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Abstract
This paper introduces a set of freely available, open-source tools for Turkish that are built around TRmorph, a morphological analyzer
introduced earlier in Çöltekin (2010a). The article first provides an update on the analyzer, which includes a complete rewrite using
a different finite-state description language and tool set as well as major tagset changes to comply better with the state-of-the-art
computational processing of Turkish and the user requests received so far. Besides these major changes to the analyzer, this paper
introduces tools for morphological segmentation, stemming and lemmatization, guessing unknown words, grapheme to phoneme
conversion, hyphenation and a morphological disambiguation.
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1. Introduction
This paper introduces a set of tools for Turkish natural
language processing (NLP) that are built around a free,
open-source morphological analyzer, TRmorph (Çöltekin,
2010a). Namely, we introduce tools for morphological
segmentation, stemming and lemmatization, guessing un-
known words, grapheme to phoneme conversion, syllabi-
fication/hyphenation and a morphological disambiguation.
Similar to the current version of the morphological ana-
lyzer, all tools are freely available with the terms of GNU
Lesser General Public License (LGPL).1 The source code
of the analyzer and the other tools reported in this paper can
be obtained from https://github.com/coltekin/TRmorph.
The most important feature of the tools presented here is
the fact that they are developed and maintained following
the open-source software development practices. As a re-
sult, they can be customized for a particular purpose, and
equally importantly, they are constantly improved by prob-
lem reports, suggestions and contributions from the users.
The rest of this article is organized as follows. The next sec-
tion introduces some aspects of Turkish morphology that
are relevant to the rest of the discussion in this paper. Sec-
tion 3 provides an update on TRmorph, outlining important
changes since it was first announced. Section 4 describes
the new finite-state tools, and Section 5 discusses a simple
but effective morphological disambiguation tool. Lastly,
the paper is concluded with a brief summary and notes on
the future directions.

2. Turkish morphology and NLP
Turkish is a morphologically complex language. The com-
plex morphology is often demonstrated by the following
popular example.

(1) İstanbul-lu-laş-tır-ama-dık-lar-ımız-dan-mış-sınız
‘You are (supposedly) one of those who we could not
convert to an İstanbulite’

The example above, consisting of 11 morphemes, is in-
tended to demonstrate the complexity. It definitely is not

1https://www.gnu.org/licenses/lgpl.html.

representative of a typical word. However, it is perfectly
understandable by the native speakers, and, albeit rare,
words of similar size can be observed in large corpora.
More importantly, the rough translation indicates that a
relatively complex sentence can be expressed by a single
word.
Although Turkish words can be long, the word formation
is rather regular. This makes it relatively easy to imple-
ment the morphology in a finite-state formalism. However
the complex word structure poses a number of other prob-
lems for natural language processing applications. First,
the traditional notion of the word as a stem and a set of
suffixes belonging to a paradigm does not hold. For exam-
ple, in (1) above, the word class changes multiple times by
suffixation. This process is quite productive, and some of
these ‘derivational’ suffixes can be attached to already in-
flected words. Furthermore, parts of a word, as opposed
to the complete word, can participate in syntactic relations.
This requires sub-word units to be used in syntactic pro-
cessing. Another practical reflection of the complex word
structure is the problem of data sparseness that affects the
machine learning methods applied to Turkish NLP. Since
one can produce a large number of possible words forms
from a single stem, most of these will never appear even in
a large corpus.
The solution to these problems offered in the state-of-the-
art Turkish NLP literature is to define sub-word units called
inflectional groups (IGs, see e.g., Hakkani-Tür et al., 2002;
Eryiğit et al., 2008).
In this paper, we view an analysis string as a sequence of
inflectional groups. Each IG contains a root or a deriva-
tional suffix, a category marker, and a set of inflections that
belong to the respective category. For example, the word
evdekininkilerde ‘in the ones (e.g., books) that belong to
the one (e.g., person) at home’ has the following IGs (rep-
resented using TRmorph analysis symbols, slightly simpli-
fied for readability):2

2The definition presented here is slightly different than other
definitions in the literature. We treat the derivational morphemes
specially, not as part of the inflection sequence belonging to the
newly formed IG.
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1. ev〈N〉〈loc〉: the root ev ‘house’ with category noun
〈N〉 and locative inflection 〈loc〉

2. 〈ki〉〈N〉〈gen〉: the derivation 〈ki〉 deriving a
(pro)noun followed by genitive inflection

3. 〈ki〉〈N〉〈pl〉〈loc〉: the derivation 〈ki〉 deriving an-
other (pro)noun followed by plural and locative inflec-
tions.

The inflectional groups allow a natural way to express syn-
tactic relations between sub-word units, as well as reducing
the data sparseness problem in machine learning methods
used in NLP.
Another problem worth noting due to complex morphology
is the large number of ambiguous analyses. The problem of
ambiguity will be discussed at length in Section 5.
Given the importance of the morphological analysis, it is
not surprising that the development and improvement of
morphological analyzers has been an active area of research
for Turkish and related languages (e.g., Hankamer, 1986;
Oflazer, 1994; Washington et al., 2012; Şahin et al., 2013;
Kairakbay, 2013).

3. TRmorph: an update
TRmorph is an open source finite state morphological an-
alyzer introduced in Çöltekin (2010a). Since its introduc-
tion, TRmorph has been used by many NLP researchers and
practitioners. For example, it was used in information re-
trieval (Özdikiş et al., 2012; Hadımlı and Yöndem, 2012);
for testing unsupervised morphology learners (Çöltekin,
2010b; Kılıç and Bozşahin, 2012; Janicki, 2013); in cor-
pora annotation (Ruhi et al., 2012);3 for preparation of ex-
periment materials (Güneş and Çöltekin, 2014); testing fi-
nite state toolkits (Lindén, Axelson, et al., 2013); in ma-
chine translation systems (Forcada et al., 2009); and uti-
lized at varying levels in development of analyzers for
other languages, e.g., for Azeri,4 Kyrgyz (Washington et
al., 2012) and Hungarian.5 Besides the academic use cited
above, TRmorph has been in use by a number of commer-
cial organizations, and the demo web page at present re-
ceives about 30 queries per day.
During the last four years that it has been in public use,
TRmorph has been in constant change. Besides minor im-
provements or bug fixes in a software’s life cycle, there
have also been a few major changes that are worth reporting
here. The rest of the present section describes these major
changes.

3.1. Tagset change
The most important change visible to the users is a com-
pletely revised morphological tagset. The earlier morpho-
logical analyses consisted of the part-of-speech tag of the
root and sequence of tags that correspond to the surface
affixes. Although this works fine for many applications,
state-of-the art (dependency) parsing methods for Turk-
ish are based on so-called inflectional groups. The new
tagset allows explicit identification of IGs within the anal-
ysis strings, as well as fixing some inconsistencies in the

3Also in preperation of http://tscorpus.com/.
4http://wiki.apertium.org/wiki/Apertium-aze.
5https://gitorious.org/hunmorph-foma/pages/Home.

initial tagset. All morphological tags are described in the
extensive manual included in the distribution.

3.2. The lexicon
Another substantial change is a new lexicon. The ear-
lier version of TRmorph used a modified version of lex-
icon from the Zemberek project (A. A. Akın and M. D.
Akın, 2007). The current lexicon of TRmorph is gener-
ated semi-automatically from a large web-based corpus of
about 800M tokens collected by crawling the Web with a
procedure similar to one described in Baroni et al. (2009).
The lexicon is built by using the unknown word guesser and
disambiguator described below, as well as checking the au-
tomatically extracted root forms against online dictionaries,
and by hand-editing the results.
The initial motivation of the lexicon change was the con-
cerns raised by some users from the industry about incom-
patibilities of different open-source licenses used by Zem-
berek and TRmorph. However, extracting a root lexicon
from the Web and keeping it up to date is an attractive goal
by itself. The refinement of the procedure outlined above
and the lexicon itself is still in progress.

3.3. Rewrite with a different FST formalism
Under the hood, the morphological description has been
completely rewritten. TRmorph was initially written in
SFST (Schmid, 2005). The new version has been rewrit-
ten using lexc and xfst languages from Xerox (Beesley
and Karttunen, 2003), using the free implementation Foma,
(Hulden, 2009). TRmorph can also be used with HFST
(Lindén, Silfverberg, et al., 2009).
The main reason behind rewriting the finite-state specifi-
cation in another language was maintainability. Although
SFST provides a familiar and complete FST description
language, during development of TRmorph there were
quite a few cases where the same automata needed to be
repeatedly defined. Furthermore, the Xerox languages lexc
and xfst have been around for a longer time, and are better
known in the computational linguistics community. This
also helps users who want to change the source code to fit
their needs. These being said, similar problems arose dur-
ing the rewrite of the system with the Xerox languages. To
prevent some of the repetition and redundancy, TRmorph
source code now includes C preprocessor directives which
are preprocessed before compiling the code with lexc and
xfst. The use of a preprocessor also enables a straight-
forward method for conditional inclusion or exclusion of
code fragments, providing a natural way to enable or dis-
able some behavior in compile time.

3.4. Options
TRmorph came into existence because of the need for
customization. Although there had been other analyzers,
most notably Oflazer (1994), reported in the literature, their
availability did not allow customization necessary for some
purposes. The initial motivation for developing TRmorph
was to be able to analyze child and child-directed speech
transcriptions (Çöltekin and Bozşahin, 2007). However,
similar modifications are often necessary in other practical
applications, for example one may want to allow analysis
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of forms common in colloquial language found in social
media, or on the Internet at large. The open source na-
ture of TRmorph allows users to customize the analyzer to
their needs by changing the source code of the analyzer.
However, the FST formalisms used in describing the mor-
phology are not necessarily easy to grasp even for experi-
enced programmers. A significant amount of learning time
is required before one can even do simple modifications.
Mostly based on the requests from the users, new release of
TRmorph allows some common options to be specified dur-
ing the compile time. Example options include whether to
accept common misspellings, analyze words written in all
capital letters or to produce ‘+’ separated analysis strings
similar to Oflazer (1994). This allow users to specify these
common preferences without needing to learn the finite
state language(s) the analyzer was implemented with.

4. New finite-state tools
Since Turkish is a morphologically complex language,
some common NLP tasks can only be done properly with
the help of a morphological analyzer. Most of these tools
share a common code base provided by the analyzer, and
their usage is similar, since the ideal input for these tools is
the analysis string rather than the surface form of a word.
We also describe a number of tools that do not make use of
the analyzer, but are included in the TRmorph distribution
since they are relatively easy to implement within a finite-
state framework.

4.1. Morphological segmentation
Morphological segmentation is the task of finding the sur-
face morphemes of a word. The result is interesting for
various research purposes, such as in evaluating unsuper-
vised morphological analyzers (e.g., Çöltekin, 2010b; Kılıç
and Bozşahin, 2012; Janicki, 2013).
For an agglutinating language like Turkish, one can find
almost a one-to-one correspondence with the morphemes
and their surface forms. However, analysis looses the link
between the underlying morpheme and its surface form.
Furthermore in presence of zero morphemes, morphemes
without a surface realization, one cannot even determine
the number of surface morphemes.
The main TRmorph FST includes root and morpheme
boundary symbols used internally for morphophonological
rules that are sensitive to these boundaries. Since the sur-
face forms of written words do not contain these bound-
aries, they are deleted from the surface words in the regular
analyzer. The segmentation tool, alongside a few others
described below, shares a common strategy in its imple-
mentation. The crucial part in the segmentation tool is a
slightly modified finite state transducer that keeps the inter-
mediate boundary symbols on the surface string. In its sim-
plest form, the segmentation FST takes an analysis string,
and generates a surface form with boundary markers. If the
aim is to produce the segmented form of a surface word,
the automata for segmentation and analysis can be com-
posed to convert the surface form to a segmented surface
form directly. This strategy will produce ambiguous results
in some cases. For example, the word evleri will be seg-
mented as both ev-ler-i ‘his/her houses’, and ev-leri ‘their

house’. Disambiguating the analysis first, and then generat-
ing the segmented surface form would be desirable in most
cases.

4.2. A grapheme-to-phoneme converter
Turkish orthography is rather transparent with respect to
standard pronunciation. One can build a straightforward
mapping from orthographic form to a phonetic representa-
tion with a number of alternations sensitive to immediate
phonetic or orthographic context. However, there are cer-
tain aspects of pronunciation, particularly the placement of
lexical stress in a word, that change depending on the mor-
phological process. As a result, the morphological analyzer
is also necessary for proper grapheme-to-phoneme (g2p)
conversion. The functionality of the g2p tool is similar to
the earlier work described by Oflazer and Inkelas (2006).
However, as well as being open source, the g2p tool de-
scribed here also differs significantly from the architecture
explained in Oflazer and Inkelas (2006).
As with the morphological analyzer, the g2p description
follows Göksel and Kerslake (2005). The default lexical
stress in Turkish is on the final syllable. And when most
suffixes are added to a stem, the stress moves to the final
syllable of the word. Some roots, especially of place names
and some borrowings, exhibit exceptional stress, and some
morphemes contain non-stressable syllables. In a simpli-
fied form:

• If a stressable suffix is added to a root form with fi-
nal stress, the stress moves to the final syllable (of the
added suffix).

• If a suffix with a non-stressable syllable is added to
a stem, stress falls before the non-stressable syllable.
The suffixes after that (stressable or not) do not change
the position of the stress.

• The location of stress does not change with suffixation
of root forms with exceptional stress. In the presence
of the negative marker (-ma/-me), however, the stress
falls on the syllable before the negative marker irre-
spective or the stress placement on the root.

As in the segmentation tool, the main implementation is
based on a modified transducer that is typically used in gen-
eration mode. To accommodate the stress calculations, the
morphotactics description in TRmorph is modified to in-
clude internal symbols that mark non-stressable syllables
in the suffixes. Similarly, the lexicon syntax is extended to
allow stress marking on the root forms. In regular analyz-
er/generator, the stress related symbols are discarded at the
beginning of the morphophonological processing. When
compiling the g2p transducer, these markers, as well as the
morpheme boundary markers are left on the orthographic
surface form. The orthographic form with these markers
are, in turn, syllabified, converted to a phonetic form in In-
ternational Phonetic Alphabet (IPA) symbols and the loca-
tion of the stress is determined based on the internal stress
and boundary markers, and a surface stress marker is in-
serted before the stressed vowel (or optionally before the
stressed syllable).
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The description of the g2p system is fairly complete, and
has been useful in some preliminary experiments in unsu-
pervised learning of segmentation (Çöltekin and Nerbonne,
2014). However, the grapheme-to-phoneme converter de-
scribed here is relatively new and experimental. Particu-
larly, the exceptional stress marking in lexicon is still in
progress.

4.3. Stemming lemmatization

Stemming is one of the common tasks in information re-
trieval and many other NLP tasks. Since possible suffix
sequence inventory for Turkish is rather large (and theoreti-
cally infinite), the only way to achieve reasonable stemming
is through morphological analysis. The present TRmorph
distribution includes a stemmer that first analyzes the given
word, and strips away all analysis symbols, leaving only
the stem. One can optionally include the part of speech tag,
and/or the derivational suffixes that immediately follow the
root in the stemmer output.

4.4. Unknown word guesser

Updating the lexicon of a morphological analyzer is one of
the constant maintenance tasks. However, it is simply im-
possible to add every possible root form to the lexicon. An
unknown word guesser is useful for providing alternative
analyses of unknown words. TRmorph now includes an un-
known guesser which replaces the lexicon of the standard
analyzer with a relatively permissive finite state automaton.
The lexicon of the guesser allows arbitrary character strings
(with some configurable restrictions) to be used as the root
of an open-class word. If the guesser is combined with the
analyzer using the priority union operation (Beesley and
Karttunen, 2003), the guesser will only be used for the
words that cannot be analyzed by the analyzer. This pro-
duces analyses that stem from the lexicon when possible,
but falls back to the guesser when analyzer fails.
Another possible use of the unknown word guesser is to
identify unknown roots. A variation of guesser in combina-
tion with a disambiguator was used during the construction
of the current TRmorph lexicon.

4.5. Hyphenation and tag set conversion

Another simple but useful tool newly included in TRmorph
is a FST for hyphenation. Hyphenation in Turkish can be
done completely automatically, since the hyphenation is al-
lowed at any syllable boundary, and the syllable structure
can unambiguously be inferred form the orthographic form
of a word.
Lastly, we introduce two experimental converters that con-
vert between different morphological tagsets. First, a
converter that converts from standard TRmorph tagset
to a tagset compatible with the conventions used in the
CHILDES database (MacWhinney and Snow, 1990). Sec-
ond, a converter from the common tagset (based on Oflazer,
1994) used in corpora from earlier studies to TRmorph
tagset. The second converter is used for converting a well
known disambiguated data set to TRmorph format for train-
ing the disambiguator described in Section 5.

5. Morphological disambiguation
Morphological disambiguation is the task of selecting the
most likely morphological analysis of a given word. It is
similar to the part of speech tagging. However, the number
of classes (size of the tagset) and the sparsity of the data
due to large number of missing word forms complicate the
problem.
Even in languages with relatively simpler morphology, a
word may have multiple analyses. The most straightfor-
ward case of morphological ambiguity is when a particular
stem belongs to multiple word classes, e.g., English word
‘book’ having a noun and verb sense. Similarly, ambiguous
affixes may also contribute to the number of possible anal-
yses of a word. For morphologically complex languages
like Turkish, the number of ambiguous analyses is typically
much higher. Depending on the semantic distinctions one
wants to make in the tagset, some words may be analyzed
in hundreds of different ways. As a result, morphological
disambiguation is an important step in Turkish NLP, and
has been a popular topic in Turkish NLP literature.
TRmorph produces highly ambiguous results compared to
the numbers reported in the literature using Oflazer’s ana-
lyzer. With default options, TRmorph produces on average
about 12 analyses per word. On the other hand, for exam-
ple, Hakkani-Tür et al. (2002) reports an average ambiguity
rate of less than two. The differences are, at least in part,
due to the choices made during the design of these ana-
lyzers. During the analysis TRmorph produces all possible
analyses of a word, including very unlikely ones. For ex-
ample, for any adjective (without any suffixes, or any other
root ambiguity), TRmorph produces eight analyses. The
reasons for this ambiguity include the fact that any adjec-
tive in Turkish can be used as a (pro)noun referring to an
object with relevant property; any noun or adjective may
be used a predicate with present copula and ‘null’ person-
number agreement; the null agreement on predicates may
agree with third person singular and plural subjects; and
the person-number agreement of a predicate may be at-
tached the following question particle, or another predicate
(in case of coordination). The cases of ambiguity are ex-
plained in detail in the TRmorph manual.
Earlier disambiguators presented in the literature have been
based on the analyses (tagset) of Oflazer (1994). Unfortu-
nately, none of the earlier systems could be used with the
output of TRmorph, either due to the lack of availability or
due to the fact that the tagsets used in the analyzers differ
substantially. The rest of this section reports a simple mor-
phological disambiguator that works well with TRmorph
output.

5.1. Related work
The earliest work on Turkish morphological disambigua-
tion is a rule-based system introduced by Oflazer and
Kuruöz (1994). Oflazer and Tür (1997) present a follow-
up work on the rule-based disambiguator. The motivation
is to relax the need for determining the rule application or-
der using a majority voting method. The accuracy values
reported in these models are rather high (about 98–99%).
However, this success is likely to be due to overfitting to
the small corpora used in these studies, since these earlier
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models have not been in use despite substantially lower per-
formance of later models.
The first statistical disambiguation work was reported by
Hakkani-Tür et al. (2002). The method used in this study
is essentially the same as a standard trigram HMM tag-
ger POS tagger. However, to alleviate the data sparseness
problem, they decompose the morphological analyses into
IGs. The best model presented in Hakkani-Tür et al. (2002)
achieves around 94% accuracy. Yüret and Türe (2006) in-
troduce a method that learns morphological analysis of a
given word from the features extracted only from surface
form of the target word and its left and right neighbors.
Yüret and Türe (2006) report an accuracy of 95.82%. In
a more recent study, Sak et al. (2007) presents a disam-
biguation system which takes the 50-best analyses of a sen-
tences using the model of Hakkani-Tür et al. (2002), and
re-ranks these analyses using a variation of the perceptron
algorithm. The resulting disambiguation system achieves
96.28% accuracy.
Except the first two rule-based disambiguation systems, all
recent studies make use of the same data set. However,
the scores may not be directly comparable due to different
testing settings.

5.2. Data and preprocessing
The largest data set used in this study is the data set from
Yüret and Türe (2006).6 This corpus seems to have orig-
inated from study by Hakkani-Tür et al. (2002), and used
by almost all subsequent studies. It contains newspaper
text collected from online newspapers. The data consists
of two parts. The first part contains approximately 1M
semi-automatically disambiguated tokens. We will call this
data set ‘1M’, The second part consists of approximately
1K hand-annotated tokens. We will call this set as ‘1K’
in this paper. As observed by others earlier, despite being
hand-annotated, 1K also contains errors, which were not
corrected in this study.
Since both 1M and 1K are analyzed using Oflazer’s (1994)
morphological analyzer, the data had to be converted to TR-
morph format. A large part of the data can be converted
using the conversion utility included in the TRmorph dis-
tribution. However, since there is no one-to-one mapping
between the tagsets used by two analyzers, this is a best-
effort conversion. Some of the tags of TRmorph never ap-
pear on the resulting data set, and some information is lost
during the conversion. Although the conversion utility pro-
duces a single result for each analysis found in 1M and 1K,
in about 5% of the cases, TRmorph does not generate the
same surface string for the given analysis. Most of these
cases are due to out-of-vocabulary words (mainly proper
nouns), disagreements about POS tag of the root words in
TRmorph lexicon and the corpus, different choices for in-
cluding derived forms in the lexicon or analyzing them, and
lastly, liberal use of word guesser to mark typos and non-
word strings as words.
These two data sets allow rough comparisons of the results
obtained in this study with the earlier studies in the liter-
ature. To test the success of the disambiguation on the

6Obtained from http://www.denizyuret.com/2006/11/turkish-
resources.html on 2013-09-26.

Data set sent. tokens types

1M 50519 834924 111127
1K 41 861 524
web5K 302 5025 3079
metu1K 76 1142 773

Table 1: Number of sentences, tokens and types in the data
sets used in this study.

target system, the native output of TRmorph, we also use
two small data sets that are analyzed by TRmorph and dis-
ambiguated manually. One of these data sets is a set of
357 sentences (approximately 5K tokens excluding punc-
tuation) randomly selected from a Web corpus of approx-
imately 800M tokens. As an attempt to test effects of
a more balanced corpus, we also use a small data set of
164 sentences (approximately 2K tokens excluding punc-
tuation) randomly selected from the METU corpus (Say et
al., 2002). Similar to the web data, these sentences were an-
alyzed by TRmorph and disambiguated manually. Table 1
presents some statistics for each data set used in this study.

5.3. Models of disambiguation without context
Despite the fact that there has been a relatively large num-
ber of studies on morphological disambiguation of Turkish,
it is surprising that none of the earlier studies considered a
simple disambiguator that does not make use of the word
context, but relies only on the features available in the word
and its analyses.
Indisputably, the neighboring words are important for mor-
phological disambiguation. Contextual differences are also
the main motivation behind the disambiguation effort. Nev-
ertheless, all words will have a ‘most likely’ interpretation,
and finding the most common analysis of a word (or prefer-
ably, scoring all the analyses of a word) is useful for a num-
ber of reasons.
First, the use of a zero-context disambiguation model
serves as a baseline in evaluation of more complex models.
Second, such a disambiguation system is useful when con-
text is not available. And yet another possibility to assign
scores or ranks using such a disambiguator, but let the am-
biguity resolution be done by a higher level process, e.g., a
parser, which would be in a better position to determine the
correct contextual dependencies. This approach also has
the advantages of not doing double-work, and not biasing
the decision of the higher level process with the way the
disambiguation system relates the words in context.
Here, we present three methods to assign a probability to a
given analysis string. In essence, what we are looking for is
arg maxT P(T |W) for all morphological analyses T (root +
morphological tags) offered by the analyzer. If we rewrite
the term that we want to maximize, P(T |W) = P(W|T)P(T)

P(W) ,
we observe that P(W) does not change for the analyses we
compare, and aside from a few exceptions, P(W|T) is 1 for
Turkish. That is, given an analysis, there is only one surface
form that corresponds to it. With these assumptions, the
quantity to maximize is P(T).
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5.3.1. Model 1: a rote-learning disambiguator
First model we define here is a ‘rote-learning’ model that
simply counts the analyses observed in the training data.
During testing, it picks the analysis that was observed in
the training with the highest frequency.
The model takes the analysis string T as a whole, and esti-
mates the probability of an analysis string using its relative
frequency in the training corpus with add-one smoothing.
During the test time we simply pick the analysis with the
highest P(T). The ties are broken randomly.

5.3.2. Model 2: making use of analysis without root
Model 1 described in Section 5.3.1 counts complete analy-
sis strings in the training data. This model will have diffi-
culties estimating probabilities of a large number of analy-
ses. Even for very frequent roots, it is unlikely (and theo-
retically impossible) that all possible suffix sequences will
be observed in the training data. However, if a particular
sequence of suffixes is frequent, regardless of the root it
follows, we expect the same sequence to be attached to un-
observed roots with high probability as well.
The model we describe in this section decomposes an
analysis string T into a root r and the part of the anal-
ysis string excluding the root a. For example for anal-
ysis string ev〈N〉〈loc〉〈ki〉〈Adj〉, r is ev and a is
〈N〉〈loc〉〈ki〉〈Adj〉. We are interested in the joint prob-
ability of the r and a, which can be factored as, P(r, a) =
P(r|a)P(a). As before, we estimate the probabilities from
relative frequencies in the training corpus with add-one
smoothing. Ties are again broken randomly, but ties are
less of an issue for this model in comparison to Model 1.

5.3.3. Model 3: making use of IGs
Model 2 splits an analysis string into two. However, we can
exploit the structure of the analyses for better estimation of
the probabilities for rare or unknown words.
The model defined here, Model 3, makes use of the se-
quence of IGs, and decomposes an IG into a root r or a
derivation d and a sequences of inflection(s) i including
the category marker. An analysis string is represented as
at least one (r, i) tuple followed by a possibly unbounded
number sequence of (d, i) tuples. For example the word
evdeki ‘the one at the house’ is represented as two IGs with
the following components.

ev︸︷︷︸
r

〈N〉〈loc〉︸ ︷︷ ︸
i0

〈ki〉︸︷︷︸
d1

〈Adj〉︸ ︷︷ ︸
i1

. . .

Having this decomposition at hand, we make two indepen-
dence assumptions. Namely, (1) an i is independent of
other parts of the analysis given present r or d and (2) a
d is independent of other parts of the analysis given the i
preceding it.
We estimate the probability of an analysis string with n
derivations by

P(T) = P(i0)P(r|i0)

n∏
k=1

P(dk|ik−1)P(ik|dk)

Note that we invert the conditional probability P(i0|r) as
before.

Test set Model 1 Model 2 Model 3

10fold 0.90±0.001 0.94±0.001 0.93±0.001
1K 0.92±0.010 0.96±0.007 0.93±0.009
web 0.78±0.006 0.87±0.005 0.86±0.005
metu 0.76±0.013 0.84±0.011 0.84±0.011

Table 2: Accuracy of the disambiguation models trained on
the 1M corpus. ‘10fold’ indicates 10-fold cross validation
results, and otherwise, the corpus used for testing. The in-
tervals are approximate standard errors assuming accuracy
values follow the binary distribution.

5.4. Experiments and Results
In all experiments reported below, we train all three models
on the indicated training data. During testing, we analyze
the surface words using TRmorph, pick the best analysis ac-
cording to the model, and compare it with the gold-standard
analysis. We present 10-fold cross validation results on the
same corpus, and tests that are done on corpora with differ-
ent properties.
The first set of result we present in Table 2 are accuracy
of models trained on the 1M corpus. The most interesting
finding at first sight is that Model 2 performs surprisingly
well in 10-fold cross validation test and while testing on
the 1K corpus. It rivals earlier more complex context-aware
models tested on the same corpora, scoring about 2% below
the best results obtained so far.
With respect to the different test sets used, the results are
as expected. All models perform better on familiar cor-
pora, and perform worse as the territory becomes more un-
known. The web5K and metu1K corpora are different from
the training data since they do not contain newspaper text
only, and they are annotated directly using the TRmroph
tagset. The differences between models are also as ex-
pected. The baseline model, Model 1, performs the worst.
So far, Model 2 seems to perform the best in all test scenar-
ios, since it does not make the simplifying independence
assumptions of Model 3.
The accuracy scores presented in Table 2 credit a model
only if the gold-standard analysis receives the highest score.
Figure 1 shows the ranks assigned to gold-standard analy-
ses on the 1K corpus by each model trained on the 1M cor-
pus. The figure demonstrates that misses by models 2 and 3
are mostly clustered in rank two or three. Both models in-
clude the gold-standard analyses within the first two ranks
in 99% of the cases.
It is clear from Table 2 that the performance of the models
on web5K and metu1K is far behind the results obtained
on the newspaper corpus used for training. The next set
of experiments investigate the question of whether we can
achieve better disambiguation using a small but more simi-
lar training set.
The accuracy of the models trained on web5K corpus is
presented in Table 3. The results clearly indicate that 5K
tokens are not enough for achieving the level of accuracy
obtained on larger but less familiar corpus. We also note
that Model 3 performs well above others in this small train-
ing set. The complexity introduced by model 3 seems to
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Figure 1: Rank assigned to the gold-standard analyses on
the 1K corpus by each model trained on the 1M corpus.
Note that the y-axis is cropped at 90% to show the differ-
ences between the models clearly.

Test set Model 1 Model 2 Model 3

10fold 0.52±0.023 0.50±0.023 0.79±0.018
metu 0.52±0.015 0.53±0.015 0.77±0.012
1K 0.47±0.018 0.49±0.018 0.80±0.014

Table 3: Accuracy of the zero-context disambiguation mod-
els trained on web5K corpus. ‘10fold’ indicates 10-fold
cross validation results, and otherwise, the corpus used for
testing. The intervals are approximate standard errors as-
suming accuracy values follow the binary distribution.

pay off if one has to work with a small training set. To show
the differences in learning, Figure 2 presents the learning
curves for each model when trained on the 1M corpus in-
crementally, and tested on metu1K. As expected, Model 1
is the slowest learner. Unlike when trained on web5K cor-
pus, Model 2 performs better, but it stays behind Model 3
until about 30K tokens. The graph in Figure 2 presents re-
sults only until 50K tokens to emphasize the changes at the
beginning. Although the models 2 and 3 reach to a cer-
tain level quickly at about 10K tokens, the small but steady
increase in accuracy continues until the end the 1M corpus.

6. Summary
In summary, this paper provides an update on major
changes on TRmorph over the last four years; introduces
a set of (finite-state) tools that are useful for speech and
language processing; and describes a new morphological
disambiguation model suitable to be used with TRmorph.
It should also be stressed that most of the new and addi-
tional tools are motivated by the users other than the author.
The changes introduced and additional tools implemented
over the last four years make TRmorph a more usable sys-
tem for Turkish NLP. TRmorph and the associated tools are
actively being developed. Besides constant improvements,
the tool set is constantly being expanded with new tools and
functionality.
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Figure 2: The learning curve of the models trained incre-
mentally on the 1M corpus, tested on metu1K. The x-axis
is cropped below 0.5, and the y-axis do not show all 800K
tokens to emphasize the differences with small training sets.

Even though the disambiguator presented here does not
make use of any context, the performance of it is only about
2% behind the best performing disambiguators in the litera-
ture. The first impression out of a preliminary error analysis
suggests that the context is not utilized enough by the ear-
lier models. Furthermore, the data set used by all models in
the literature (including the present one) is highly specific,
and contains many errors. A better disambiguation system
is one of the clear directions for future studies.
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Çöltekin, Çağrı (2010a). “A Freely Available Morpholog-
ical Analyzer for Turkish.” In: Proceedings of the 7th
International Conference on Language Resources and
Evaluation (LREC 2010). Valetta, Malta, pp. 820–827.
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Oflazer, Kemal and Kuruöz, İlker (1994). “Tagging and
morphological disambiguation of Turkish text.” In: Pro-
ceedings of the fourth conference on Applied natural lan-
guage processing. Association for Computational Lin-
guistics, pp. 144–149.

Oflazer, Kemal and Tür, Gökhan (1997). “Morphological
Disambiguation by Voting Constraints.” In: Proceedings
of the 35th Annual Meeting of the Association for Com-
putational Linguistics, pp. 222–229.
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