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Abstract

We propose a learning method with categorial grammars using inference rules.
The proposed learning method has been tested on an artificial language fragment
that contains both ambiguity and recursion. We demonstrate that our learner has
successfully converged to the target grammar using a relatively small set of initial
assumptions. We also show that our method is successful at one of the celebrated
problems of language acquisition literature: learning the English auxiliary order.

1. Introduction
Unsupervised learning of natural language grammar is a challenging task. One of the
challenges is learning a finite description, a grammar, of an infinite language using a
finite amount of input. Besides, human languages are full of ambiguity, which contributes
to the challenge of the learning experience. In this paper we present a computational
language learner that successfully learns an artificial grammar exhibiting both challenges.
The method is based on learning a categorial grammar in an unsupervised fashion.1

Categorial Grammar (CG) is a lexicalized grammar formalism with a high level of
transparency between syntax and semantics. These features make CG an attractive for-
malism for computational studies of language acquisition. The lexicalized nature of the
CG reduces learning syntax to learning a lexicon, while the close connection between
syntax and semantics helps learning one using the other.

One of the earliest studies of CG learners was proposed by Buszkowski & Penn
(1989). Their system used unification of type-schemes to determine categorial grammars
from functor-argument structures. Kanazawa (1998) extended this algorithm to learn from
strings of words. A number of applied studies (e.g. Waldron 1999, Villavicencio 2002,
Buttery 2006) followed similar approaches to learn CG based grammars. Waldron (1999)
used a rule-based method to infer a CG from input labeled with basic syntactic types.
Villavicencio (2002) proposed a method that improves the performance of Waldron’s
system by describing an unconventional universal grammar based on CG, and using se-
mantically annotated input. Watkinson & Manandhar (2000) presented an unsupervised
stochastic learner which aims to learn a compact lexicon. They assumed that the set of
possible categories are known, which maps the problem of grammar induction to cate-
gorization. The system achieved perfect accuracy in an artificial corpus. However, its
performance dropped to 73.2% in lexicon accuracy and 28.5% in parsing accuracy when
tested on the more realistic LLL corpus (Kazakov, et al. 1998).

This paper proposes an unsupervised method to learn categorial grammars. The
learner is provided with a set of positive sentences generated by a target grammar. Un-
known categories are learned by applying a set of inference rules incrementally. When

1We use the term ‘unsupervised’ in the sense that the learner is not provided with the information about
the structure of the input sentences. Although non-standard, this use of the term is common in computational
linguistics literature (e.g. Klein 2005, Watkinson & Manandhar 2000)
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there are multiple choices, a simple category preference (SCP) principle that is inspired
by the MDL principle (Rissanen 1989) is used to minimize the size of the grammar. We
intend to develop this algorithm further to learn from real language corpora. However,
in this paper we show that the learner is able to infer a recursive and ambiguous artificial
grammar and learn the English auxiliary word order from a set of input sentences that are
considered insufficient for the task.

The next section gives a short introduction to CG. Section 3 describes our learning
architecture. Section 4 presents two experiments and discussion of the results together
with limitations of our approach. In the last section we provide brief conclusions and
address future directions.

2. Categorial Grammar
Categorial grammar (Ajdukiewicz 1935, Bar-Hillel 1953) is a lexicalized grammar for-
malism. CG describes all the language specific syntactic information inside the lexicon,
leaving only a small number of universal rules outside the lexicon. We present a very brief
introduction to CG here, more comprehensive description can be found in Wood (1993).

Every word in a CG lexicon is assigned to a syntactic category. A limited set of
categories constitutes the basic categories of the grammar. For example, S (sentence), NP
(noun phrase), N (noun) are commonly assumed to be the basic categories for English.
Complex categories, such as NP/N, S\NP, (S\NP)\(S\NP), are formed by combining any
two CG categories with a forward (/) or backward (\) slash. Given the lexicon with
categories of this form, the only rules of the CG are given in (1).

(1) Function application rules
Forward application A/B B → A (>)
Backward application B A\B → A (<)

CG as described above is weakly equivalent to Context Free Grammars, and cannot
model the complexity of natural languages adequately. However, there are extensions
such as Combinatory Categorial Grammar (CCG, Steedman 2000) that provide necessary
descriptive and theoretical adequacy by introducing additional operations. In this work,
we learn classical Categorial Grammars, while making use of some of the CCG operations
in (2), namely composition and type raising, during the learning process.

(2) a. Function composition rules:
Forward A/B B/C → A/C (> B)
Backward B\C A\B → A\C (< B)

b. Type raising rules:
Forward A → T/(T\A) (> T)
Backward A → T\(T/A) (< T)

3. Learning by Inference Rules
In this section we first introduce a series of inference rules used to perform grammar
induction. Then we will present the complete learning architecture along with an example
demonstrating the learning process.
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3.1. Grammar Induction by Inference Rules

Our inference rules work when there is only one unknown category in the input. In the
rule descriptions below, the letters A, B, C and D represent known categories, X represents
the unknown category.

(3) Level 0 inference rules:
B/A X → B ⇒ X = A ifA #= S
X B\A → B ⇒ X = A ifA #= S

(4) Level 1 inference rules:
A X → B ⇒ X = B\A ifA #= S
X A → B ⇒ X = B/A ifA #= S

We define level as the number of functioning slash operators in a category. Functioning
slash operators are functors that take an argument of one type and result in another during
the derivation. Consequently, the basic categories are of level 0. The category S\NP
belongs to level 1. Note that the category of adverbs (S\fNP )\f (S\NP ) belongs to level
2. Although it has three slashes, only the slashes marked with subscript f are functioning,
i.e. can be used in a derivation.

Level 0 and level 1 inference rules can be successfully used to learn the category of
intransitive verbs, such as slept in Peter slept. The condition if A #= S in (3) and (4),
prevents learning a large number of incorrect categories.2 For example, S\S for the word
well from Peter slept well. As stated before, the category of adverbs belongs to level 2, so
we need a level 2 inference rule to learn this category.

(5) a. Level 2 side inference rules:
X A B → C ⇒ X = (C/B)/A
A B X → C ⇒ X = (C\A)\B

b. Level 2 middle inference rule:
A X B → C ⇒ X = (C\A)/B

Level 2 inference rules are divided into two parts: the side rule and the middle rule,
depending on whether an unknown category is at the beginning/end of a sentence or in
the middle.

Notice that in (5b) the category (C/B)\A is as viable as the inferred category (C\A)/B.
This can be shown by the following example of left-combining rule and right-combining
rule.

(6) a. left-combining rule:
A X B → C

left−combining−−−−−−−−−→
divide AXB

(AX) B → C
level 1−−−−→
rule(4)

AX = C/B
divide AX−−−−−→ A X→ C/B

level 1−−−−→
rule(4)

X = (C/B)\A

b. right-combining rule:
A X B → C

right−combining−−−−−−−−−→
divide AXB

A (XB)→ C
level 1−−−−→
rule(4)

XB = C\A divide XB−−−−−→ X B → C\A level 1−−−−→
rule(4)

X = (C\A)/B

2This is against the real world situation since the category S\S is a valid CG category. The problem
can be possibly solved by putting S in a less favorite position in the simple category preference principle in
later work.
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Figure 1: Index in the input string

As shown in the above example, left-combining and right-combining rules produce
different but equivalent outputs. Our algorithm uses the right-combining rule when re-
cursively dividing all the entities into two parts and whenever there are possibilities to
combine an unknown category with either the left one or the right one, we always com-
bine with the right one.3

It might seem that using (5b) we can learn the category of (S\S)/NP for the prepo-
sition with from the sentence Peter slept with Mary. But this will not happen: the level
2 inference rule is implemented by recursively calling level 0 and level 1 inference rules,
all of which have the condition if A #= S to prevent generating the category S\S. As
a matter of fact, none of the level 0-2 rules could help learning the category of with from
the sentence Peter slept with Mary. So we need to use a level 3 inference rule.

(7) a. Level 3 side inference rules:
X A B C → D ⇒ X = ((D/C)/B)/A
A B C X → D ⇒ X = ((D\A)\B)\C

b. Level 3 middle inference rules:
A X B C → D ⇒ X = ((D\A)/C)/B
A B X C → D ⇒ X = ((D\A)\B)/C

3.2. The Learning Architecture

The learning framework consists of three parts: the edge generator, the recursive learner
and the output selector. A schematic description of the learning process is provided in
Figure 2. Below we provide a detailed description of the three parts, along with demon-
stration of learning the ambiguous and recursive categories of with in Figure 1.

The Edge Generator implements a variation of the CYK algorithm, which employs
bottom-up chart parsing. Every known word in a sentence is an edge in the chart. The
edge generator then tries to merge any consecutive edges into a single edge recursively. In
order to produce as many edges as possible, besides function application rules (>,<), we
have also used the composition (> B,< B) and the type raising (> T ,< T ) rules. Table 1
shows all possible edges generated for the example in Figure 1.

The Recursive Learner performs grammar induction by the rules given in Subsection
3.1. The learning process first tries to learn from level 0 or level 1 inference rules. If the
unknown word cannot be learned by level 0 or level 1 inference rules, higher level rules
are tried by recursively dividing all the edges in a sentence into two parts and then calling
level 0 or level 1 inference rules to learn (This process is also shown in (6)). Following
the simple category preference (SCP) principle, if a category can be inferred with a lower
level rule, we do not attempt to use higher level rules.

3We realize that this rule may lead to wrong choices for other languages, and plan to relax it in future
work.
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span rule used category span rule used category
1 (0, 1) >T S/(S\NP) 6 (0, 3) >B S/N
2 (0, 2) >B S/NP 7 (1, 4) > S\NP
3 (1, 3) >B (S\NP)/N 8 (2, 4) <T S/(S\NP)
4 (2, 4) > NP 9 (0, 4) < S
5 (5, 7) > NP 10 (0, 4) > S

Table 1: Generated edges in a chart

A B X C
cat span cat span cat span cat span

1 NP (0, 1) S\NP (1, 4) ((S\NP)\(S\NP))/NP (4,5) NP (5, 7)
2 S/(S\NP) (0, 1) S\NP (1, 4) ((S\NP)\(S\NP))/NP (4,5) NP (5, 7)
3 S/NP (0, 2) NP (2, 4) (NP\NP)/NP (4,5) NP (5, 7)
4 S/NP (0, 2) S/(S\NP) (2, 4) (NP\(S/(S\NP)))/NP (4,5) NP (5, 7)
5 S/N (0, 3) N (3, 4) (N\N)/NP (4,5) NP (5, 7)

Table 2: Categories learned from the rule A B X C → S
for the sentence in Figure 1.

For the input in Figure 1, the level 0 and level 1 inference rules are not enough. Only
the level 3 middle inference rules (7b) can be applied. Table 2 gives a list of all the
possible categories using this inference rule.

The Output Selector tests the learned categories produced by the recursive learner
and selects the ones that can be parsed using only function application rules. The cate-
gories that do not produce a valid parse with function application rules are discarded.

In Table 2, the sentence cannot be parsed using the category in row 4, so this category
is discarded. Rows 1 (or equal category in row 2), 3 and 5 provide the learned categories.

4. Experiments and Results
We conducted two experiments with our learning system. In the first experiment, we
tested the system’s capabilities on an artificial language exhibiting a certain level of am-
biguity and recursion. In the second experiment, we tried to learn the English auxiliary
order, a well known problem in language acquisition literature.

4.1. Experiment 1: Learning an Artificial Grammar

For this experiment, we have created a small English-like artificial grammar. The lexical-
ized grammar that is used as the target grammar for this experiment is listed in Table 3.
The input to the learner consists of 160 sentences (2 to 7 words in length) generated by
the target grammar. Only correct sentences are used. The input sentences are unlabeled,
except for nouns (N ) and noun phrases (NP ). Thus the learner first searches sentences
with only one unknown word and tries to learn this word. Then it takes into account
the learned category and searches for other sentences with unknown words. Using this
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Figure 2: Learning process using inference rules

Peter := NP Mary := NP with := (N\N)/NP
book := N green := N/N with := ((S\NP)\(S\NP))/NP
colorless := N/N sleep := S\NP furiously := (S\NP)\(S\NP)
a := NP/N telescope := N give := ((S\NP)/NP)/NP
the := NP/N saw := (S\NP)/NP read := (S\NP)/NP
run := S\NP

Table 3: Target grammar rules

“bootstrap”-like method the learner is expected to converge to the target grammar.
After only a single pass through input sentences, all categories in our target grammar

presented in Table 3 are learned correctly. The learned grammar includes only one lexical
item (with := (NP\NP )/NP ) that is not in the target grammar. This, however, is a use-
ful generalization which allows deriving structures like [Peter [saw [Mary [with [a tele-
scope]]]]], while our original grammar does not.

4.2. Experiment 2: Learning Correct Word Order

The difficulty of learning English auxiliary order has also been used as a support for the
poverty of the stimulus (POTS) argument, and hence for linguistic nativism. Introduced
first by Kimball (1973), the problem can be summarized as follows: the English auxiliary
verbs should, have and be occur exactly in this order and all of them are optional. The
claim is that while sentences containing a single auxiliary (8a–8c) or two auxiliaries (8d–
8f) are present in the input, sequences of three auxiliaries (8g) are not frequent enough.
Hence, it is not possible to learn the correct three-auxiliary sequence from the input alone.
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should := (Ss\NP )/(S\NP )
should := (Ss\NP )/(Sh\NP )
should := (Ss\NP )/(Sb\NP )
have := (Sh\NP )/(S\NP )
have := (Sh\NP )/(Sb\NP )
be := (Sb\NP )/(S\NP )

Table 4: Categories of some auxiliary verbs.

(8) a. I should go.
b. I have gone.
c. I am going.
d. I have been going.
e. I should have gone.
f. I should be going.
g. I should have been going.
h. *I have should been going.

The argument is controversial, and Pullum & Scholz (2002) have shown that there are
more three-auxiliary sequences in children’s input than claimed. In this study, we choose
another approach: we present our learner with sentences containing only one or two aux-
iliaries (as in (8a-8f)), and we test if it can correctly recognize and generate sentences
with three auxiliaries. The experiment setting is the same as in experiment 1. The only
additional information provided is the type of sentences, i.e. every given input is marked
with the “mood of the sentence”. As well as simple declarative sentences (S), we used
Sb, Sh and Ss for sentences with modal verbs be, have and should respectively.

Table 4 presents a fragment of the learned grammar. The derivation of the sentence
(8g) using the learned grammar is given in Figure 3. As can be verified easily, the lexical-
ized grammar presented in Table 4 would not allow sequences as in (8h). The categories
assigned to auxiliary verbs by the learner completely, and correctly derive the English
auxiliary order.4

Success of the learner is again due to its assignment of words to syntactic categories.
The categories induced from one- and two-auxiliary sequences in a logical way extend
naturally to three-auxiliary sequences.

4.3. Discussion

We have presented a learner that learns syntax using CG. One of the characteristics of
our method is that it learns from input without any structure, semantic annotation or neg-
ative evidence. Although there are theoretical results about learnability on only strings
(Kanazawa 1998), and more applicable research about learning from sentences annotated
with structures (Villavicencio 2002, Buttery 2006), applied work on learning from strings

4An alternative approach would be assuming that the sequences like ‘should have been’ are learned as
single units, at least at the beginning of the learning process. Lexical items spanning multiple input units are
considered by some of the related learners (e.g. Zettlemoyer & Collins 2005, Çöltekin & Bozsahin 2007).
However, to be compatible with the original claim, the learner presented in this paper assigns categories to
single input units.
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I should have been going.
NP (Ss\NP )/(Sh\NP ) (Sh\NP )/(Sb\NP ) (Sb\NP )/(S\NP ) S\NP

>

Sb\NP
>

Sh\NP
>

Ss\NP
<

Ss

Figure 3: Derivation of the correct word order.

is rather limited. This study is our first attempt to fill this gap. Although the experi-
ments are based on artificial data, our aim is to further develop the method and apply it
on real-world linguistic input.

The simple inference rules used here are admittedly ad-hoc and we have not yet at-
tempted to provide the guarantee of convergence. Our main goal with this method is
to experiment with the possibilities of exploiting the information in the linguistic input,
rather than to find a learning algorithm that is guaranteed to learn in a wide range of input
distributions. For the fragment of the English grammar captured by our artificial language
learning experiments, the results are promising.

The method is in essence similar to unification based learner of Buszkowski & Penn
(1989), which learns from structurally annotated input. Unfortunately, Kanazawa’s ex-
tension of the algorithm to learn from strings is computationally intractable. The use of
ad-hoc rules and constraints instead of standard learning framework is motivated by the
aim of using of a reasonable amount of input and computational resources.

The input to our learner is partially annotated. This approach carries an affinity to
the partial learning system described by Moreau (2004). However, crucially, the anno-
tation provided to our learner does not contain any structure. Moreau (2004) especially
makes use of high-frequency closed-class words with categories that give hints about the
structure of the input sentences. This is useful in practical computational linguistic ap-
plications, as it helps inducing a grammar with relatively small amount of annotation.
However, our approach is more plausible for language acquisition, as children are known
to learn nouns earlier than other word classes (Gentner 1982).

Another apparent limitation of our learner is that it only learns from the input that
contains only one unknown word. This avoids the combinatorial expansion of hypoth-
esized categories and keeps the required computational resources low, and this worked
fine for our artificial grammar learning experiments.5 For language acquisition, this is not
a wildly wrong assumption. We assume that the children do not understand and, hence,
make use of complicated input at first sight. However, the category of the word can still
be inferred, when the same word later appears in an understandable context.

The output selector only selects the categories that can be parsed by the AB grammars.
This could lead to inconsistency with the target grammar: if the target grammar can only
be parsed by more complicated CCG rules while the output selector only uses AB rules,
or if the target grammar can be parsed by AB rules while the output selector uses CCG

5It should also be noted that, the algorithm can be adapted to use the input with ‘k unknown words’ with
the expense of additional computational resources.
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rules. Here we do not think there will be big problems: the initial setting is to use AB
rules, when there are no candidates under AB rules, the output selector adjusts to more
rules to produce an output. The simple category preference guarantees that no matter how
complex rules are used, the output category will stay as simple as possible.

The inference rules are simple and even intuitive. Although there is no solid psycho-
logical evidence that children learn a grammar in an inference-rule-based way, the 100%
correct results in parsing and generation by our model suggests that it is sufficient to as-
sume that children use a small set of rules together with a plausible inference procedure
for learning the categories of unknown words. The only other additional piece in our
learning algorithm is a preference towards simpler categories.

This method performs well on learning a typical language phenomenon such as learn-
ing English auxiliary order. We have shown that only being exposed to one- and two-
auxiliary sequences, our simple algorithm generalized correctly to sentences containing
three auxiliary verbs. Even if the POTS claims are correct, children can still learn correct
forms with simple inference mechanisms.

5. Conclusion
We described a method to learn categorial grammars using inference rules. Our method
has learned all the categories of the target grammar. We use simple logical and intuitive
inference rules to solve the problem of unknown categories in the input. The only addi-
tional aid provided to our learner is the simple category preference. Using only this set of
initial assumptions, our system is also able to learn a phenomenon that has been consid-
ered difficult. The learner is able to infer English auxiliary order correctly without being
presented with all possible sequences.

However, it is necessary to note that our system has a number of limitations. First,
these results were obtained using data that was generated artificially. Second, since we
do not use any statistical inference mechanism, our system is not robust against noise.
Using statistical patterns in the input language, it may also be possible to relax some of
the assumptions presented here. This is a limitation when the amount of data is not large
enough to “bootstrap” the learner.

Future work includes developing the algorithm further and evaluating it on real data,
such as child-directed speech from CHILDES database (MacWhinney 2000).
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