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Abstract

Successor variety is a commonly used measure for segmentation in language processing.
It is based on a simple idea that large variety of letters (or phonemes) following an initial
word (or utterance) segment indicates a possible boundary. It dates back to Harris (1955),
and several methods based on successor variety have been used in the literature, particularly
for the purposes of segmenting words into morphemes. However, there have not been many
studies analyzing the measure itself. Even though the idea is simple and effective, the
current use in the literature does not utilize the measure to its full extent due to a number of
problems with the successor variety scores. This paper intends to address these problems by
introducing a normalization method, and demonstrates—using segmentation experiments
on two typologically different languages— the effectiveness of this improvement on the
morphological segmentation task.

1 Introduction

Segmentation is a prominent problem in language processing. Spoken language
input does not contain reliable word boundary markers like white spaces in most
writing systems. Even the writing systems that utilize word boundary markers do
not mark all linguistically relevant boundaries, such as morpheme boundaries. Hu-
mans, as well as computers, need to segment the continuous input into linguistic
units such as words and morphemes to be able to interpret the input. This task
becomes more important, and more difficult, where the system in question tries to
learn these units. In the segmentation task, the competent language users (adult
humans or computational systems with linguistic knowledge built in) are aided by
rich linguistic information. Although the segmentation task is still difficult, ex-
isting linguistic generalizations, e.g., a comprehensive lexicon, are useful for seg-
mentation. However, infants acquiring language or the data driven computational
systems do not have that luxury. To be able to acquire a lexicon, learners have
to first deal with the segmentation task without a lexicon. This paper analyzes a
commonly used measure for segmentation, successor variety (SV), first proposed
by Harris (1955). We introduce the SV in the context of segmenting written words
to morphemes and suggest a simple but effective improvement. To demonstrate
the efficiency of our proposed solution, we present a number of experiments on
two languages with differing typology.

The successor variety is not a clearly defined algorithm. Several different seg-
mentation algorithms based on the SV have been used with varying success in the
literature. Except Hafer and Weiss (1974) and Bordag (2005) there have not been
many attempts to analyze and improve the method. This paper first presents an in-
depth analysis of the method, then proposes a simple and effective improvement
to get more out of it.
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Harris (1955) initially proposed the successor variety for segmenting tran-
scribed spoken language utterances into morphemes. The idea is simple: mor-
pheme boundaries are suggested after the utterance segments that may be fol-
lowed by a large variety of phonemes. In more recent work, however, the mea-
sure found its use particularly in segmenting words into morphemes (Hafer and
Weiss 1974, Déjean 1998, Al-Shalabi et al. 2005, Bordag 2005, Goldsmith 2006,
Bordag 2007, Demberg 2007, Stein and Potthast 2008). Since these studies are
focused on written text, the measure is frequently referred to as letter successor
variety (LSV). However, it is equally applicable to other basic (linguistic) units
such as phonemes.

The SV based methods are closely related to a number of other approaches
based on entropy, (un)predictability, surprisal and mutual information. The basic
rationale behind these methods is that in a continuous stream formed by concate-
nating a number of repeating units, such as words or morphemes, predictability
of next (or previous) letter is higher (low entropy) within the units, lower (high
entropy) between the units. Besides linguistic data, this happens to be valid for a
wide variety of naturally occurring streams (Cohen et al. 2007). Similar ideas have
also been exploited by computational models of human language acquisition. Sim-
ple recurrent networks used for learning a large variety of linguistic phenomena
are trained to guess the next unit in the input sequence, and the networks function
based on how predictable next unit in the test input is. Brent (1996) used distribu-
tional regularities where segmentation decision is made at points with unexpected
sequences of phonemes. And, indeed, children have been shown to be sensitive to
this type of information in the continuous speech stream very early in life (Saffran
et al. 1996).

The subject of this paper, the SV method, does not utilize all possible informa-
tion that can be useful for segmentation task. There are several other sources of
information, or cues, that can facilitate the task of learning segmentation. When
available, existing lexical knowledge; the words encountered in isolation; prosodic
cues, such as word stress; phonotactic constraints, such as the phoneme sequences
that do not occur beginning or end of the words; allophonic differences; and vowel
harmony are known to be useful for segmentation. However, some of these are
not always available, some require a working knowledge of lexical items of the
language to be useful. On the other hand, the SV (and similar methods) uses the
relationship between the successive basic units, and it is applicable as long as basic
units can be discriminated.

We refer to the methods listed so far as local methods. In local methods,
the segmentation decision is made only by checking immediate context. Lo-
cal methods contrast with a large number of successful segmentation algorithms
that are based on optimizing a global objective function. Global optimization
based methods typically rely on two competing factors: one preferring the smaller
units, hence segmentation; the other not allowing over-segmentation. The ‘best’
segmentation is, then, the one found by optimizing the combination of these
factors. Examples of these include models based on the minimum description
length (MDL) (Goldsmith 2001, Goldsmith 2006), maximum a posteriori (MAP)
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estimate (Creutz and Lagus 2007), or explicit probabilistic (Bayesian) models
(Brent 1999, Goldwater et al. 2009).

Most recent approaches to segmentation make use of a number of available
cues, and sometimes, a combination of local and global methods. This paper fo-
cuses on only one of the local methods, the SV, and suggests an improvement to
this method as well as providing an in-depth empirical analysis. The next section
will introduce the method. After reviewing related studies in Section 3, we will
demonstrate the use of the method on real world data in Section 4. Section 5 de-
scribes the suggested improvement. We present a number of experiments demon-
strating the effectiveness of the improvement on large word-lists for English and
Turkish in Section 6. Section 7 concludes after a brief discussion of the results and
other possible improvements.

2 Successor Variety

The successor variety of a string is the number of distinct phonemes (or letters)
that can follow the string in the language we are interested in. Harris’ use of
successor variety was aimed at finding morphemes in spoken language. Given an
initial segment of an utterance, a high number of phonemes that may follow the
segment was used as an indication of a morpheme boundary. His definition of
‘high’ number of phonemes depended on human judgments.

We define successor variety as the number of distinct letters1 that follow a given
initial word segment as counted in a word list. More formally, for a suffix2 x, a
letter y and a word list W formed by letters in alphabet A,

SV (x) =
∑
y∈A

c(x, y)

where,

c(x, y) =

{
1 if string xy occurs as an initial word segment in W
0 otherwise

For example, given the word list in Figure 1(a), and the test word reading,
Figure 1(b) presents successor values for the test word. Note that we assumed a
hypothetical end-of-word letter after the word read. For this small list, successor
value (SV) after rea- and read- are higher (2 and 3 respectively), potentially
indicating morpheme boundaries.

A straightforward extension of the SV is the predecessor value (PV), the num-
ber of different letters that can precede a certain suffix. The line labeled ‘PV’ in
Figure 1(b) lists the predecessor values for our example.

1The method and the improvement we suggest are applicable to other units. Our definition is based on
letters, as we will only use written language data in this study.
2Our use of terms ‘prefix’ and ‘suffix’ in this article refer to any initial or final word segment. These
segments are not necessarily linguistic units, i.e., morphemes attached to the beginning or the end of
the words. We will clearly state it when these terms are used to refer to linguistic units.
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read readable reading real
write writing writer working

(a)

letter r e a d i n g
SV 2 1 1 2 3 1 1 1
PV 1 1 1 1 3 1 1 5

(b)
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Figure 1: (a) An example word list. (b) the successor and predecessor values for the test
word reading. (a) A part of the trie structure representing the given word list. The
character ‘$’ represents the hypothetical end-of-word character.

The successor and predecessor values for a given word list can easily be com-
puted making use of a data structure called prefix tree, or trie. If the input word
list is inserted into a trie, the successor value for a given prefix is the number of
branches after the corresponding node. Figure 1(c) presents part of the trie for our
example.

Intuitively, the successor and predecessor values seem to be simple and usable
indications of morpheme boundaries. However, how can we use them to actually
find the morpheme boundaries? How can we avoid finding non-morphemes like
rea in our test word list, and not miss the real morpheme write? Given our
example word list, write has the same SV and PV as the non-morpheme rea.
What changes with the size of the word list, or language? After reviewing how
others dealt with these questions, the rest of the paper tries to fill some of the gaps
in answers to these questions.

3 Related Work

Most of the studies in the literature are ‘consumers’ of the SV based methods (e.g.,
Déjean 1998, Al-Shalabi et al. 2005, Goldsmith 2006, Demberg 2007, Stein and
Potthast 2008)). All of these studies use the measure in one way or another to find
morpheme boundaries in words. To our knowledge, there are only two studies that
try to analyze and improve the method. The most elaborate study of various SV
options is by Hafer and Weiss (1974), and the work by Bordag (2007) combines
the SV with other methods to increase its effectiveness.

The goal of Hafer and Weiss (1974) (H&W) is stemming for information re-
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trieval purposes. However, a good part of the paper investigates various options
to segment words into morphemes including some variations of the SV method.
H&W ran 15 different experiments on English and reported results from 13 of
them. The criteria to segment in their experiments depended on a combination of
SV and/or PV together with corresponding thresholds (or cutoff values); SV or PV
being on a peak or plateau; the suffix or prefix at a certain location being a word
by itself; and analogous to SV and PV, successor entropy (SE) and predecessor
entropy (PE). In this paper, we will only focus on the variety scores. However,
we will give a brief description of entropy method, since the entropy scores may
be more suitable for certain applications (where precision is more favorable to re-
call), and the normalization approach we advocate in this paper is also applicable
to entropy values.

The segmentation entropy of a given prefix, x is defined as:

H(x) = −
∑

y∈succ(x)

f(xy)
f(x)

log2
f(xy)
f(x)

where, f() returns the frequency (count) of the words starting with the given prefix,
xy is the string that is formed by concatenation of string x and the letter y, and
succ() returns all successor letters for the given prefix. This formula gives the SE.
One can easily obtain PE by modifying successor with predecessor and changing
the order of the concatenation.

As H&W also mention, compared with the SV values, the entropy values pro-
vide an averaging effect that may reduce noise. However, it also reduces the sen-
sitivity to the real boundaries. Hence, one expects better accuracy from entropy
values, while the SV values provide better coverage. To clarify the difference be-
tween the entropy and the SV values, consider two hypothetical cases: a particular
prefix is followed by (i) 2 different suffixes each starting with different letters, (ii)
5 different suffixes where 4 of them share the same first letter. For both cases SV
will be 2, however, SE will be higher for case (i) compared to case (ii).

The best performing methods chosen by H&W use a complex combination
threshold values for variety or entropy scores with the additional knowledge on
whether parts of the word occur in the word list as a standalone word or not. Two
best performing methods selected by H&W are given below:
• (PW and PVi > 5) or (PVi > 17 and SVi > 2)
• ((SEi−1 = 0) and (SEi > 0.8 or PEi > 0.8)) or

((SEi−1 6= 0) and ((PW and PEi > 0.8) or (PEi > 3.0 and SEi > 1.0))).
where, ‘PW’ stands for ‘prefix is a standalone word’ in the word list.

The criteria are complicated. However, they seem to work well, and surpris-
ingly, Al-Shalabi et al. (2005) report that the same criteria work also well for Ara-
bic, a language with different morphological properties.

The important problems with these criteria are their complexity and a high
number of tunable parameters. Even though they seem to also work in different
languages (this will be discussed further in Section 4), it is likely that the parame-
ters are language (or even corpus) dependent.
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letter r e a d i n g
SV 27 16 27 10 10 2 2 4
PV 7 5 16 10 25 5 13 28

Figure 2: The SV and PV values for the word reading calculated from the CELEX
database.

Bordag (2007) uses a different method to improve the SV based measures.
Finding morpheme boundaries in the example we have presented in Figure 1 is
relatively easy due to choice of words. As we will present later, finding bound-
aries on the SV values calculated on a large collection of unrelated words is more
difficult. Realizing that, Bordag first does a contextual similarity analysis, and
finds a relatively small number (e.g., 150) of words with high probability of se-
mantic relatedness to the target word. The SV values are calculated on this smaller
set of words, and similar to H&W, segmentation decision is based on thresholds.

Besides the thresholds for SV or PV values, Bordag’s method introduces a
new parameter, the number of related words. Additionally, the method’s success
depends highly on the contextual similarity analysis, and the corpora used for the
similarity analysis.

In this study we introduce a new approach to improve the SV based methods.
We propose a method to normalize the SV scores that increases the effectiveness
of the method, and allows an easier interpretation of the scores. However, before
introducing the normalization procedure, we will have a closer look at the SV
values calculated on real-world data.

4 Successor Variety in Real World Data: a Closer Look

So far, the examples we used were toy examples demonstrating the method. How-
ever, the language data in the real world do not come in neatly organized small
packages of word lists. In this section we will try to demonstrate some of the
general characteristics of the SV measures as seen in real-world examples.

The experiments reported in this paper have been done on two typologically
different languages: English and Turkish. For English data we used the CELEX
database (Baayen et al. 1995). As CELEX does not provide standard surface form
segmentations that we need for evaluating our methods, we used the segmentations
provided by Hutmegs (Creutz and Lindén 2004). Turkish word list is extracted
from METU Corpus (Say et al. 2002). Turkish gold-standard is obtained with the
help of a finite-state morphological analyzer (Çöltekin 2010). The number of word
types in English data set is 114184 and the number of words in Turkish data set is
143275. For the experiments where using the same number of words is important,
we randomly removed 29091 words with frequency one from Turkish word list.

To get a first idea, we repeat the Figure 1(b) in Figure 2 this time calculating the
values from the complete CELEX word-form list. Predecessor value peaks after
-ing (traversing right to left). However, we do not see the same on successor
values. The only peak value we identify with successor values is after re- which
is not desirable for this word, but re- being a common prefix in English, this is
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Figure 3: Mean SV and PV values for each word position. Indexes start from the beginning
of the word for SV, and from the end of the word for PV.

an expected result. If we were to segment successor and predecessor peak values,
we would (mistakenly) segment the word as re-ading.

The SV and PV values in Figure 2 also demonstrate a general trend: the SV
values tend to be higher at the beginning and PV values tend to be higher at the end
of the words, and they decrease as they go right and left respectively. To visualize
this trend we plotted the mean SV and PV values in Figure 3. As well as the
average SV and PV for CELEX and METU word lists, Figure 3 also presents a
random baseline that we will explain in detail in Section 5. Clearly, the SV values
are high at the beginning and PV values are high at the end of the word (note that
in PV graph the index values are reversed). Except the separation on the x-axis
due to average word length, and the height of the graphs (partially due to the size
of the alphabet), the graphs are rather similar.3

Figure 3 indicates a clear problem with the strategies using threshold values
and peaks for segmentation. Due to the exponential drop of the SV (and PV), it is
difficult to find threshold values that would work everywhere. As the SV values
are naturally high at the beginning of the words, a small threshold will suggest
incorrect boundaries at the beginning of the words. If the threshold is tuned not to
make mistakes at the beginning of the words, then the threshold value will be too
conservative for the rest of the word.

The problem affects the performance at the beginning (for SV) and end (for
PV) of the words. Unfortunately, most suffixes and prefixes in natural languages

3Both graphs for Turkish show a clear raise after position 2, causing a peak at 3. This is due to a
phenomenon we briefly discuss in Section 7. Turkish has 21 consonants, and 8 vowels. In the Turkish
word list, 80% of the first letters are consonants. Probability of seeing a vowel after a consonant is
0.84. Hence, it is more likely to see a vowel as the second letter. Since there are only 8 vowels, as with
after any consonant, the SV values after the first letter tend to be low. Similarly, the SV values after the
second letter, as with after any vowel, tend to be high. The distribution of the letters at the end of the
words, hence the PV values, also follow a similar pattern. English having more consonant-consonant
and vowel-vowel bigrams, the same effect is observed in the graphs for English only as a slope change.
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are rather short and attach to the end or beginning of the words. Hence, not ac-
counting for these tendencies will make SVs only useful for detecting suffixes, and
PVs for prefixes, where otherwise combination of both values may yield a better
classification. Luckily, the problem can at least partially be fixed by collecting
some simple statistics over the data. The next section will present the proposed
solution for this problem and the effectiveness of this solution.

Figure 3 also reveals a difference between the distribution of the SV and PV
values. The drop in the SV values is sharper. This is due to the fact that both lan-
guages in our study are primarily ‘suffixing’ languages: except a few productive
linguistic prefixes, most of the productive morphological processes are due to the
use of suffixes. This is clearly visible in the difference between the drop of the SV
values from the beginning of the words to the end and PV value from the end of
the words to the beginning. Even though the languages differ in their morpholog-
ical productivity, the graphs presented in Figure 3 do not reveal a big difference
between the languages. However, we observe a clear difference between the be-
havior of SV and PV values.

Visualization in Figure 3 also clarifies the unexpected success of the SV thresh-
olds tuned by Hafer and Weiss (1974) across different languages. The successful
segmentation criteria they use depend on a combination of successor and prede-
cessor values, where one of the thresholds is high and the other is low. As shown
in Figure 3 the SV values tend to be one towards the end of a medium length
word, likewise the PV values towards the beginning. On the other hand, high SV
scores can be found at the beginning, and high PV scores can be found at the end
of the words. Hence, a high SV threshold in combination with low (but greater
than one) PV threshold translates to any ‘any PV value greater than one towards
the beginning of a word’. And the reverse condition—high PV threshold, low SV
threshold— detects any SV value greater than one towards the end of the words.

5 Normalization

The tendency of average SV and PV values dropping exponentially in Figure 3
can partially be explained by a very general process. Any process generating a
large number of word-like strings from a fixed alphabet would generate similar
successor and predecessor counts. To demonstrate, we will consider a process that
creates random word like units, and compare it to actual natural language words.
The light-gray line in Figure 3 is SV and PV values for such a process. We have
generated random word-like units from an alphabet of size 30 (approximately the
alphabet size for both of our word-lists), and generated 114184 (size of the CELEX
word list) random ‘words’.4 Even though the random words were not formed by
concatenating morphemes, they show the same tendency: At the beginning of the
words the SV is high, and at the end of the words the PV is high. Naturally, the

4During the random word generation, letters are sampled similar to the letter distribution in CELEX
word list, and the word length distribution estimated from combined 11 languages from Europarl cor-
pus. While providing a language-neutral word length distribution, this results in relatively long words
compared to more complete/balanced CELEX and METU word lists.
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letter r e a d i n g
SV 27 16 27 10 10 3 2 4
PV 7 5 16 10 25 5 13 28
SV/AVG 1.00 0.83 1.67 1.15 2.27 0.68 0.95 2.15
PV/AVG 2.44 1.14 2.18 0.94 1.73 0.26 0.70 1.00

Figure 4: Normalized SV and PV values.

drop of the SV values of the random process does not show any differences from
the PV values.

The main difference between real language data from the randomly generated
data is that, rather than being a random collection of letters, the words in the real
language data are formed by concatenating more basic units, morphemes. How-
ever, we observe the exponential drop of the SV and PV values for both the ran-
domly generated data and the real language words. Hence, removing the effect of
the letter concatenation process from the SV and PV vales calculated for the real
data should reveal the underlying process of morpheme concatenation better. To
do that, we will follow a simple method: we will divide each variety value to the
expected value in that position.5

Along with the previous SV and PV values presented in Figure 2, Figure 4
presents the normalized scores. First difference to note is that both normalized
scores for successor and predecessor values peak after read-. Since an SV value
of 10 is closer to the expected value in position 3 (after rea-) than in position
4 (after read-) the scores are more sensitive to real boundaries. Of course, this
may also increase the potential false positives. However, the results we present
in Section 6 show that the normalization is indeed beneficial for increasing the
segmentation performance.

The performance increase will be more apparent with the empirical tests. How-
ever, we can see another benefit of the normalization by looking at our example,
and by visualizing the data. Intuitively, a normalized score of one means that the
variety score is the same as the expected value. A score less than one is below
the expected value, and a score greater than one is higher than the expected value.
Hence, regardless of the position in the word, if the value is less than or around
one there is no reason to get surprised, and no need to posit a boundary. However,
if the value is significantly greater than one, it is more likely to be a boundary.
And if we look at the data even closely, we can see that the normalized variety
values are approximately distributed according to a log-normal distribution. As a
result if we take the normalization one step further, and get the logarithm of the
values, we end up working with approximately normally distributed values. Fig-
ure 5 presents plots of density estimates of normalized and unnormalized SV and
PV scores for both boundary (black lines) and non-boundary (gray lines) positions

5Subtracting the expected SV/PV values from the calculated ones is another, arguably more intuitive,
approach to normalize the SV values. The values obtained by subtracting expected value from the
calculated values have a similar distribution with the log of the values obtained by the normalization by
division. Subtraction method does not require further log transformation, and it leads to higher accuracy
in some of the conditions we tested. However, the subtraction method is more prone to changes in the
size of the word list. The main reason for choosing to normalize by dividing is to get properly scaled
values for (semi-)supervised experiments discussed in the next section.
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Figure 5: Density estimates for the SV and PV values with or without normalization.

for English and Turkish word lists. In all cases, the modes of the distributions of
boundaries are greater than the modes of the non-boundaries. However, Figure 5
also demonstrates that, for the SV values, the overlap between boundary and non-
boundary values are clearly higher for the non-normalized case, and separation
is not as clear as in the normalized case. Unfortunately, we do not see the same
positive effect of normalization on PV values. This is because of the fact that both
languages are primarily suffixing languages and the suffixes tend to be shorter than
the stems. The PV values at the end of the words are higher because of the process
of morpheme concatenation as well. As a result, it is not possible to see if the
high number of PV values at the end of a word is because of a genuine morpheme
boundary, or because of the letter concatenation process. Since the number of gen-
uine morpheme boundaries is lower at the beginning of the words, the SV values
do not suffer from this phenomenon in either language we study.

For both the SV and PV, the log-normalized values are (approximately) nor-
mally distributed. By estimating the parameters of the normal distributions for
boundaries and non-boundaries, we can easily come up with strategies based on
the SV that suit best to the application at hand. A neutral method can be view-
ing the segmentation task as binary classification of the data coming from two
Gaussian distributions. Similarly, a more conservative estimate can be obtained by
segmenting at values that are at the right tail of the combined normal distribution.
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For ease of comparison, in our experiments we will tune a threshold value that
gives the best F1-score for both normalized and unnormalized cases.

Another point to note from the visualization of the data at Figure 5 is that even
though the unnormalized distributions for different languages seem to be rather
different, the normalization takes away this dissimilarity. This may allow us to use
strategies that are relatively language neutral. That is, by using normalized scores,
the same model may work better cross-linguistically.

6 Experiments

The most common application of using successor values for morphological seg-
mentation has been in unsupervised morphological segmentation and analysis
tasks. However, in all the examples in the literature that we are aware of, the
method depends on thresholds tuned on a specific word list or intuitively by the
designers of the algorithms. Arguably, the completely unsupervised use of the
method is using changes (peaks) in the value of SV and PV as a criterion for
segmentation. However, a small threshold is generally useful to guard against
over-segmentation, and the methods deciding based on a threshold tend to perform
better. Another approach for completely unsupervised learning is based on taking
the normalized SV and PV values as coming from two different (normal) distri-
butions, and inducing the parameters of these distributions using an unsupervised
method. Although complete unsupervised methods are worth exploring for their
own sake, the methods we present below provide a better comparison between the
normalized and unnormalized values, as well as comparing them to the previous
results found in the literature.

To be able to demonstrate the effects of the normalization on the performance
of the segmentation task, we present two sets of experiments in this section. First,
we will present the precision, recall and F1-score values for the segmentation
of English and Turkish data sets using the SV and PV values individually, using
a peak criterion on SV or PV values (SP an PP) and simple logical and and or
combination of these values. In the second set of experiments, we will train a
simple linear classifier.

In the first set of experiments we found threshold values that produce the best
average F1-score for 10-fold cross validation on our data sets. First we used thresh-
olds for the individual SV and PV values. Second, we used the ‘peak criterion’,
where we assumed a boundary where the value shows an increase. And last, we
used simple logical and and or combinations of the SV and PV values.

Table 1 presents these results, along with two baselines. The line marked as
‘Letters’ presents the simple strategy of segmenting words to single letters. The
line marked as ‘Morfessor’ presents the results obtained using Morfessor 1.0 base-
line (Creutz and Lagus 2005). As expected, by using the normalized SV values,
we can find thresholds that perform better. However, the normalization for PV val-
ues produce even worse than non-normalized values, which also took F1-scores for
some of the combinations down. This can be corrected by adding another criterion
by favoring boundaries at the end of the words. This is indeed useful for improv-
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English Turkish
Method P R F1 P R F1

Letters 0.19 1.00 0.32 0.22 1.00 0.36
Morfessor 0.82 0.55 0.66 0.77 0.50 0.60

un
no

rm
al

iz
ed

SV 0.25 0.93 0.40 0.34 0.74 0.47
PV 0.51 0.65 0.57 0.42 0.78 0.55
SP 0.46 0.59 0.52 0.47 0.49 0.48
PP 0.54 0.52 0.53 0.37 0.38 0.38
SV and PV 0.65 0.69 0.67 0.62 0.66 0.64
SV or PV 0.40 0.67 0.51 0.38 0.90 0.53

no
rm

al
iz

ed

SV 0.42 0.72 0.53 0.45 0.74 0.56
PV 0.34 0.88 0.49 0.44 0.68 0.53
SP 0.53 0.59 0.56 0.37 0.78 0.50
PP 0.36 0.60 0.45 0.31 0.75 0.44
SV and PV 0.61 0.70 0.65 0.67 0.57 0.62
SV or PV 0.42 0.73 0.53 0.45 0.74 0.56

Table 1: Precision/Recall/F-score values optimized for best F-score. The first block presents
two baselines.

ing the performance of the normalized PV based segmentation criteria in Table 1.
This type of correction is rather ad hoc and introduces additional parameters. For
the simple experiments, we will not report the results of such an ad hoc correction
here. However, the effect of using the information on the position in the word is
demonstrated in the second set of experiments we report below.

We did a large number of tests and presented in Table 1 to get an insight into
the method, and to be able to compare the effectiveness of the measures. However,
tuning thresholds and combining multiple indicators in a sensible way is, at best,
a cumbersome task. A better way to make use of these values is using them as
features in a (semi-)supervised learning method. The second set of experiments
we conducted is based on training a simple linear classifier (Fan et al. 2008) using
the normalized and unnormalized SV and PV values. As well as the SV and PV
values, we used two other sets of features. First, two additional binary features
that indicate the occurrence of the suffix and the prefix (in respect to the candidate
boundary) as a separate word in the word list. Second, two index numbers corre-
sponding to the offsets of the candidate boundary from the beginning and end of
the word. The standalone occurrence of suffix and prefix in the word list is fre-
quently used by the other models in the literature. The addition of index features,
on the other hand, allows the learner to correct the problem with the normalized
PV values that we observed above.

The results of the supervised learning experiments are presented in Table 2.
Each row in the table presents the precision, recall and F1-Scores for different
combination of the features. All values are averages of 10-fold cross validation on
the CELEX and METU word lists. The experiments reported at the rows marked
with ‘+index’ are included two integer features representing the index from the
beginning and the end of the word. The rows marked ‘+w’ report the results from
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English Turkish
Method P R F1 P R F1

un
no

rm
al

iz
ed SV 0.51 0.35 0.41 0.48 0.55 0.51

PV 0.29 0.64 0.40 0.27 0.91 0.42
SV+PV 0.40 0.84 0.54 0.47 0.71 0.57
SV+PV+index 0.40 0.89 0.55 0.40 0.85 0.55
SV+PV+index+w 0.46 0.83 0.59 0.46 0.87 0.60

no
rm

al
iz

ed
SV 0.36 0.83 0.50 0.45 0.75 0.56
PV 0.30 0.69 0.42 0.45 0.69 0.55
SV+PV 0.39 0.85 0.53 0.56 0.76 0.64
SV+PV+index 0.43 0.83 0.57 0.59 0.80 0.68
SV+PV+index+w 0.60 0.83 0.69 0.62 0.81 0.70

Table 2: Results of supervised learning.

the experiments where we added two additional binary features indicating the ex-
istence of the suffix and the prefix as a standalone word in the word list. Except
the ‘PV’ and ‘SV+PV’ features for English, all combinations of the features show
a consistent increase of F1-score for both languages. And as expected, the addition
of ‘+index’ also allows the model to generalize better using SV and PV values.

Encouraged by the similarity of normalized distributions for two languages in
Figure 5, we conducted four more experiments: we trained the classifier using the
full set of features on one of the languages, and tested on the other. As expected,
the models trained by the unnormalized data performed poorly. Training on Turk-
ish data and testing on English data resulted in an F1-score of 0.34, barely above
the ‘Letters’ baseline. Training the system with English and testing on Turkish did
even worse, an F1-score of 0.23. However, the F1-scores using normalized scores
for the same setup resulted in F1-scores of 0.67 and 0.64 respectively—better than
any of the hand-tuned thresholds in Table 1.

7 Discussion and Conclusions

Along with an in-depth analysis, we presented a method to improve successor
variety, an old but frequently used measure for segmentation. The measure we dis-
cussed in this paper, successor variety, shares a principle with a few other measures
used in the literature: the predictability within the units (e.g., morphemes) is high,
predictability between the units is low. The analysis presented here focuses on the
application of the successor variety to segment words into morphemes. However,
the improvement suggested in this paper can be used in other segmentation appli-
cations, and can be applied to other measures, e.g., entropy, if used in a similar
fashion.

The normalization idea presented here is based on the observation that, even for
a random letter concatenation process, the successor values tend to be high at the
beginning, and drop exponentially as we increase the prefix length. This suggests
that if we can isolate the concatenation at a higher level—in our case concatenation
of the morphemes— from the letter concatenation process, we can increase the
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efficiency and arrive at a better interpretation of the relation between the measure
and the boundaries. The normalization method we presented in this paper achieves
that by simply dividing the calculated successor value to the expected value after an
equal prefix length. Alternative normalization methods are possible, for example
simply subtracting the expected value from the calculated score.

While calculating the expected value, our method only considers the length of
the prefix (the expected SV is higher for shorter prefixes). However, natural lan-
guages have a number of other regularities that affect the SV values. Particularly,
not every letter or letter class is likely to be followed by equal number of succes-
sor letters. For example, the languages we consider have more consonants than
vowels, and typically, consonants are followed by vowels and vowels are followed
by consonants. This results in vowels in average to have higher successor values
than consonants. Arguably, incorporating this information while calculating the
expected values may provide a better normalization. In a number of preliminary
experiments that we did not report in this paper, we could not find any consistent
improvement by incorporating this information in the normalization process.

The experiments we conducted in two different languages demonstrate that the
normalization method proposed here is effective in increasing the performance
of the segmentation methods based on successor variety. The effect seems to be
more useful for the SV values, however, with correct use of other cues, we also
demonstrated that it may increase the effectiveness of the PV values as well.
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