional features without
overfitting.

Choice of data The choice of dataset is crucial for creat-
ing reliable systems. Some of the low scores we obtained
in Section 5. may be explained by the fact that the En-
glish dataset presented us with a different, somewhat more
difficult task. Even with the same number of classes, the
differences in the CLC corpus is expected to be more fine-
grained than the CEFR levels. However, since the original
study uses the MERLIN corpus, where topic of the essays
correlate with the CEFR levels, it is also likely that part of
the success of the original system comes from detecting the
topic of the text, rather than the proficiency of the author.

7. Conclusions
We presented replication and reproduction experiments of
an automatic essay scoring system for determining pro-
ficiency levels of second language learners (Vajjala and
Rama, 2018). Although our results mostly agrees with
the original report, failures in the present replication effort
raises a number of issues, including the choice of data, tun-
ing the machine learning models, the use of appropriate
evaluation metrics, availability of code and data, reporting
variation, the use of appropriate evaluation metrics, and
availability of code and data as discussed in Section 6..
Some of these issues are not immediately related to repro-
duction, but important for the final aim of such an effort:
verifying the validity of claims made in a publication.
In closing, we want to reiterate the difference between
replication and reproduction. We believe that reproduction,
confirming the results under varied settings, is a more use-
ful activity. The overemphasis on exact replication of pub-
lished values may even have unintended effects, such as
encouraging researchers to ‘hide’ the natural variation that
is expected in the task.
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A Appendix
Model C classifier min_df n_estimators num_mix vectorizer w_ngmax

Monolingual

word de 0.87 svm 5 - - bm25 4
it 0.12 svm 5 - - bm25 5
cz 2.74 svm 1 - - bm25 1

pos de 3.42 svm 5 - - bm25 1
it 1.26 svm 5 - - bm25 1
cz 0.04 svm 1 - - bm25 4

dep de 0.15 svm 5 - - bm25 5
it 0.04 svm 5 - - bm25 1
cz 0.02 svm 1 - - bm25 4

dom de 0.21 svm 1 - - tfidf 0
it 3.31 svm 1 - - tfidf 0
cz 0.11 svm 1 - - tfidf 0

word+dom de 6.91 lr 5 - 0.81 tfidf 0
it 7.33 svm 2 - 1.41 bm25 0
cz 1.82 svm 1 - 0.11 bm25 1

pos+dom de 3.51 lr 1 - 1.21 tfidf 1
it 5.41 lr 1 - 1.91 tfidf 2
cz - rf 1 400 1.91 tfidf 1

dep+dom de 6.63 lr 1 - 0.81 bm25 0
it 6.69 svm 2 - 0.51 tfidf 0
cz 6.18 lr 5 - 0.61 tfidf 2

Multilingual

word 4.31 lr 5 - - bm25 2
pos 1.61 lr 2 - - bm25 3
dep 4.29 lr 1 - - bm25 2
dom 0.09 svm 1 - - bm25 0
Crosslingual

pos de 3.42 svm 5 - - bm25 1
it 1.26 svm 5 - - bm25 1
cz 0.04 svm 1 - - bm25 4

dep de 0.15 svm 5 - - bm25 5
it 0.04 svm 5 - - bm25 1
cz 0.02 svm 1 - - bm25 4

dom de 0.21 svm 1 - - tfidf 0
it 3.31 svm 1 - - tfidf 0
cz 0.11 svm 1 - - tfidf 0

Table 9: The parameter values used for models reported in Section 4.. We present the best values from the random search
which was stopped after 2000 iterations or when the search space was exhausted.

scores 0 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2 4.3 5.1 5.2 5.3
number of essays 21 40 184 148 168 174 134 99 111 86 39 19

collapsed to 5 1 2 3 4 5
number of essays 0 245 490 344 144

collapsed to 3 1 2 3
number of essays 245 624 354

Table 10: This table shows how the scores are grouped into more coarse-grained classes (non-collapsed (all scores), col-
lapsed to five classes, collapsed to three classes). The numbers of essays in each class appear in this table as well.
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