
TRmorph: A morphological analyzer for Turkish

Çağrı Çöltekin

Draft: December 16, 2013

This document describes the new/development version of TRmorph. As such, there may be some mismatches between
what is documented here and how the analyzer behaves. This version is a complete overwrite of the previous version
reported in Çöltekin 2010. If you are using the older version (you shouldn’t), this document is probably useless for
you.

1 Introduction

TRmorph is an open-source1 finite-state morphological
analyzer for Turkish. This document describes how to
use the tools that comes with this package, as well as
some implementation details that may be helpful for peo-
ple who want to customize this open-source tool for their
own needs. The complete source of the analyzer and a
web-based demo can be accessed through http://www.
let.rug.nl/coltekin/trmorph.
This document describes the current version of the an-

alyzer. This version is a complete rewrite of the earlier
version report in Çöltekin 2010. The earlier version of
TRmorph was implemented using SFST (Schmid 2005),
the current version is implemented with more popular fi-
nite state description languages lexc and xfst from Xerox
(Beesley and Karttunen 2003), using Foma (Hulden 2009)
as the main development tool.
The lexc/xfst implementation of TRmorph should com-

pile with any lexc/xfst compiler without much additional
effort. The only foma-specific notation used in the mor-
phology description is about handling simple reduplica-
tion, which can also be handled with twolc rules, or
compile-replace (Beesley and Karttunen 2003).2

1Current version of TRmorph is licensed under GNU Lesser General
Public License. See README file in the TRmorph distribution for more
information.

2TRmorph can be compiled with HFST (Lindén et al. 2009) without
modification since HFST uses foma as the back end for parsing xfst files.

2 How to use it

2.1 Compilation from the source
To compile TRmorph from the source, you need a lex-
c/xfst compiler such as foma, a C preprocessor, GNU
make and some standard UNIX utilities.
If all requirements are in place, to build analyzer/gen-

erator FST, you should type make in the main TRmorph
distribution directory. The resulting binary automaton file
will be trmorph.fst.
Trmorph comes with a set of other finite-state tools that

are useful in various NLP tasks. Currently, tolls for the
following tasks are distributed together with TRmorph.

• stemming/lemmatization
• morphological segmentation
• hyphenation
• guessing unknown words

To compile these tools, you should specify the FST
you want to build as an argument to make, e.g.,
make stemmer will build an binary automaton called
stem.fst. These additional tools are described in Sec-
tion 6.

2.2 Customizing TRmorph
TRmorph is an open source utility. As a result, you are
free to modify the source according to your needs. Source

1

http://www.let.rug.nl/coltekin/trmorph
http://www.let.rug.nl/coltekin/trmorph
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html


code includes some useful comments on what/how/where
things are done. Furthermore, TRmorph can be cus-
tomized for some common choices during the compila-
tion. These options are typically related to more relaxed
analysis. For example whether to allow non-capitalized
proper names, or analyze (and generate) text written in all
capitals, or set the decimal and thousand separator in num-
bers. These options are set in the file options.h. The
file contains documentation along with the existing op-
tions. This feature is under development (as of July 2013),
new options are currently being added, and existing op-
tions may not fully work as intended yet.
Another common need for customizing a morphologi-

cal analyzer is to add or modify the lexical entries. The
lexicon structure and format of the lexical entries are de-
scribed in Section 4.

2.3 Trying it out

Assuming you have built the binary trmorph.fst using
foma, you can simply start foma and use xfst commands
implemented in foma to analyze and generate the words.
Here is an example session:

$ foma
foma[0]: regex @"trmorph.fst";
2.1 MB. 62236 states , 135237 arcs, Cyclic.
foma[1]: up okudum
oku<V><past ><1s>
foma[1]: down oku<V><past ><2s>
okudun

The first line is typed at the shell prompt to start foma.
The second line reads the FST specified in trmorph.fst
into the foma environment. The fourth line asks for the
analysis of the verb okudum ‘I read-PAST’, and the fifth
line is the output of the analysis. The sixth line asks for the
generation of the analysis string produced earlier, modify-
ing the agreement marker to second person singular agree-
ment.
Note that part of the output is removed for readabil-

ity. We should also note that this example presents one of
the rare cases where the analysis is unambiguous. Turk-
ish morphological analysis is an ambiguous process, and
TRmorph does not try to avoid it during the analysis (see

Section 5).3
Once you are convinced that the output may be useful

for your purposes, you will probably want to use it for
analyzing large amount of text. For batch analysis tasks
foma’s flookup utility is a better fit.
To use the analyzer with the HFST, you need to compile

the source automaton with HFST tools.

3 The tagset
The description of the morphology in TRmorph mostly
follows Göksel and Kerslake 2005. However, there are
some divergences, and tags used in TRmorph analyses
does not necessarily match with any of the tags used in
any grammar book. This section describes the tags used
in the current version of TRmorph. The aim of this sec-
tion is to help users understand the output of the system.
Occasional discussion of the morphological process is in-
cluded, but this section documents neither themorphology
of the language nor theway it is implemented in TRmorph.
Our focus in this section is to describe the tags one finds
in the analysis strings produced by the analyzer (or tags
one needs to use for generation). The index at the end of
the document also allows easy access to the points where
a particular tag is defined or mentioned in this document.
A clarification of the notation for the surface forms is

in order before starting the documentation of the tagset
and related suffixes. Suffixes in Turkish often contain
under-specified vowels and consonants that are resolved
according to morphophonological rules, like vowel har-
mony. These vowels and consonants are indicated with
capital letters listed below.

A is realized as either ‘a’ or ‘e’.

I is realized as either ‘ı’, ‘i’, ‘u’ or ‘ü’.

D is realized as either ‘d’ or ‘t’.

P is realized as either ‘p’ or ‘b’.

K is realized as either ‘k’, ‘ğ’ or ‘y’.

3For most purposes, the output of the morphological analyzer needs
to be disambiguated. There are quite a few morphological disambigua-
tors for Turkish reported in the literature, but, as yet, there are no disam-
biguators that work with TRmorph output.

2



C is realized as either ‘c’ or ‘ç’.

A letter in parentheses indicate a buffer consonant or
vowel, that may be dropped in certain contexts.

3.1 General structure of analysis strings
Before describing individual morphological tags used in
analysis strings, this section briefly describes the general
structure of the analysis strings produced (or accepted in
the generation model) by TRmorph. In this document we
use the term morphological tag for symbols such as ⟨V⟩,
or ⟨past⟩. The term morphological analysis (or analysis)
is used for a root word followed by a sequence of mor-
phological tags. In the example presented in Section 2.3,
the analysis oku⟨V⟩⟨past⟩⟨1s⟩ (for the word okudum ‘I
read-PAST’) consists of the root word oku ‘read’ and
morphological tags ⟨V⟩, ⟨past⟩ and ⟨1s⟩ that correspond
to part-of-speech category of the root (verb), past tense
marker and first person singular subject–predicate agree-
ment marker. The inflections that are default for a word
category, such as the fact that the word above positive (or
is not negated), are not indicated in the analyses.
An interesting aspect of Turkish morphology is that the

words cannot just be analyzed as belonging to a syntactic
category and having a set of inflections based on a cat-
egory. An inflected word may change its part of speech
and may also get further inflections. Example (1) demon-
strates this process with the analysis of of the word evdek-
ilerinkithe ones that belong to the ones in the house, as in
‘the book that belong to the people in the house’.

(1) ev⟨N⟩⟨loc⟩⟨ki⟩⟨Adj⟩⟨0⟩⟨N⟩⟨pl⟩⟨gen⟩⟨ki⟩⟨Adj⟩

The example analysis in (1) can be broken down int fol-
lowing steps.

1. The initial noun ev with the locative maker.

2. Addition of the suffix -ki makes an adjective.

3. The adjective becomes a (pro)nominal with a zero
derivation, which is inflected for plural and genitive
case.

4. Yet another -ki is suffixed, and the word becomes an
adjective again.4

4More likely reading of this example includes another zero derivation
causing final POS to be again noun.

The example in (1) is also interesting because of the
fact the suffix -ki may result indefinitely long words (see
Section 3.5).
In Turkish NLP literature, this process is reflected by

so-called inflectional groups (IGs) that, for example, can
participate in dependency relations. In one sense each step
in the above description describes a different inflectional
group. The analysis strings produced (or accepted in the
generation model) by TRmorph follow the idea of inflec-
tional groups with a slight difference than the examples
in the literature. TRmorph makes a distinction between
the derivational marker that leads to the POS tag of a IG
from the inflectional features of the IG, and the deriva-
tional marker is always precedes the POS tag. For exam-
ple, the second inflectional group in (1) is ⟨ki⟩⟨Adj⟩, indi-
cating the adjective derived by ⟨ki⟩ has not (non-default)
inflections.
By default, TRmorph does not mark IG boundaries ex-

plicitly. However, one can easily trace the IG changes fol-
lowing the POS tags. All POS tag names start with a cap-
ital letter, while other tags always start with a lowercase
letter or number. The tag immediately before a new POS
tag is always the derivational marker that lead to the new
POS tag. If the derivation does not have a corresponding
surface affix, a zero-derivation tag ⟨0⟩ is inserted before
the POS tag.

3.2 Part-of-speech tags
All part-of speech tags used in TRmorph are listed in

Table 1. Most POS tags are self explanatory, and does not
require much explanation. The following part of speech
tags are somewhat unusual and deserves some explana-
tion.

⟨Exist⟩ is used for two words var ‘existent/present’ and
yok ‘non-existent/absent’, where the latter is marked
as ⟨Exist:neg⟩, indicating that it is the negative
form (see Section 3.3, for the details of this notation).
These words behave mostly like nouns in their pred-
icate function (with zero copula), but marking them
simply as nouns does blur their function.

⟨Not⟩ is used for değil ‘not’ only. Like var and yok, değil
also behaves like nominal predicates. But again,
marking it as noun or verb hides the fact that it has a
special function.

3



Table 1: The list of part of speech tags in TRmorph.

Tag Description
⟨Alpha⟩ Symbols of the alphabet
⟨Adj⟩ Adjective
⟨Adv⟩ Adverb
⟨Cnj⟩ Conjunction
⟨Det⟩ Determiner
⟨Exist⟩ The words var and yok
⟨Ij⟩ Interjection
⟨N⟩ Noun
⟨Not⟩ The word değil
⟨Num⟩ Number
⟨Onom⟩ Onomatopoeia
⟨Postp⟩ Postposition
⟨Prn⟩ Pronoun
⟨Punc⟩ Punctuation
⟨Q⟩ Question particle mI
⟨V⟩ Verb

⟨Q⟩ is used for the question particle -mI. The question par-
ticle is written separately from the predicate it mod-
ifies. However, the preferred analysis of question
particle in TRmorph is together with the predicate.
This ensures that it follows the correct form of the
predicate it is attached to, and vowel harmony is ap-
plied correctly. However, since we do not assume
that the input is tokenized with this assumption, this
form make sure that the input is analyzed with the
cost of precision. The question particle is discussed
further in Section 3.15.

3.3 Subcategorization of lexemes
Besides the major major POS tags or word classes dis-
cussed above, TRmorph makes use of a set of subcategory
tags to mark features that are part of a lexeme. Typically
the subcategorization is applied to a root form in the lexi-
con, but some morphemes and POS tags after a derivation
may also receive a subcategory tags. Subcategories de-
fined here are features of a morpheme that do not have
a surface realization. Representing these features using
a different notation allows one to make this distinction,

and the surface–analysis mapping becomes (almost) one-
to-one. If a representation where all tags have a uniform
notation is desired, the analyzer source can be modified
accordingly, or easier, a simple regular expression based
converter can be used.
The subcategories generally mark semantic differ-

ences, but they may also result in morphosyntactic dif-
ferences. Lexical subcategorization in TRmorph output
is marked using the syntax ⟨Cat:subcat1:subcat2:…⟩,
where ‘Cat’ is a major category and ‘subcat1’, ‘subcat2’
and so on are sub categories. The order of subcategory
tags are not important (although they are produced in a
consistent order). A typical example of a subcategory is
proper nouns, which are tagged as ⟨N:prop⟩.
The following lists subcategories used in TRmorph for

all word classes that may be specified together with a sub-
category.

Nouns Besides the tag ⟨N:prop⟩ marking proper
names, abbreviated nouns are marked with the tag
⟨N:abbr⟩. For an abbreviated proper name, the tag
is ⟨N:prop:abbr⟩.

Conjunctions are subcategorized as coordinating, ad-
verbial or subordinating conjunctions, marked us-
ing tags ⟨Cnj:coo⟩, ⟨Cnj:adv⟩, ⟨Cnj:sub⟩ respec-
tively.
The last one of these categories, ⟨Cnj:sub⟩, include
only a limited set of conjunctions which come first
in a subordinate clause. These words currently are
ki, eğer and şayet (all borrowings from Persian). The
other subordinating particles/words occur at the end
of subordinate clauses, and they are marked as post-
positions (⟨Postp⟩) described below. Furthermore,
most of the subordination in Turkish is done through
suffixation which is described in Section 3.16.

Pronouns Pronouns are further categorized as personal,
demonstrative and locative pronouns, marked us-
ing ⟨Prn:pers⟩, ⟨Prn:dem⟩, ⟨Prn:locp⟩ respec-
tively. Furthermore, the pronouns that form ques-
tions, like kim ‘who’, and ne ‘what’, are marked as
⟨Prn:qst⟩. Subcategory markers for both aspects
can be present. For example kim ‘who’ would be
marked as ⟨Prn:pers:qst⟩.
Besides the above subcategories, personal pro-
nouns get person-number agreement markers. These

4



markers can be useful in subject-predicate agree-
ment as well as in other constructions (such
as genitive-possessive construction involving pro-
nouns). However, the agreement in Turkish is far
from trivially determined (see Göksel and Kerslake
2005, pp.116–122). The markers ⟨Prn:pers:1s⟩,
⟨Prn:pers:2s⟩, ⟨Prn:pers:3s⟩, ⟨Prn:pers:1p⟩,
⟨Prn:pers:2p⟩ and ⟨Prn:pers:3p⟩ are tags used
for the personal pronouns with person-number agree-
ment. The agreement markers are further discussed
in Section 3.13.

The reflexive pronoun kendi and its different person
forms are marked as ⟨Prn:refl⟩. Like other per-
sonal pronouns, reflexive pronouns are also marked
with a person agreement marker.

Subcategorization of pronouns, particularly as per-
sonal pronouns, are sometimes not a clear decision.
Subcategories of some pronouns are left unspecified
even though they are often used as personal pro-
nouns, and some pronoun marked as personal pro-
nouns may refer to entities other than people.

Determiners are marked for definiteness. Definite de-
terminers are marked ⟨Det:def⟩ and indefinite de-
terminers are marked ⟨Det:indef⟩. The question
words that fill the same syntactic slot as determiners
ne kadar ‘how much’ and hangi ‘which’ are tagged
with ⟨Det:qst⟩.
Further subcategorization of determiners (for exam-
ple quantifiers) can be implemented in the future.

Postpositions are always subcategorized in two dimen-
sions. First subcategory is the syntactic category
(POS) of the resulting postpositional phrase, ei-
ther an adjectival or adverbial phrase, marked as
⟨Postp:adj⟩ and ⟨Postp:adv⟩ respectively. Note
that unlike other POS tags, these category markers
start with a lowercase letter.

Postpositions choose their noun phrase comple-
ments. Besides the category of the resulting phrase,
postpositions also include a tag specifying the re-
quirement for the complement noun phrase. The
tag marking required complement type is formed
by a concise description of the requirement fol-
lowed by the capital letter ‘C’. The postposi-

tions that require the complement to be in abla-
tive, accusative, dative, genitive and instrumental
cases are marked ⟨Postp:ablC⟩, ⟨Postp:accC⟩,
⟨Postp:datC⟩, ⟨Postp:genC⟩, and ⟨Postp:insC⟩
respectively. The postpositions that require the
noun phrase to be suffixed with either -lI or -sIz
are marked with ⟨Postp:liC⟩.5 Postpositions that
require non-case marked complement are tagged
⟨Postp:nomC⟩. Finally, postpositions that re-
quire numeric expressions as their complements are
marked with ⟨Postp:numC⟩. For some the postpo-
sitions that take more than one type of noun com-
plements, TRmorph produces only the (presumably)
most common option. For example, the postpositions
that are marked as ⟨nomC⟩ also take genitive marked
pronouns as complements. Similarly, postpositions
önce and sonra that normally take ablative comple-
ments, can also take bare (non-case-marked) num-
bers or time expressions.

Numbers are tagged as ⟨Num:ara⟩ for Arabic numerals,
and ⟨Num:rom⟩ for Roman numerals. Numbers that
are spelled out are not marked with a subcategory
marker (but still marked as ⟨Num⟩). Besides numbers,
the question word kaç ‘how many’ is also tagged as a
number with a sub tag specifying that it is a question
word, resulting in ⟨Num:qst⟩.

Verbs are currently not subcategorized in TRmorph.
Subcategorizing verbs as transitive and intransitive,
or marking all types (cases) of noun phrase comple-
ments a verb can take is planned and some early steps
are underway as of this writing (July 2013).

Adverbs are not currently subcategorized, except a
few adverbial question words for which the tag
⟨Adv:qst⟩ is used.

Exist The tag ⟨Exist⟩ exists only for two words var ‘ex-
istent/present’ and yok ‘non-existent/absent’. Since
yok is the negative of var, it is tagged as negative:
⟨Exist:neg⟩.

Some verbs, nouns, adjectives, adverbs and conjunc-
tions are formed by more than one written words. Some of

5These suffixes are typically considered derivational suffixes, how-
ever their use resemble case markers.

5



these are adjacent words, like the adverb apar topar ‘hur-
riedly’, but some may be split like the conjunction ya, as
in ya evdedir ya iş yerinde ‘s/he is either at home or the
office’. Furthermore, some of individual ‘words’ in such
constructions cannot be used by themselves, like topar
above. If the non-split multi-word expressions are in-
put to the analyzer together, they are analyzed like other
words of the same class. However, if they are input
word-by-word, a sub tag ⟨:partial⟩ is added to the
main POS tag. For example apar and topar are tagged
as ⟨Adv:partial⟩ and ya is tagged as ⟨Cnj:partial⟩
(more precisely ⟨Cnj:coo:partial⟩). Currently, the
tags ⟨N:partial⟩, ⟨Adj:partial⟩ and ⟨V:partial⟩ are
used for parts of nouns, adjectives and verbs respectively.

3.4 Nominal morphology and noun inflec-
tions

Nouns, pronouns, adjectives and adverbs in Turkish form
the larger class of nominals. Most adjectives, and some
adverbs can function as nouns (or pronouns). For exam-
ple, mavi ‘blue’ may have a noun reading ‘the blue one’.
Similarly, some adverbs like şimdi ‘now’ may take nom-
inal inflections şimdilerde ‘now-PL-LOC = (literally) in
current times’. In TRmorph this is handled by allowing
any adjective or adverb to become an noun with a zero
derivation.6 A zero derivation is always marked with the
tag ⟨0⟩ followed by the new POS tag, in this case ⟨N⟩.
Nouns can be suffixed with the plural suffix, one of the

possessive suffixes and one of the case suffixes. All of
these inflections are optional. When not marked with any
of these suffixes, the default is singular, no possessive
marking, an no case marking (or nominal), respectively.
When these suffixes co-occur, they have to occur in the
order listed, shown in Figure 1. The full list of noun in-
flections are presented in Table 2.
If there is a plural marker, analysis string after the ⟨N⟩

will include the tag ⟨pl⟩. TRmorph does not mark for
singular. If a noun is not marked for plural, it is assumed
to be singular.
The first five suffixes in the lower part of Table 2 are

commonly recognized cases in Turkish. The instrumen-
tal/commutative marker also behaves like case suffixes.

6This certainly generates incorrect analyses for a large number of ad-
verbs which do not ‘nominalize’.

..N. PLU. POSS.

CASE1

.

CASE2

. PLU.

POSS

.

CASE1

.

CASE2

. POSS.
CASE1

.

CASE2

.
CASE

1

. CASE2

Figure 1: Automata depicting noun inflections. The
edge CASE1 represents the locative and ablative suffixes,
CASE2 represents all other case-like suffixes. The rea-
son for the differentiation is due to the fact that the state
CASE1 can be followed by the suffix -ki.

There are two more suffixes, namely -lI and -sIz that can
occupy the same slot, which are marked with tags ⟨li⟩
and ⟨siz⟩ respectively.
Possessive markers follow either the nominal stem, or

the plural marker. The basic function of the possessive
markers are to mark a noun for possession. That is a noun
belonging to some entity, e.g., evi-m ‘my house’ or ev-
i ‘his/her house’. Besides marking for possession, these
suffixes, particularly the third person possessive suffix,
have a number of other functions. The rest of this section
explains some of these usage patterns, and how TRmorph
represents them.
TRmorph normally does not allow adjectivals (adjec-

tives, determiners and numbers) to take any of the posses-
sive suffixes directly. However an adjectival suffixed one
the possessive suffixes may function as a pronoun. Exam-
ples include, üç-ümüz ‘three of us’, bazı(lar)-ınız ‘some
of you’ and eski-si ‘the old one (of them)’. Note that
this usage is different than possessively marked adjec-
tive with the noun interpretation, e.g., not ‘the ’three’ that
belongs to us’ but ‘three of us’. In this use, possessive
markers are treated like a derivational suffix. The ex-
amples above would be analyzed as üç⟨Num⟩⟨p1p⟩⟨Prn⟩,
bazı⟨Det:indef⟩⟨p1p⟩⟨Prn⟩ and eski⟨Adj⟩⟨p3s⟩⟨Prn⟩,
respectively.
A similar usage is observed with verbal nouns and par-

ticiples (see Section 3.16). In these cases the possessive

6



Table 2: Noun inflections.

Function surface tag
Plural -lAr ⟨pl⟩

Po
ss
es
si
ve

First person singular -(I)m ⟨p1s⟩
Second person singular -(I)n ⟨p2s⟩
Third person singular -(s)I ⟨p3s⟩
First person plural -(I)mIz ⟨p1p⟩
Second person plural -(I)nIz ⟨p2p⟩
Third person plural -lArI ⟨p3p⟩

C
as
e

Accusative -(y)I ⟨acc⟩
Dative -(y)A ⟨dat⟩
Ablative -DAn ⟨abl⟩
Locative -DA ⟨loc⟩
Genitive -(n)In ⟨gen⟩
Instrumental/commutative -(y)lA ⟨ins⟩

marker marks the subject of the verb. For example, in par-
ticiple use of oku-yacağ-ım ‘(the book) that I will read’,
the possessive suffix marks who does the reading, and not
a possession relation in the usual sense. Currently trmorph
analyzes this word as oku⟨V⟩⟨part:fut⟩⟨Adj⟩⟨p1s⟩
The -(s)I suffix, listed as ⟨p3s⟩ in Table 2, is highly am-

biguous. One of its many functions that may be confused
with the possessive suffix is forming noun compounds. In
earlier versions of TRmorph, this function of -(s)I was al-
ways marked with the tag ⟨ncomp⟩. This marker can be
useful for marking noun compounds like at arabası ‘horse
carriage’.7 In this use, this tag always causes ambiguities.
Besides the fact that a noun suffixed with -(s)I can either
be marked for possession or as the head of a noun com-
pound, since one of the two -(s)I suffixes following each
other is deleted from the surface form, it can also be both
(a noun compound marked for possession, at arabası ‘his
horse carriage’). In case any or the other possessive mark-
ers are used with a noun compound, the suffix -(s)I is
again deleted (e.g., at arabanız ‘your horse carriage’).

7Even though one can assume that this use is somewhat related to
possession, it is not strictly possessive marking (the horse does not own
the carriage). Furthermore, since a -(s)I after another one is deleted on
the surface, a single -(s)I suffix may also indicate a nominal compound
in possessive form (e.g., ‘someone’s horse carriage’).

In summary, marking heads of nominal compounds are
not straightforward during the analysis. As a result this
marker is a compile time option in the current version (dis-
abled by default). If not enabled, one should note that the
tag ⟨p3s⟩ may indicate a compound head with or with-
out third person singular possessive marking (see also the
discussion of ambiguity regarding ⟨p3s⟩ and ⟨p3p⟩ tags
below).
Another issue with the -(s)I suffix is that a noun marked

with -(s)I may also indicate a third person plural posses-
sor, e.g., onların arabası ‘their car’. In general, if there
is an overt possessor, the preferred third person plural
marker is -(s)I, rather than -lArI. TRmorph marks -(s)I
both as ⟨p3s⟩ and ⟨p3p⟩.
The case (or case-like) suffixes change the role of the

noun (or the noun phrase headed by the noun) in the sen-
tence. For example a locative marked noun phrase may
function as an adverb (saat dokuzda görüşurüz) or an ad-
jective (yedi yaşında çocuk). However, following the
common practice in the literature we do not attempt to
mark possible POS changes after case-like markers.

3.5 The suffix -ki

The suffix -ki, tagged as ⟨ki⟩, attaches to locative or
genitive marked nouns. The suffix may also attach to
nouns expressing (a unit of) time, e.g., ay-ki ‘month-
ki’.8 The resulting word functions as an adjective or
a pronoun. In both cases, TRmorph marks the transi-
tion to an adjective. For example, evdeki is analyzed as
‘ev⟨N⟩⟨loc⟩⟨ki⟩⟨Adj⟩’. Since all adjectives are allowed
to become a noun through a zero derivation, the pronoun
reading is intended to be represented by this change. For
example, the intended analysis for evdeki kitap ‘the book
in the house’ is ‘ev⟨N⟩⟨loc⟩⟨ki⟩⟨Adj⟩’, while analysis for
evdeki uyuyor ‘the one/person in the house is sleeping’ ap-
pends ‘⟨0⟩⟨N⟩’ at the end of the analysis string.
The (pro)noun formed by -ki can further be suffixed

with other nominal suffixes. Although the number of iter-
ations using -ki rarely exceed two in practice, there is no
principled limit. As a result, length of a Turkish word is
in-principle unbounded.

8In this use, the suffix affects a larger ‘time phrase’, like bu yılki
üretim ‘this-year’s production’.

7



3.6 Tags related to nominal predicates

Any nominal in Turkish may become a predicate with one
of the copular suffixes -(y)DI, -(y)mIş, -(y)sA or -(y).
These suffixes correspond to past, evidential, conditional,
and present predicates involving the copula ‘be’. The cop-
ular markers has to precede one of the verbal person agree-
ment markers. For example öğrenciydik ‘we were stu-
dents’, öğrenciymişler ‘they were [evidentially] students’,
öğrenciysen ‘if you are/were a student’, öğrenciyim ‘i’m a
student’. Since the third person singular agreement suffix
is null on the surface and the buffer -(y)- does not surface
in this case, any nominal without additional copular or
person suffixes serve as a nominal predicate with present
copula and third person singular agreement. Additionally,
since a predicate with third person singular agreement also
agrees with a third person plural subject, we additionally
mark such a noun as having present copula and third per-
son plural agreement (for example, babam öğretmen, an-
nem ve ablam doktor ‘my father is a teacher, my mother
and older sister are doctors’).
TRmorph handles this process by allowing any noun

and adjective to first became a verb with a zero deriva-
tion, and then marking it with the appropriate copula and
the person agreement marker. The tags for copula are
⟨cpl:pres⟩, ⟨cpl:past⟩, ⟨cpl:evid⟩ and ⟨cpl:cond⟩
for present, past, evidential and conditional copula re-
spectively. Last three tags are also possible after a verb
with a tense/aspect/modality suffix, and is discussed fur-
ther in Section 3.14. Example analyses for the examples
discussed above would be as follows:
öğrenciydik ⟨N⟩⟨0⟩⟨V⟩⟨cpl:past⟩⟨1p⟩
öğrenciymişler ⟨N⟩⟨0⟩⟨V⟩⟨cpl:evid⟩⟨3p⟩
öğrenciysen ⟨N⟩⟨0⟩⟨V⟩⟨cpl:cond⟩⟨2s⟩
öğrenciyim ⟨N⟩⟨0⟩⟨V⟩⟨cpl:pres⟩⟨1s⟩
öğretmen ⟨N⟩⟨0⟩⟨V⟩⟨cpl:pres⟩⟨3s⟩
doktor ⟨N⟩⟨0⟩⟨V⟩⟨cpl:pres⟩⟨3p⟩
Besides copular suffixes, the suffix -(y)ken (making ad-

verbials from verbs, discussed in Section 3.16) may oc-
cupy the same slot as the copular suffixes, although its
use is more restricted.
The nominal predicate with a copula and person agree-

ment may be followed by the marker Göksel and Kerslake
2005 call ‘generalizing modality marker’, the suffix -DIr.
It is particularly common with ⟨3s⟩ as it disambiguates
between the noun and the predicate reading. The tag for

this marker in TRmorph is ⟨dir⟩.

3.7 Number inflections
The suffix -(ş)Ar, tagged ⟨dist⟩, attached to numbers
form distributive numerals. Besides the numbers (writ-
ten as numerals or spelled out), question word kaç ‘how
many’ may also get this suffix, and tagged with ⟨dist⟩.
The ordinal numerals are formed using the suffix

–(I)ncI, and tagged as ⟨ord⟩. Ordinals are also specified
by a ‘dot’ after Arabic or Roman numerals. TRmorph cur-
rently does not handle this notation.
Percent sign before a numeral is treated like a prefix,

and tagged as ⟨perc⟩.

3.8 Apostrophe behavior
In written text an apostrophe is required after proper nouns
and numbers (official rules are more complicated). How-
ever, the real-world use rather relaxed, and people often
tend not to omit apostrophe.
Another difficult case for apostrophe is after the

compound proper nouns, like Türkiye Büyük Millet
Meclisi ‘Grand National Assembly of Turkey’, Ağrı
Dağı ‘Mount Ararat’ or Öfkeli Şirin ‘Grouchy Smurf’.
Unless tokenized together, the analyzer cannot know that
these words are part of a proper noun, and parts of these
compounds will be tagged as if they are single words.
If the last noun in a compound is part of a proper noun,
an apostrophe is required if further suffixes follow the
last noun. TRmorph allows bare nouns, nouns with an
⟨ncomp⟩ tag or when ⟨ncomp⟩ is not enabled, nouns with
a ⟨p3s⟩ tag to have an optional apostrophe before other
suffixes. This behavior can be disabled during compile
time in options.h.

3.9 Verbal voice suffixes
Turkish verbs can be suffixed with one or more of the
voice suffixes reflexive, reciprocal, causative and passive.
The tags used for these functions are ⟨rfl⟩, ⟨rcp⟩, ⟨caus⟩
and ⟨pass⟩, respectively. The first two are rather unpro-
ductive while causative and passive forms are productive.
Furthermore, causative suffix can be used repetitively.9

9Again, although this is limited in practice, there is no principled limit
on the number of causative suffixes that one can string one after another.

8



Table 3: Suffixes that make compound verbs.

Suffix Tag Expresses
-(y)Abil ⟨abil⟩ ability
-(y)Iver ⟨iver⟩ immediacy
-(y)Agel ⟨agel⟩ habitual/long term
-(y)Adur ⟨adur⟩ repetition/continuity
-(y)Ayaz ⟨ayaz⟩ almost
-(y)Akal ⟨akal⟩ stop/freeze in action
-(y)Agör ⟨agor⟩ somewhat like ⟨iver⟩

With some verbs, use of double causative suffix yields
the same semantics as a single causative suffix. TRmorph
does not treat these cases separately. If surface string has
double causative suffixes, the analysis will include two
⟨caus⟩ tags, regardless of its semantics.
Despite the fact that most grammar books list voice

suffixes under inflectional morphology, TRmorph treats
them as derivations, i.e., a ⟨V⟩ tag follows the voice re-
lated tags.

3.10 Compound verbs
A verbal stem (possibly including voice suffixes) may be
followed by a set of suffixes listed in Table 3 to form com-
pound verbs. These suffixes are related to some stand-
alone verbs.
The first three suffixes in this Table 3 are relatively pro-

ductive, the others are rare or their use are mostly lex-
icalized. Although not frequent in use, more than one
these suffixes may attach to the same stem, for example
çıkıverebilir ‘he/she/it may possibly come out/show up’
analyzed as ‘çık⟨V⟩⟨iver⟩⟨V⟩⟨abil⟩⟨V⟩⟨aor⟩⟨3s⟩’.
The form of ⟨abil⟩ in a negative verb is -(y)A, and

unlike the rest of the suffixes listed in Table 3 it follows
the negative marker.
Like the voice suffixes, we treat these suffixes as

derivations, starting a new verbal inflectional group.

3.11 The negative marker
Negation of a verbal predicate is indicated with the suffix
-mA, and marked simply as ⟨neg⟩. Nominal predicates do

Table 4: Tense/aspect/modality markers. The usage of
suffix -(y)A to express conditional aspect is informal, and
rather restricted. Aorist suffix is highly irregular. The
choice of -Ar and -Ir depends on the stem. The -z form
occurs only after negative marker, and it is not realized on
the surface if it precedes first person agreement suffixes.

Tag Suffix Description
⟨evid⟩ -mIş evidential past (perfective)
⟨fut⟩ -(y)AcAk future
⟨obl⟩ -mAlI obligative
⟨impf⟩ -mAktA imperfective
⟨cont⟩ -(I)yor imperfective
⟨past⟩ -DI past (perfective)
⟨cond⟩ -sA,-(y)A conditional
⟨opt⟩ -(y)A optative
⟨imp⟩ - imperative
⟨aor⟩ -Ar,-Ir,-z,- aorist

not get this suffix, instead the particle değil is used.

3.12 Tense/aspect/modality markers

A verb with a set of suffixes described above either be-
comes a finite verb by taking one of the tense, aspect and
modality (TAM) markers followed by a person-number
agreement suffix, or it can be subject to subordination and
becomes nominalized.
The list of TAM suffixes, the corresponding tags and

brief descriptions are given in Table 4.

3.13 Person and number agreement

After TAM markers a finite verb requires one of the per-
son and number agreement markers. For any finite predi-
cate an agreement marker is compulsory. However, by de-
fault TRmorph accepts a predicate with a TAMmarker but
no agreement marker, since in some cases, the agreement
marker can be attached after the question particle (see Sec-
tion 3.15). This behavior can be disabled in compile time.
The surface form of the person-number agreement

markers change depending on the suffixes they follow.

9



Table 5: Verbal person agreement markers. The first
character of the person agreement tags is a number indi-
cating the person (1st, 2nd or 3rd), and second one indi-
cates the number (singular or plural). The suffixes listed
in the column marked ‘TAM1’ follow the TAM markers
⟨evid⟩,⟨fut⟩,⟨obl⟩,⟨impf⟩ and ⟨cont⟩ as well as the ev-
idential copula ⟨cpl:evid⟩ and nominal predicates. The
same set of suffixes also follow positive verbs with ⟨aor⟩
without a negative marker. The suffixes on the column
marked ‘TAM2’ are used after ⟨past⟩ and ⟨cond⟩ as well
as the corresponding copular markers ⟨cpl:past⟩ and
⟨cpl:cond⟩.

Tag TAM1 TAM2 optative imperative
⟨1s⟩ -(y)Im -m -(y)Im *
⟨2s⟩ -sIn -n -sIn -
⟨3s⟩ - - - -sIn
⟨1p⟩ -(y)Iz -K -lIm *
⟨2p⟩ -sInIz -nIz -sInIz -(y)In,-(y)InIz
⟨3p⟩ -lAr -lAr -lAr -sInlAr,-

Table 5 lists the person agreement markers and their sur-
face form according the TAM of the verb they attach to.
Note that the third person singular marker is null on the
surface after most TAM markers. Furthermore, since a
predicate with third person singular marker will also agree
with third person plural subject, all forms that are marked
with a ⟨3s⟩ tag will also be marked with a ⟨3p⟩ tag.

3.14 Copular markers and -DIr
The copular suffixes discussed in Section 3.6 can also be
attached to a verb after a TAM marker, typically form-
ing complex tenses. These suffixes are -(y)DI, -(y)mIş
and -(y)sA, tagged as ⟨cpl:past⟩, ⟨cpl:evid⟩ and
⟨cpl:cond⟩, respectively.
The conditional copula -(y)sA can co-occur with other

copular markers. When there is a copular suffix, person-
number agreement suffixes normally attach after the first
copula. However the third person plural suffix may be
after the TAM marker or second copular suffix as well.
Similar to the nominal predicates with a copula, cop-

ular suffixes may be followed the ‘generalizing modality

marker’ -DIr tagged as ⟨dir⟩.

3.15 The question particle

Question particle -mI, tagged as ⟨Q⟩, is normally written
separately. However, it has an intimate relationship be-
tween the verb or the nominal predicate it attaches to.
First, a few exceptions aside, it is attached to a tensed verb
without a person agreement. In this case, the person agree-
ment and the suffixes that may follow must be attached
to the question particle. In this particular case, the verb
will often be analyzed wrongly as having the agreement
marker ⟨3s⟩ or ⟨3p⟩, since a predicate with null person
agreement suffix may agree with third person singular or
plural subjects. Second, the question particle follows the
vowel harmony rules, and the underspecified vowel on -mI
is realized based on the last vowel of the verb. As a result
the question particle can only be analyzed (and generated)
with precision only together with the word it is attached
to.
If tokenized together with the predicate, TRmorph will

swallow the space in between the predicate and the -mI
and analyze it altogether. In this case the lowercase tag ⟨q⟩
is used. Furthermore, it is a common spelling mistakes to
write the question particle together with the related word.
TRmorph can be instructed to to accept this common mis-
take during compile time, in which case the tag will again
be ⟨q⟩.

3.16 Subordination

A set of suffixes attached to an ‘untensed’ verb, a verb
without any TAM markers, result in the phrase headed by
the verb to become a subordinate clause. TRmorph fol-
lows the description in Göksel and Kerslake 2005, and
makes the distinction between three different forms of
subordination. First, a set of suffixes produce verbal
nouns from a non-finite verb. The resulting words func-
tion as the head of the noun phrases, and with some limita-
tion they can receive all nominal inflections. The second
group forms participles, which form relative clauses. Par-
ticiples can also take nominal inflections with few restric-
tions. The last group, converbs, form adverbials and they
are more restricted in terms of the morphemes attached
to them. The suffixes that form forms different types of

10



Table 6: Subordinating suffixes and tags used for subor-
dinating suffixes.

Tag Suffix
⟨vn:inf⟩ -mA
⟨vn:inf⟩ -mAK
⟨vn:yis⟩ -(y)Iş
⟨vn:past⟩ -DIk
⟨vn:fut⟩ -(y)AcAk
⟨vn:res⟩ -(y)An
⟨part:past⟩ -DIk
⟨part:fut⟩ -(y)AcAk
⟨part:pres⟩ -(y)An
⟨cv:ip⟩ -(y)Ip
⟨cv:meksizin⟩ -mAksIzIn
⟨cv:ince⟩ -(y)IncA
⟨cv:erek⟩ -(y)ArAk
⟨cv:eli⟩ -(y)AlI
⟨cv:dikce⟩ -DIkCA
⟨cv:esiye⟩ -(y)AsIyA
⟨cv:den⟩ -dAn
⟨cv:den⟩ -zdAn
⟨cv:cesine⟩ -CAsInA
⟨cv:ya⟩ -(y)A
⟨cv:ken⟩ -(y)ken

subordinating suffixes overlap significantly. As a result,
producing ambiguous analyses.
TRmorph uses the tag structure ⟨type:subtype⟩ for

marking subordinating suffixes. The first part, type, is
one of vn, part and cv for verbal nouns, participles and
converbs, respectively. The second, subtype, part indi-
cate a further distinction of the function of the suffix, a
relevant linguistic abbreviation, but sometimes a version
of the surface form of the suffix. The tags used for all three
types of subordinating suffixes are listed in Table 6.
Since verbal nouns, participles and converbs derive

nominal, adjectival and adverbial phrases, respectively,
POS tags, ⟨N⟩, ⟨Adj⟩ and ⟨Adv⟩, follow these tags.
Some of the suffixes have multiple functions and may

derive more than one type of subordinate clauses. Fur-
thermore, TRmorph will produce some spurious ambigu-

ity because of the fact that any adjective, hence a word
suffixed with an participle, is allowed to become a noun
with a zero derivation.
The list in Table 6 follows Göksel and Kerslake 2005.

The main exception is the suffixes listed by Göksel and
Kerslake 2005 as converbial suffixes that require a post-
position. Since the postposition in these cases will signal
the adverbial function of postpositional phrase, TRmorph
does not mark the complement of the postposition as a
converb.
Most of these suffixes attach to an untensed verb. Ex-

cept, the suffix -(y)ken which behaves much like the cop-
ular suffixes discussed above. Furthermore, the -(y)A in
its subordinating function is typically used together with
reduplication, e.g., koşa koşa ‘run-(y)A run-(y)A = hur-
riedly’, but also occurs in words like diye, where it does
not need reduplication.10

Besides the subordinating suffixes (participles) dis-
cussed above, some of the TAM markers, namely ⟨aor⟩
(-Ar/-Ir), ⟨evid⟩ (-mIş) and ⟨fut⟩ (-AcAk).11 TRmorph
handles this by analyzing any verb with one of these TAM
markers without further suffixes (e.g., agreement mark-
ers) as an adjective. For example, the word görülmüş in
görülmüş mektup ‘see-PASV-EVID letter = the letter that
was seen’ is analyzed as ‘gör⟨V⟩⟨pass⟩⟨V⟩⟨evid⟩⟨Adj⟩’.

3.17 Productive derivational morphemes

Almost all the tags and relevant morphological process
above are described as part of inflectional morphology
in most grammar books. The suffixes described here are
the ones that are traditionally considered derivational suf-
fixes. Some of these suffixes, for example -lI and -sIz dis-
cussed earlier, may attach to word forms that are already
inflected by other suffixes. Others normally attach only to
the stem and produce another stem.
Of these suffixes, the noun–verb derivation suffix -lA

causes a large number of ambiguous analyses since it is
part of many other suffixes. These, for example, include
the plural suffix -lAr whose remainder -r also matches a
verbal suffix (aorist). Hence, including -lA in the analysis

10We also analyze diye as a postposition, as it’s use as subordinator is
semantically unlike the others uses of -(y)A.

11These forms are related to a semantically similar construction, where
they precede the auxiliary verb ol with present participle suffix (ol-an).

11



causes an increase in the analyses of any plural noun. Cur-
rently, TRmorph analyzes -lA only after onomatopoeia.
The rest of the verbs derived from nouns using this suffix
are lexically specified.
TRmorph does not limit the number of derivational suf-

fixes that can be stringed one after another other, even
though multiple derivations of this sort is a lot more re-
stricted.
Besides the sources of possible erroneous over-analyses

listed above, the derivational morphology specification
in TRmorph over-generates in some cases. In particular,
any form of the diminutive suffix is allowed to attach to
any noun, although most nouns are used only one of the
diminutive suffixes. The ambiguity and overgeneration
are discussed in Section 5.

4 The lexicon
TRmorph contains a root lexicon which is created extract-
ing root forms from a large web corpora, and checking the
possible forms against online dictionaries, and the lexicon
of the earlier version which was based on Zemberek (A. A.
Akın andM.D. Akın 2007). The result is also checked and
corrected manually as part of the development process.
The lexicon files are located under the directory

lexicon and included (through C preprocessor) as a sin-
gle root lexicon. The files under lexicon/ are simply a
list of root forms and their continuation classes. Contin-
uation classes can be any LEXICON declaration in the file
morph.lexc, but typical continuation classes are themain
word (POS) categories, such as N, Adj and V. The lexi-
cal exceptions are specified after the main category infor-
mation. For example, V_AorAr for verbal roots that take
the exceptional -Ar form of the aorist suffix. Likewise,
N_comp is used for lexicalized nominal -sI compounds
since when these words are pluralized the plural marker
is inserted between the word and the suffix -sI.
The lexical forms are similar to the written forms of the

relevant stem. However, a set of special ‘multi-character’
symbols are used for providing information necessary for
morphophonological processing. A large group of these
symbols are concerned with ‘final stop devoicing’ (or
voicing depending on your view point). The consonants
ç, t, k, p and g at the end of some of the roots are replaced
with their voiced counterparts if they precede a suffix that

Table 7: Derivational morphemes analyzed by TRmorph.
The column ‘Derivation’ lists the POS changes using a
two letter symbols. The first letter is the original POS, and
the second one is the POS after the suffixation. Here, N,
J, A, M, V and O stand for noun, adjective, adverb, number,
verb and onomatopoeia, respectively.

Tag Suffix Derivation
⟨li⟩ -lI NA NJ
⟨siz⟩ -sIz NA NJ
⟨lik⟩ -lIk NN JN AN
⟨dim⟩ -CIk NN

-cAk
-(I)cAk
-cAğIz

⟨ci⟩ -CI NN NJ
⟨arasi⟩ -arası NJ
⟨imsi⟩ -(I)msI NJ
⟨ca⟩ -CA NA AA JJ MJ
⟨yici⟩ -(y)IcI VJ
⟨cil⟩ -CIl NJ
⟨gil⟩ -gil NN
⟨lan⟩ -lAn JV
⟨las⟩ -lAş NV JV
⟨yis⟩ -yIş VN
⟨esi⟩ -(y)AsI VJ
⟨sal⟩ -sAl NJ
⟨la⟩ -lA NV OV
⟨dir⟩ -DIr NA

starts with a vowel. These root forms are lexically marked
by replacing the consonants above with multi-character
symbols ˆc, ˆt, ˆk, ˆp and ˆg, respectively.
Besides the voicing changes of consonants, some bor-

rowings end with a ‘palatalized’ consonant that affects
vowel harmony process. For example saat ‘watch/clock’
is inflected as saat-i ‘watch-ACC’ instead of saat-ı as
vowel harmony suggests. These words are indicated by
the vowel before such a consonant by a three-letter multi-
character symbol. These symbols always start with ˆp and
a capitalized version of the relevant vowel. For example,
the word saat is listed as saˆpAt in the lexicon.
One last class of similar special symbols are so-called

12



silent vowels and consonants. These are particularly use-
ful for abbreviations and numerals, but also some names
of foreign origin. The suffixes that follow such words are
also subject to morpho-phonological process like vowel
harmony. However, this cannot be derived from their
written form. For example correct inflected form of ABD-
DAT ‘USA-DAT’ is ABD’ye, not ABD’ya. The way to
solve this problem is to insert a silent (front-unrounded)
vowel after the abbreviated form. The multi-character
symbols ˆsBUV ˆsBRV ˆsFUV ˆsFRV ˆsVC and ˆsUC are
used for silent vowels and consonants (see the comments
in file lexicon/abbreviation for more information).
A somewhat inconsistent notation is used for three mor-

phological processes. First, the multi character symbol
@DEL@ is inserted before a vowel that is deleted if a suffix
starting with a vowel follows. Second, the last consonant
in some borrowings are duplicated if they follow a suffix
that start with a vowel. These root forms are marked by
inserting the multi-character symbol @DUP@ before the du-
plicated consonant. And the last symbol @DELS@ is used
in lexical entries of a few borrowed words which delete s
in the suffix -sI.12

5 Ambiguity and overgeneration
This section discusses the ambiguous analyses in TR-
morph, and also touches upon a related but different prob-
lem, overgeneration.
The morphological analysis of Turkish text is an inher-

ently ambiguous process. However, the design choices
made in a morphological analyzer affects the number of
ambiguous analyses produced per word. TRmorph, by
design, does not try to reduce the number of ambiguous
analyses. In general, TRmorph produces more ambiguous
analyses than the others (mainly based on Oflazer 1994)
reported in the literature.
The following is a list of cases where one finds ambigu-

ous morphological analyses in TRmorph. Some of these
cases are not specific to TRmorph, and for example, noted
by Oflazer and Tür 1997 as well. This list may be useful
for the users who may wish to disambiguate the output of

12These multi-character symbols are both inconsistent with the others,
and they may be confused with ‘flag diacritics’ at first sight (TRmorph
does not use any flag diacritics). This notation in the lexicon may change
in the future version of TRmorph.

the analysis using rule-based methods, or it may also be
useful in the process of designing statistical disambigua-
tors.

1. Ambiguous root forms, for example yüz can be ana-
lyzed as:

(a) yüz⟨N⟩ ‘face’
(b) yüz⟨Num⟩ ‘hundred’
(c) yüz⟨V⟩⟨imp⟩⟨2s⟩ ‘swim’

2. A root form is the same as a shorter root and one or
more suffixes, for example buna can be analyzed as

(a) bu⟨Prn:dem⟩⟨dat⟩ ‘this-DAT’
(b) buna⟨V⟩⟨imp⟩⟨2s⟩ ‘become senile-IMP’
(c) bun⟨N⟩⟨dat⟩ ‘trouble-DAT’

Note that the root ‘bun’ is a very rare/regional word,
and the imperative verb reading is also very unlikely.
However the best option for the analyzer is to pro-
duce all these analyses, and let the later stages anal-
ysis disambiguate between them.

3. The surface form of a suffix is a combination of two
other suffixes. For example, the word evleri can be

(a) ev-leri ‘ev⟨N⟩⟨p3p⟩ = their house’
(b) ev-ler-i ‘ev⟨N⟩⟨pl⟩⟨acc⟩ = houses-ACC’

Furthermore, the same word can also be analyzed as

(a) ‘ev⟨N⟩⟨pl⟩⟨p3s⟩’
(b) ‘ev⟨N⟩⟨pl⟩⟨p3p⟩’
(c) ‘ev⟨N⟩⟨ncomp⟩⟨p3p⟩’
(d) ‘ev⟨N⟩⟨ncomp⟩⟨pl⟩’
(e) ‘ev⟨N⟩⟨ncomp⟩⟨pl⟩⟨p3p⟩’
(f) ‘ev⟨N⟩⟨ncomp⟩⟨pl⟩⟨p3s⟩’
(g) ‘ev⟨N⟩⟨ncomp⟩⟨pl⟩⟨p3p⟩’

The reason for these analyses has to do with the
sources of ambiguity explained in items 6 and 8.

4. An analysis with multiple morphemes is also a (de-
rived) lexicalized form. For example the word
konuşma can be analyzed as

13



(a) konuşma⟨N⟩ ‘speech’
(b) konuş⟨V⟩⟨vn:inf⟩⟨N⟩ infinitive ‘to speak’,

e.g., as in konuşmamızı isemiyorlar ‘The do not
want us to speak’

(c) konuş⟨V⟩⟨neg⟩⟨imp⟩⟨2s⟩ ‘speak-NEG-IMP =
don’t talk’

5. different affixes surfacing the same way, evin can be

(a) ev-(n)In ‘ev⟨N⟩⟨gen⟩ =of the house’
(b) ev-(I)n ‘ev⟨N⟩⟨p2s⟩ =your house’

6. The same surface suffix has multiple functions. For
example, the word doktorlar can be,

(a) doktor⟨N⟩⟨pl⟩ ‘doctors’
(b) doktor⟨N⟩⟨0⟩⟨V⟩⟨cpl:pres⟩⟨3p⟩ ‘they are

doctors’

7. The suffix -(s)I that marks third person singular pos-
sessive and the null suffix that marks third person
singular subject–predicate agreement may also have
third person plural readings. For example,

(a) The word ev-i can both mean ‘his/her
house’ (ev⟨N⟩⟨p3s⟩) as well as ‘their house’
(ev⟨N⟩⟨p3p⟩).

(b) A verb like okudu ‘read-PAST’ with no overt
agreement marker may agree with a third per-
son singular or plural subject. Hence, it is ana-
lyzed with both singular (‘he/she read-PAST’
oku⟨V⟩⟨past⟩⟨3s⟩) and plural (‘he/she read-
PAST’ oku⟨V⟩⟨past⟩⟨3p⟩) third person agree-
ment markers.

As a result, any predicate with a null agreement will
have two analyses one with ⟨3s⟩ and the other with
⟨3p⟩ agreement tags. Similarly any noun with suffix
-(s)I will have two analyses, one with ⟨p3s⟩ and the
other with ⟨p3p⟩. These analyses will be multiplied
with ⟨ncomp⟩ if the optional noun compound head
marker is enabled during the compile time.

8. Some suffixes are not realized on the surface in the
neighborhood of some other suffixes. These are gen-
erally, but not always, the suffixes having the same
or similar surface forms. For example, evleri (the ex-
ample in item 3) may be analyzed as

(a) ev⟨N⟩⟨p3p⟩ as in Annem ve babamın evleri Is-
tanbul’da ‘My parents’ house is in Istanbul’

(b) ev⟨N⟩⟨pl⟩⟨p3p⟩ as in Annem ve babamın bütün
evleri deniz manzaralı ‘All houses of my par-
ents have a see view’.

since in case of ⟨pl⟩ (-lAr) and ⟨p3p⟩ (-lArI) are com-
bined, the plural suffix -lAr does not realized on the
surface.13

This particular source causes an extremely large
number of ambiguous analyses because the multi
functional suffix -(s)I is omitted in case it precedes
(or follows) another -(s)I, but also a -lArI, -lI, -lIk,
-sIz, -CI or -CIk. Since some of these suffixes may
follow each other, and -(s)I itself has multiple func-
tions, a word like bağım-sız-lık-çı-lığ-ı-nı causes a
combinatorial expansion of ambiguous analyses be-
cause of the fact that at every suffix boundarymarked
with a dash in the example there may be a -(s)I suffix
being deleted. This is further amplified by the fact
that -(s)I may express ⟨ncomp⟩ or ⟨p3s⟩ and any of
the resulting words may also have a null suffix ex-
pressing third person singular or plural agreement on
a nominal predicate.14 Most of these analyses will
be semantically not plausible. However, there is no
clear way of ruling them out at the analysis stage. The
following illustrates the problem with a more tangi-
ble example, using the word arabasız which can be
analyzed as one of the following (and more).

(c) araba⟨N⟩⟨siz⟩⟨Adj⟩ ‘without a car’
(d) araba⟨N⟩⟨p3s⟩⟨siz⟩⟨Adv⟩ ‘without a his/her

car’
(e) araba⟨N⟩⟨ncomp⟩⟨siz⟩⟨Adv⟩, e.g., in at

arabasız ‘without a horse carriage’
(f) araba⟨N⟩⟨ncomp⟩⟨p3s⟩⟨siz⟩⟨Adv⟩, e.g., in at

arabasız ‘without his/her horse carriage’

Besides the ambiguity described above, overgeneration
is another problem that one faces when the FST is used

13One can also explain this as ⟨p3p⟩ being realized as -I in this partic-
ular context.

14Most straightforward reading of the word is dative form of the noun
phrase can roughly be translated as ‘his/her state of being a supporter of
independence’. With this root, The total number of analyses is 25560.

14



for generating surface forms. Unlike analysis, generation
is almost always deterministic in Turkish. Nevertheless,
there are a few cases where TRmorph produces multiple
surface strings for a single analysis string. The follow-
ing provides a (likely incomplete) list of cases where TR-
morph is expected to overgenerate, i.e., either produce
multiple (correct) surface strings for the same input, or
produce incorrect surface strings in generation mode.

1. One of the clear cases where overgeneration occurs
is the diminutive, ⟨dim⟩. The diminutive suffix in
Turkish is one of -CIk, -cAk, -(I)cAk, -cAğIz. TR-
morph allows attaching any of these suffixes to any
noun. This is unlikely to cause problems during the
analysis. However, it will certainly produce incorrect
surface forms.

2. The ⟨p3s⟩ suffix -(s)I may also be used for mark-
ing third person plural possessive (⟨p3p⟩). For ex-
ample ev-i in Ali ve Ayşe’nin evi ‘The house of Ali
and Ayşe’ should be tagged as ⟨p3p⟩. On the other
hand, the suffix -lArI is also used to express ⟨p3p⟩.
As a result any analysis string with the symbol ⟨p3p⟩
will generate both surface options.

3. A similar case of overgeneration is with the null
agreement suffix which should generally be tagged
as ⟨3s⟩. However, such a predicate may also agree
with a ⟨3p⟩ subject. Consequently, a null-agreement
suffix on a predicate is tagged as both ⟨3s⟩ and ⟨3p⟩.
Since ⟨3p⟩ can also be expressed with the suffix -lAr,
a analysis string with ⟨3p⟩ also generates multiple
surface forms.

4. Another known case of overgeneration is related to
the relaxed analysis of alternative spellings or com-
mon misspellings. In the simplest case, every word
will be generated once capitalized and once all lower-
case. If ‘all capitals’ option is enabled, another sur-
face form which is in all capital letters will be pro-
duced.

5. Similarly, if the analyzer is instructed to accept the
proper noun suffixes without an apostrophe, in the
generation mode the surface form with and without
apostrophe will be included. As a result, some of the
options may need to be tuned if the FST is to be used
for generation.

6. Some symbols, like apostrophe have multiple rep-
resentations in Unicode definition. As a result, any
word that require an apostrophe will result in surface
form for each alternative symbol.

7. After a small set of borrowings like cami ‘mosque’,
the ‘s’ in the suffix -(s)I is deleted according to offi-
cial rules. However, this seems to be out of fashion
in current use, and use of ‘s’ (even in text) is more
common that its deletion. Since TRmorph accepts
both surface strings, this will cause generating mul-
tiple strings.

There are also a few other cases where some (siz-
able number of) speakers diverge from the canoni-
cal forms. An example is the redundant use of gen-
itive suffix after a pronoun, before the suffix -(y)lA,
e.g., the surface form of ‘sen⟨Prn:pers:1s⟩⟨ins⟩’
should be sen-in-le where the suffix -in is redundant.
Some speakers tend not to use -in in such construc-
tions. TRmorph accepts both use, hence the genera-
tion will be ambiguous.

8. Some borrowed words include a few vowels with cir-
cumflex, namely â, û and î. Except for a few words
where use of circumflex helps disambiguation be-
tween different words, these vowels have been re-
placed by their non-circumflexed version in modern
use. TRmorph allows this replacement even if the
lexical form of the word should include a circum-
flex.15 This also results in overgeneration, since any
analysis string with a circumflexed vowel will have
a surface form with and without circumflex.

6 Other tools

6.1 Stemming and lemmatization
In morphologically complex languages like Turkish,
proper stemming requires analyzing the given word and
stripping off the analysis symbols such that only the stem
remains.

15One can also allow circumflexed vowels to be used for their non-
circumflexed counterparts in the lexicon. This is useful if one needs
to analyze somewhat older text. Enabling this option will also cause
overgeneration.

15



Although one can do this easily by filtering analyzer
output, TRmorph includes a simple wrapper automaton
for convenience. The automaton is defined in the file
stemmer.fst. You need to type make stemmer to pro-
duce the binary stem.fst. This binary file can be used
the way analyzer is used. Given a surface word, this
automaton will produce the lexical form as the analysis
string.
Optionally, one can keep the first tag, which is the syn-

tactic category of the stem. Note that stemmer takes the
lexical form as the ‘stem’, even if the lexical form has
derivational suffixes immediately following the root form.
Another compile time option related to stemmer causes the
verbs to be suffixed with correct form of infinitive marker
-mAk. This form of the verbs are what the dictionaries
use as head words. Both options can be set in the file
options.h.
Note that ambiguity is less of a problem for the stem-

mer. However, in examples like buna discussed on
page 13, there will be multiple stem forms produced (bu,
bun and buna in this case).

6.2 Unknown word guesser
TRmorph includes a rudimentary guesser for guessing un-
knownwords. To produce the automaton for this function,
you should type make guesser, which would produce
the file guess.fst. The usage of the automaton is again
similar to the others. The surface strings of the FST is the
(unknown) words, while analysis level is either the full
analysis strings with possibly unknown root words that
may lead to the surface form, or only the root word and
its part of speech tag.
The guesser uses the same machinery as the analyzer,

except the lexicon is replaced with a FSA that accepts
a somewhat restricted set of strings as potential words.
Since unknown words will likely include affixes, one may
have a better chance of determining the root form of the
word, and in most cases the class of the root word.
Depending on its application, the guesser be restricted

further according to features of the words that can be
coded into a finite state lexicon. For example, one may
check whether the words fit into the syllable structure of
the language, but this may miss the words of foreign ori-
gin, which are likely candidates for being unknownwords.
Currently only general restriction the guesser include the

minimum and maximum root-word length that can be set
in the file options.h.
The guesser may also be adjusted to return full analy-

sis string(s) or only the root form followed by the POS
tag. Again, these options can be set in options.h.
Other customizations can be achieved by adjusting the file
guesser.lexc.
The guesser is a standalone FST, to use it in combi-

nation with the analyzer, two automata can be combined
with priority union such that guesser is only invoked if
the analyzer fails. This can be achieved either as a sim-
ple wrapper xfst file, or if you are using foma’s flookup
utility specifying both FST files on the command line like
flookup -a trmorph.fst guesser.fst.

6.3 Morphological segmentation
Morphological segmentation is the task of finding mor-
pheme boundaries on the surface strings. TRmorph distri-
bution includes an automaton description for segmenting
the words into their morphemes. To build the segmenter
you need to type make segmenter and the resulting bi-
nary will be called segment.fst.
TRmorph marks the root and morpheme boundaries on

the surface string to aidmorpho-phonological rules. These
boundaries are deleted from the surface string in the nor-
mal analyzer FST. The segmentation FST relies on this
and the following trick for segmenting a given word to
its surface morphemes: The given input string is first an-
alyzed with the regular analyzer FST. Then the analysis
strings are passed to a slightly modified FST in genera-
tion mode, which does not delete the boundary markers
from the surface string.
It should be noted that the surface morpheme bound-

aries are not always determined uniquely. It is especially
difficult to decide whether some buffer vowels or con-
sonants belong to the morpheme preceding or following
them. TRmorph consistently attaches these buffer letters
to the morpheme that follow the boundary.
Because of the way it is implemented currently, the

segmenter output needs to be post processed to obtain
the desired result. The segmenter will produce multi-
ple identical segmented strings, and there will also be
some incorrect segmentations due to overgeneration dis-
cussed in Section 5. The output should be post-processed
to remove multiple identical segmentations. The incor-

16



rect segmentations due to overgeneration can be elimi-
nated by comparing the segmented string with the origi-
nal one. An example post processing script is provided as
scripts/segment-filter.py.

6.4 Hyphenation and syllabification
Hyphens in Turkish are inserted at the syllable boundaries.
Because of the regular syllable structure and transparency
of the orthography, this process does not require any dic-
tionary lookup, or morphological analysis. Since the hy-
phenation problem is easy to solve with a FST, a stand
alone FST defined in xfst language included in the TR-
morph distribution.
To build the hyphenation FST you need to type

make hyphenate and the resulting binary will be called
hyphenate.fst.
The surface string of the FST is Turkish words (or

strings resembling words) and analysis string is the words
where a hyphen ‘-’ is inserted between the syllables, or at
the points where one can insert a hyphen.

References
Akın, Ahmet Afşin and Mehmet Dündar Akın
(2007). “Zemberek, an open source NLP frame-
work for Turkic Languages”. Available at
http://zemberek.googlecode.com/. URL: http :
//zemberek.googlecode.com/.

Beesley, Kenneth R. and Lauri Karttunen (2003). “Finite-
state morphology: Xerox tools and techniques”. In:
CSLI, Stanford.

Çöltekin, Çağrı (2010). “A Freely Available Morpholog-
ical Analyzer for Turkish”. In: Proceedings of the 7th
International Conference on Language Resources and
Evaluation (LREC 2010). Valetta, Malta, pp. 820–827.

Göksel, Aslı and Celia Kerslake (2005). Turkish: A Com-
prehensive Grammar. London: Routledge.

Hulden, Mans (2009). “Foma: a finite-state compiler and
library”. In: Proceedings of the 12th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Demonstrations Session. Associa-
tion for Computational Linguistics, pp. 29–32.

Lindén, Krister, Miikka Silfverberg, and Tommi Pirinen
(2009). “HFST Tools for Morphology–An Efficient
Open-Source Package for Construction of Morpholog-
ical Analyzers”. In: State of the Art in Computational
Morphology. Ed. by Cerstin Mahlow and Michael Pi-
otrowski. Communications in Computer andInforma-
tionScience. Springer, pp. 28–47. ISBN: 978-3-642-
04130-3.

Oflazer, Kemal (1994). “Two-level description of Turkish
morphology”. In: Literary and Linguistic Computing 9
(2).

Oflazer, Kemal and Gökhan Tür (1997). “Morphological
Disambiguation by Voting Constraints”. In: Proceed-
ings of the 35th Annual Meeting of the Association for
Computational Linguistics, pp. 222–229.

Schmid, Helmut (2005). “A programming language for fi-
nite state transducers”. In: Proceedings of the 5th In-
ternational Workshop on Finite State Methods in Nat-
ural Language Processing (FSMNLP 2005). Helsinki,
pp. 308–309.

17

http://zemberek.googlecode.com/
http://zemberek.googlecode.com/


Index

⟨1p⟩, 8, 10
⟨1s⟩, 3, 8, 10
⟨2p⟩, 10
⟨2s⟩, 8, 10, 13, 14
⟨3p⟩, 8, 10, 14, 15
⟨3s⟩, 8–10, 14, 15

⟨0⟩, 3, 6–8, 14

⟨abil⟩, 9
⟨abl⟩, 7
⟨acc⟩, 7, 13
⟨Adj⟩, 3, 4, 6, 7, 11, 14
⟨Adj:partial⟩, 6
⟨adur⟩, 9
⟨Adv⟩, 4, 11, 14
⟨Adv:partial⟩, 6
⟨Adv:qst⟩, 5
⟨agel⟩, 9
⟨agor⟩, 9
⟨akal⟩, 9
⟨Alpha⟩, 4
⟨aor⟩, 9–11
⟨arasi⟩, 12
⟨ayaz⟩, 9

⟨ca⟩, 12
⟨caus⟩, 8, 9
⟨ci⟩, 12
⟨cil⟩, 12
⟨Cnj⟩, 4
⟨Cnj:adv⟩, 4
⟨Cnj:coo⟩, 4
⟨Cnj:coo:partial⟩, 6
⟨Cnj:partial⟩, 6
⟨Cnj:sub⟩, 4
⟨cond⟩, 9, 10
⟨cont⟩, 9, 10
⟨cpl:cond⟩, 8, 10
⟨cpl:evid⟩, 8, 10
⟨cpl:past⟩, 8, 10
⟨cpl:pres⟩, 8, 14

⟨cv:cesine⟩, 11
⟨cv:den⟩, 11
⟨cv:dikce⟩, 11
⟨cv:eli⟩, 11
⟨cv:erek⟩, 11
⟨cv:esiye⟩, 11
⟨cv:ince⟩, 11
⟨cv:ip⟩, 11
⟨cv:ken⟩, 11
⟨cv:meksizin⟩, 11
⟨cv:ya⟩, 11

⟨dat⟩, 7, 13
⟨Det⟩, 4
⟨Det:def⟩, 5
⟨Det:indef⟩, 5, 6
⟨Det:qst⟩, 5
⟨dim⟩, 12, 15
⟨dir⟩, 8, 10, 12
⟨dist⟩, 8

⟨esi⟩, 12
⟨evid⟩, 9–11
⟨Exist⟩, 3, 4, 5
⟨Exist:neg⟩, 3, 5

⟨fut⟩, 9–11

⟨gen⟩, 3, 7, 14
⟨gil⟩, 12

⟨Ij⟩, 4
⟨imp⟩, 9, 13, 14
⟨impf⟩, 9, 10
⟨imsi⟩, 12
⟨ins⟩, 7, 15
⟨iver⟩, 9

⟨ki⟩, 3, 7

⟨la⟩, 12
⟨lan⟩, 12
⟨las⟩, 12

18



⟨li⟩, 6, 12
⟨lik⟩, 12
⟨loc⟩, 3, 7

⟨N⟩, 3, 4, 6–8, 11, 13, 14
⟨N:abbr⟩, 4
⟨N:partial⟩, 6
⟨N:prop⟩, 4
⟨N:prop:abbr⟩, 4
⟨ncomp⟩, 7, 8, 13, 14
⟨neg⟩, 9, 14
⟨nomC⟩, 5
⟨Not⟩, 3, 4
⟨Num⟩, 4, 5, 6, 13
⟨Num:ara⟩, 5
⟨Num:qst⟩, 5
⟨Num:rom⟩, 5

⟨obl⟩, 9, 10
⟨Onom⟩, 4
⟨opt⟩, 9
⟨ord⟩, 8

⟨p1p⟩, 6, 7
⟨p1s⟩, 7
⟨p2p⟩, 7
⟨p2s⟩, 7, 14
⟨p3p⟩, 7, 13–15
⟨p3s⟩, 6–8, 13–15
⟨part:fut⟩, 7, 11
⟨part:past⟩, 11
⟨part:pres⟩, 11
⟨pass⟩, 8, 11
⟨past⟩, 3, 9, 10, 14
⟨perc⟩, 8
⟨pl⟩, 3, 6, 7, 13, 14
⟨Postp⟩, 4, 4
⟨Postp:ablC⟩, 5
⟨Postp:accC⟩, 5
⟨Postp:adj⟩, 5
⟨Postp:adv⟩, 5
⟨Postp:datC⟩, 5
⟨Postp:genC⟩, 5
⟨Postp:insC⟩, 5
⟨Postp:liC⟩, 5
⟨Postp:nomC⟩, 5

⟨Postp:numC⟩, 5
⟨Prn⟩, 4, 6
⟨Prn:dem⟩, 4, 13
⟨Prn:locp⟩, 4
⟨Prn:pers⟩, 4
⟨Prn:pers:1p⟩, 5
⟨Prn:pers:1s⟩, 5, 15
⟨Prn:pers:2p⟩, 5
⟨Prn:pers:2s⟩, 5
⟨Prn:pers:3p⟩, 5
⟨Prn:pers:3s⟩, 5
⟨Prn:pers:qst⟩, 4
⟨Prn:qst⟩, 4
⟨Prn:refl⟩, 5
⟨Punc⟩, 4

⟨Q⟩, 4, 4, 10
⟨q⟩, 10

⟨rcp⟩, 8
⟨rfl⟩, 8

⟨sal⟩, 12
⟨siz⟩, 6, 12, 14

⟨V⟩, 3, 4, 7–9, 11, 13, 14
⟨V:partial⟩, 6
⟨vn:fut⟩, 11
⟨vn:inf⟩, 11, 14
⟨vn:past⟩, 11
⟨vn:res⟩, 11
⟨vn:yis⟩, 11

⟨yici⟩, 12
⟨yis⟩, 12

19


	TRmorph
	Introduction
	How to use it
	Compilation from the source
	Customizing TRmorph
	Trying it out

	The tagset
	General structure of analysis strings
	Part-of-speech tags
	Subcategorization of lexemes
	Nominal morphology and noun inflections
	The suffix -ki
	Tags related to nominal predicates
	Number inflections
	Apostrophe behavior
	Verbal voice suffixes
	Compound verbs
	The negative marker
	Tense/aspect/modality markers
	Person and number agreement
	Copular markers and -DIr
	The question particle
	Subordination
	Productive derivational morphemes

	The lexicon
	Ambiguity and overgeneration
	Other tools
	Stemming and lemmatization
	Unknown word guesser
	Morphological segmentation
	Hyphenation and syllabification



