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Çağrı Çöltekin
Department of Linguistics

University of Tübingen
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Abstract

This paper describes our participation in Ger-
mEval 2020 task 1 on the classification and
regression of cognitive and motivational style
from text, which includes two subtasks. The
first subtask is about predicting ranking of stu-
dents based on a number of academic achieve-
ment scores, and the second subtask is about
predicting the categorical outcomes of a psy-
chometric test. The systems used in this study
are based on simple linear models trained only
on the task data for both systems. Despite
their simplicity, our systems obtained the first
place with a Pearson correlation coefficient of
0.370 in subtask 1, and the third place with a
macro-averaged F1 score of 0.678 in subtask
2 (20-way classification). Besides describ-
ing the systems, we report additional analy-
ses and results, and discuss possible improve-
ments and ethical considerations regarding the
task at hand.

1 Introduction

Language use reflects many aspect of a speaker’s
(or author’s) psychology. As a result, linguis-
tic output of a person can be used for detecting
certain aspects of his/her psychological state (see
Johannßen and Biemann, 2018, for a recent re-
view). This has been demonstrated successfully
on a range of tasks including predicting basic per-
sonal features like gender or age (Barbieri, 2008;
Peersman et al., 2011; Burger et al., 2011; Nguyen
et al., 2014); predicting personality traits (Luy-
ckx and Daelemans, 2008; Celli et al., 2013; Plank
and Hovy, 2015); predicting sentiment towards the
topic of a text (Pang et al., 2008), and predicting
mental health (Ramirez-Esparza et al., 2008; Cop-
persmith et al., 2014; Pirina and Çöltekin, 2018).

The present shared task (Johannßen et al., 2020)
is about predicting scores and psychometrics used
for assessing academic achievement. The task

consist of two subtasks. Subtask 1 requires pre-
dicting a ranking of students based on the sum of
high school grades and IQ test scores. The source
for the predictions consists of short texts obtained
during a psychometric test. In subtask 2, the aim
is to predict the outcome of another psychometric
test from similar short texts. Both subtasks have
attracted earlier interest from researchers. For ex-
ample, Pennebaker et al. (2014) study the correla-
tion between word choices in college application
essays and later academic success, and Johannßen
et al. (2019) present methods for automatically an-
notating a version of the subtask 2 data set (with
different class labels).

Although the task as formulated in this shared
task may not be directly applicable, automatic
methods has been put in real-world use for simi-
lar purposes, such as automatic essay scoring (see,
e.g., Dikli, 2006, for a review). As a result, the
methods developed here can potentially be used
in real-world educational assessment tasks. The
potential applicability on a area with high soci-
etal impact, combined with known racial or socio-
economic biases in some of the scores (e.g., IQ
scores) used in the present task, raises a number
of ethical concerns. A brief discussion of ethical
concerns are presented in Section 5, and the task
organizers review past and present use and misuse
of such metrics (Johannßen et al., 2020).

The systems used in this study are simple lin-
ear models for both subtasks. For subtask 1, we
use linear regression to predict the academic suc-
cess indicators. For subtask 2, we use support vec-
tor machine (SVM) classifiers. For both systems,
we character n-gram features extracted from the
shared task data provided by the organizers, with-
out use of any external resources or linguistic pro-
cessing. We mainly focus on the regression task
(subtask 1) where we report additional results with
a few alternative settings.



2 Task and the Data

This section briefly describes the task and the data.
A more detailed description can be found in Jo-
hannßen et al. (2020).

Subtask 1 The first subtask requires predicting
an (artificial) ranking of students from their lin-
guistic output. For each student there are 30 short
texts which are answers given to questions about
15 different images during a psychometric test,
motive index (MIX, Scheffer and Kuhl, 2006). The
expected outcome is a ranking of the students ob-
tained by summing five different scores, namely,
high school German, English and math grades and
scores of language IQ and logic IQ. All scores
were z-normalized by the organizers.1 The dis-
tributions of all scores show some skew. In partic-
ular, the IQ scores seems to have a negative skew,
while the high school grades have a positive skew.

The data is obtained from the application pro-
cess of NORDAKADEMIE, a private university
of applied sciences in Germany. The data set con-
tains data from approximately 2600 students (ap-
proximately 78 000 answers) which was split as
training, development and test sets each contain-
ing 80%, 10% and 10% of the data respectively.

Subtask 2 The second subtask is classifying
short texts collected during another psychometric
test, operant motive test (OMT, Kuhl and Schef-
fer, 1999). The texts are labeled using a two-
dimensional scheme with dimensions motive and
level. There are five motive classes in the data:
power (M), affiliation (A), achievement (L), free-
dom (F), and no motive identified (0). The level
variable takes values from 0 to 5. Although levels
are indicated with numeric values, the underlying
descriptions make the levels difficult to place on a
scale. Hence, treating them as discrete classes is
reasonable. For descriptions of the data, including
the descriptions of labels the reader is referred to
Johannßen et al. (2020) and Kuhl (2013).

Subtask 2 data consists of answers of over
14 600 volunteers taking the OMT, and answer-
ing questions about 15 images. Neither the im-
ages and questions associated with short answers,
nor (anonymous) IDs of the authors are provided
in the shared task data. The data was annotated by
the researchers with the motive and level classes

1However, the variance of the language IQ in the training
and development sets is very low (0.000 013), indicating a
possible oversight during normalization.

described above. In total, the data set contains
209 000 short texts with same ratios for training,
development and test sets.

3 System and Experiment Description

For both tasks, our participation is based on sim-
ple linear models. Contrary to our expectations,
a number of neural classification and regression
architectures did not perform as well during our
preliminary experiments.2 As a result, we only
present results from linear models in this paper.
We do not use any external data, including pre-
trained embeddings of any sort, and we use the
same features for both regression and classifica-
tion tasks. The systems are implemented mainly
with the scikit-learn library (Pedregosa et al.,
2011). The source code used in this study is avail-
able at https://github.com/coltekin/
germeval2020task1.

Features For both subtasks, we use sparse char-
acter and word (token) n-gram features. Given a
text, we count all character n-grams of order one
to C and word n-grams of order one to W . Both
C and W are treated as hyperparameters during
system tuning. We combine all features in a flat
manner, and scale the features with tf-idf. Tok-
enization is performed with a regular expression
which considers any continuous non-space char-
acter sequence as a token. Except case normaliza-
tion, which is treated as a hyperparameter during
tuning, no other text processing or filtering is per-
formed.

Subtask 1: the Regression Model Our submis-
sions are based on ridge regression (least-squares
regression with L2 regularization), using only the
textual features described above.

Besides the different feature sets, we experi-
ment with two different types of models. In the
‘factored-target’, model we train a separate classi-
fier for each score, then sum the resulting scores
to obtain the final ranking. In the ‘single-target’
model, we predict the sum of the scores directly.
Since there are 30 text samples per student, we
combine each text from the same person, and use

2This, however, should not be taken as a negative results.
The reason for abandoning the neural models in this study
is rather practical (mainly lack of time to tune them). Even
without use of external data (e.g., embeddings), the neural ar-
chitectures offer a number of advantages. For example, joint
predictors with shared weights and pre-training the models in
other (related) tasks are likely to be useful for both subtasks.

https://github.com/coltekin/germeval2020task1
https://github.com/coltekin/germeval2020task1


this combined document as a single text instance
for regression. We also experimented with train-
ing the model using each individual text as a sepa-
rate training instance. We only report results with
combined texts, since models trained on individual
texts performed worse in our experiments.

Subtask 2: the Classification Model Our clas-
sifiers for OMT prediction task are SVM clas-
sifiers trained with one-vs-rest multi-class strat-
egy. The features are sparse n-gram features de-
scribed above. We experimented with combined
motive–level and individual classifiers. However,
our final contribution is based on a hierarchical ap-
proach. We first train a classifier predicting only
the motive, and along with the textual features we
also use the distances from the decision bound-
ary of the motive predictions as additional numeric
scores for the level classifier. The software used
for this task is the same as on our earlier work on
other text classification tasks (Çöltekin and Rama,
2018; Çöltekin et al., 2018).

Our submission include a simple adaptation
method (similar to Jauhiainen et al., 2019; Wu
et al., 2019). In adaptation mode, we train a
base classifier and classify the test instances, then
we re-train the classifier with an augmented train-
ing set containing a subset of test instances with
highly confident predictions. In this study we fixed
the definition of highly confident predictions as
those predictions claimed by only one of the one-
vs-rest classifiers, with a minimum distance of 0.1
from the decision boundary.

Hyperparameter Tuning The systems for both
tasks were tuned for maximum order of character
and word n-grams and whether word features are
normalized for case or not. The hyperparameters
of the regression models also include the L2 reg-
ularization strength and the SVM margin parame-
ter ‘C’ is also tuned for the classification models.
Finally, we also tune a scale parameter for the ad-
ditional features used in second layer of the hier-
archical classifier. The range of hyperparameters
considered are listed in Table 2 in Appendix.

During tuning, we perform a random search
over the parameter space, and use 5-fold cross
validation on combined training and development
sets. The best parameter settings are decided based
on the average of the target scores obtained in
cross-validation folds. The scores optimized are
the scores used for shared task evaluation, namely,

correlation of the ranks for the regression task, and
the macro-averaged F1-score for the classification
task. For each system, we performed 4000 uni-
form random draws from the parameter space.3

Ensemble Output For final predictions, we use
an ensemble of 10 systems re-trained with the
10-best parameter settings obtained during tuning.
For the regression model, we take the mean of
the predictions from each of the top-10 models.
Similarly, the ensemble output of the classifiers is
based on majority vote. In case of ties, the ensem-
ble output is the prediction that include the predic-
tion of the best model.

4 Results

Official Results Our best submission in subtask
1 obtained the first rank in the competition with
an Pearson’s correlation coefficient of 0.370 with
0.055 points difference from the next best score.
Our best model for subtask 1 was the regression
model predicting only the sum of the scores.

In subtask 2, our system is placed third. The
macro-averaged F1-score obtained on the test set
for predicting motive–level combination is 0.678.
The rank stays the same for predicting the individ-
ual dimensions, with macro averaged F1-scores of
0.680 and 0.634 for motive and level predictions
respectively. For the OMT classification task, our
best model was hierarchical classifier with adap-
tation. However, adaptation made a rather small
(probably non-significant) difference.

The Predictability of Individual Scores Ta-
ble 1 presents Pearson correlation coefficients be-
tween model predictions and the gold-standard
values, the correlation between the model ranking
and the overall rank, and standard deviation of the
ranking errors. The row labels indicate the scores
that each model predicts (high school grades on
English, German and math, and logic and lan-
guage IQ scores). The row labeled ‘ensemble’
indicates combination of models trained on indi-
vidual scores, while ‘sum-only’ presents scores of
a model trained to predict the sum. The column
labeled ‘r’ present the Pearson correlation coef-
ficient of the predictions with actual scores pre-
dicted, ‘rank r’ presents correlations between pre-
dictions and the gold-standard ranking based on

3Except for the hierarchical OMT classifier, for which
the random search was terminated after approximately 300
draws.



score r rank r error std

English 0.336 0.361 85.25
German 0.274 0.312 89.21
Math 0.329 0.390 82.75
Logic 0.225 0.242 95.92
Language 0.321 0.321 90.57

Ensemble 0.431 0.415 83.39
Sum-only 0.434 0.421 82.88

Table 1: Development set scores of systems trained on
the combined text and individual answers.

the sum of all scores, and ‘error std’ is standard
deviation of the ranking error. All scores were
obtained by averaging the outputs of models with
10-best hyperparameter settings identified during
tuning. The systems were re-trained on the official
training set and tested on the development set.

The predictions of the high school grades, par-
ticularly math and English grades result in higher
rank correlations with the gold-standard ranks.
The higher correlation of the scores with the gold
standard does not uniformly transfer to their use-
fulness in predicting the ranks based on the sum
of the scores. For example, although it is not the
best predicted score, the high school math grade
is a better predictor of the overall rank in com-
parison to other scores, also providing the lowest
deviations from the gold-standard ranks. Combin-
ing different scores, either by predicting them sep-
arately or predicting their sum directly is clearly
useful. Predicting the sum directly gives slightly
better results than predicting individual scores and
summing them. Another surprising observation is
that, ranking based on math scores only result in
the least ranking error, yielding even slightly bet-
ter results than combinations of all scores.

Similar to the official submission, the best
scores are obtained by the system predicting only
the sum. However, for both scores, there is a big
discrepancy between development set scores, and
the official test set submissions. As noted before,
the scale of the language IQ score in the data set
is much lower than the other scores. Since its con-
tribution to the sum is negligible if not rescaled,
standardizing it improved our scores on the devel-
opment set. However, it is likely to have a nega-
tive effect on the test set due to the mismatch of
the way the sum is calculated by the system and
the gold-standard data.

5 General Discussion

Results: the Good and the Bad The results pre-
sented in this paper and by the other participants in
the shared task clearly show that there is a strong
signal in the texts for predicting the overall rank-
ing. Obtaining rank correlations up to 42% from
textual features extracted from 30 short answers is
impressive. However, we should also keep in mind
that this means rank predictions explain only about
16% of the (linear) variation in the gold-standard
ranking. Looking at it another way, the standard
deviation of the difference between the predicted
ranks by our top model based on rank correlation
and the gold-standard ranking on the development
set (of 260 instances) is 82.9. This is clearly better
than the deviation expected from a random rank-
ing (approximately 106). However, it also means
that a large error is expected in most rank predic-
tions. Assuming normal distribution of ranking er-
rors, approximately 32% of the predictions will be
placed more than 82.9 ranks away from their gold-
standard rank. The maximum rank difference for
our best model is 217, assigning the rank 18 to
the gold-standard rank 235. In summary, the result
clearly are interesting as there is an unmistakable
signal in the data, but it is yet far from being ap-
plicable even if we assume that the gold-standard
ranking provided is a good way to rank, e.g., ap-
plications to a university.

The Linear Models, and Beyond Another take-
home message from the present results is perhaps
not to dismiss simple (linear) models quickly. Al-
though there are attractive properties of (deep)
neural networks, simple linear models can yield
comparable, or even better results in some prob-
lems. Furthermore, their simplicity and compu-
tational efficiency allows faster (and greener) ex-
perimentation and tuning of these systems. That
being said, the flexibility of neural models allow
easy incorporation of external information (e.g.,
pre-trained embeddings or pre-training on relevant
tasks), and easier modeling multi-task learning
and sharing weights across tasks. These aspects
of the neural models, when used properly, are
likely to improve the results presented in this pa-
per. Other potential directions for improvements
include incorporation of linguistic and/or explicit
error features. Even though simple n-gram fea-
tures used in this study performed well, it is dif-
ficult for these features to lead to certain general-



izations. For example, generalizing over (different
types of) errors in the text is likely to be useful
in this task, while individual instances of errors
caught by character n-gram features are not neces-
sarily enough for a generalization that would make
use of similar errors during prediction time.

Ethical Considerations Another interesting as-
pect of the present task is the ethical implica-
tions/considerations that resulted in a considerable
debate in the computational linguistics commu-
nity.4 In particular, if such systems are used in
practice, the fact that they may include certain bi-
ases which lead to discrimination (or used as jus-
tification of discrimination) is a serious concern.
This is particularly true for some of the scores used
for ranking in the present task setup. It is well
known that IQ tests show racial, ethnic or socio-
cultural bias (Jensen, 1980; Rushton and Jensen,
2005, also see the task description paper by Jo-
hannßen et al. (2020) for a broad review of use
and misue of IQ scores in different countries by
public and private organizations). Similarly, the
high-school grades are not bias-free either. Studies
in Germany (Sprietsma, 2013) and in the Nether-
lands (van Ewijk, 2011) show that the same es-
says when signed by a name typical for immi-
grant societies are likely to get lower grades from
primary school teachers. Most, if not all, cog-
nitive/academic achievement tests seem to have
some form of bias, either due to the way the test
material are prepared/presented, or due to the bi-
ased views of individual human evaluators.

Not only humans, but computer systems also
exhibit bias (Friedman and Nissenbaum, 1996). A
number of recent studies demonstrated that ma-
chine learning methods also learn the biases in
their training data, and proposed ways of miti-
gating the bias (e.g., Caliskan et al., 2017; Kir-
itchenko and Mohammad, 2018; Sun et al., 2019;
Bender and Friedman, 2018). Clearly, both data
source and the methods are susceptible to bias.

Conceivably, however, the automatic systems
may exhibit less bias than humans in this task,
since the systems seem to learn (even amplify)
the biases when there is a strong bias (Zhao et al.,
2017). On the other hand, Sprietsma (2013) report
that the biases observed in their study is ‘weak’, in

4There has at least been a heated debate on the
corpora list (https://mailman.uib.no/public/
corpora/2019-December/thread.html) upon an-
nouncement of the shared task.

the sense that the bias observed stems from scores
assigned by only a minority of the teachers. The
scores from the majority of the teachers in their
study does not show any clear bias. A system
learning from such a low-bias data set may in fact
result in automatic systems that are on average less
(severely) biased than the human evaluators. The
question, however, is an empirical question. Even
though the present systems are not yet mature
enough to be applicable in the real world, prevent-
ing bias in these systems can only be achieved by
studying them carefully and responsibly. In partic-
ular, focusing on careful analyses of the systems
rather than the usual strong focus on the state-of-
the-art performance scores in the field is important
to understand consequences of using similar sys-
tems in real-world applications.

6 Summary and Outlook

We described simple (linear) systems for Ger-
mEval 2020 task 1, ‘classification and regression
of cognitive and motivational style from text’. The
systems achieved strong results in the competition.
Besides describing the systems, we present a few
additional experiments which may help better un-
derstanding of the task at hand and the particular
solutions used in this study.

Despite the clear signal in the data for pre-
dicting the scores relevant to academic success,
the results are unlikely to be applicable in prac-
tice. Better modeling practices discussed above
are likely to improve the success of the systems.
However, it is equally important to analyze the
methods and understand their strengths and weak-
nesses. In particular, for such an application with
potentially high impact on the society, the biases
that may come from the labeled or unlabeled data
sets should be identified, and mitigated.

The systems described here probably owe part
of their success to the specific texts obtained on a
relevant test. An interesting question to investigate
is if the same or similar results can be obtained
other, more general, types of texts, for example
essays written in the school or linguistic output of
the authors during more informal communication.

Like many shared task participations, the
present study focused mainly on improving the
scores. However, another interesting direction for
future work is to analyze the models carefully to
get further insights into (linguistic) features in the
data that correlate with academic success.

https://mailman.uib.no/public/corpora/2019-December/thread.html
https://mailman.uib.no/public/corpora/2019-December/thread.html
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A Appendix

Hyperparameter range

SVM margin parameter ‘C’ (0.0, 2.0]
L2 normalization strength (0.0, 50.0]
Maximum char n-grams [2, 9]
Maximum word n-grams [2, 5]
Case normalization words or none
Scale of transfer features (0, 2.0)

Table 2: The ranges of hyperparameters used during
tuning. See Section 3 for detailed descriptions of the
parameters and the tuning process.
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